1
|
Wagner AG, Lang TBD, Ledingham ET, Ghosh A, Brooks D, Eskandari R, Suthagar K, Almo SC, Lamiable-Oulaidi F, Tyler PC, Schramm VL. Transition State Analogs of Human DNPH1 Reveal Two Electrophile Migration Mechanisms. J Med Chem 2025; 68:3653-3672. [PMID: 39818772 DOI: 10.1021/acs.jmedchem.4c02778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
DNPH1 is responsible for eliminating the epigenetically modified nucleotide, 5-hydroxymethyl-2'-deoxyuridine 5'-monophosphate (hmdUMP), preventing formation of hmdUTP, a mutation-inducing nucleotide. Loss of DNPH1 activity sensitizes PARP inhibition-resistant BRCA-deficient cancers by causing incorporation of hmdUTP into DNA. Hydrolysis of hmdUMP by DNPH1 proceeds through a covalent intermediate between Glu104 and 2-deoxyribose 5-phosphate, followed by hydrolysis, a reaction cycle with two transition states. We describe synthesis and characterization of transition state mimics for both transition states of DNPH1. Both transition states prefer inhibitors with cationic charge at the anomeric center and provide a foundation for inhibitor design. Ground-state complexes show reaction coordinate nucleophiles poised 3.3-3.7 Å from the anomeric carbon while transition state analogs tighten the reaction coordinate to place the nucleophiles 2.7-2.8 Å from the anomeric carbon. Crystal structures of DNPH1 with transition state analogs reveal transition states where the electrophilic ribocation migrates between the leaving groups and attacking nucleophiles.
Collapse
Affiliation(s)
- Andrew G Wagner
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Thomas B D Lang
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Edward T Ledingham
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Donovan Brooks
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Roozbeh Eskandari
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Kajitha Suthagar
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Farah Lamiable-Oulaidi
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Peter C Tyler
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
2
|
Qiu X, Jiang S, Xiao Y, He Y, Ren T, Jiang L, Liu R, Chen Q. SOX2-dependent expression of dihydroorotate dehydrogenase regulates oral squamous cell carcinoma cell proliferation. Int J Oral Sci 2021; 13:3. [PMID: 33510132 PMCID: PMC7844284 DOI: 10.1038/s41368-020-00109-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) become a heavy burden of public health, with approximately 300 000 newly diagnosed cases and 145 000 deaths worldwide per year. Nucleotide metabolism fuel DNA replication and RNA synthesis, which is indispensable for cell proliferation. But how tumor cells orchestrate nucleotide metabolic enzymes to support their rapid growth is largely unknown. Here we show that expression of pyrimidine metabolic enzyme dihydroorotate dehydrogenase (DHODH) is upregulated in OSCC tissues, compared to non-cancerous adjacent tissues. Enhanced expression of DHODH is correlated with a shortened patient survival time. Inhibition of DHODH by either shRNA or selective inhibitors impairs proliferation of OSCC cells and growth of tumor xenograft. Further, loss of functional DHODH imped de novo pyrimidine synthesis, and disrupt mitochondrial respiration probably through destabilizing the MICOS complex. Mechanistic study shows that transcriptional factor SOX2 plays an important role in the upregulation of DHODH in OSCC. Our findings add to the knowledge of how cancer cells co-opt nucleotide metabolism to support their rapid growth, and thereby highlight DHODH as a potential prognostic and therapeutic target for OSCC treatment.
Collapse
Affiliation(s)
- Xuemei Qiu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sheng Jiang
- Ministry of science and technology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Yanxuan Xiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yumin He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Ren
- Oncology Department, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Lu Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Rui Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Shi X, Zhang Y. A humanized antibody inhibitor for cathepsin L. Protein Sci 2020; 29:1924-1930. [PMID: 32683733 DOI: 10.1002/pro.3913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Cathepsin L (CTSL) is a cysteine protease involved in a variety of physiological and pathological processes. Potent inhibitors against CTSL have long been sought for drug development. Due to insufficient specificity and suboptimal pharmacological properties for current CTSL inhibitors, novel agents are still required for selectively blocking CTSL activity. Here we generated a humanized antibody inhibitor of CTSL by genetically fusing the inhibitory propeptide of procathepsin L to the N-terminus of the light chain of a humanized antibody. The resulting antibody fusion could be stably expressed and displays highly potent inhibition activity and specificity toward CTSL. This work demonstrates a new approach for the rapid generation of antibody inhibitors of CTSL. It can possibly be extended to create inhibitory antibodies targeting other cathepsin proteases, providing novel research and therapeutic tools.
Collapse
Affiliation(s)
- Xiaojing Shi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA.,Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.,Research Center for Liver Diseases, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Dai Z, Cheng Q, Zhang Y. Rational Design of a Humanized Antibody Inhibitor of Cathepsin B. Biochemistry 2020; 59:1420-1427. [PMID: 32212642 DOI: 10.1021/acs.biochem.0c00046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cathepsin B (CTSB) is an abundant cysteine protease that functions in both endolysosomal compartments and extracellular regions. A considerable number of preclinical and clinical studies indicate that CTSB is implicated in many human diseases. Expression levels and activity of CTSB significantly correlate with disease progression and severity. Current inhibitors of CTSB are lack of adequate specificity and pharmacological activities. Through structure-guided rational design, we hereby designed and generated a humanized antibody inhibitor targeting human CTSB. This was achieved by genetically fusing the propeptide of procathepsin B, a naturally occurring inhibitor of CTSB, into heavy chain complementarity-determining region 3 (CDR3H) of Herceptin that is used in the clinic for the treatment of breast cancer. The resulting antibody-propeptide fusion displayed high specificity for inhibiting CTSB proteolytic activity at nanomolar levels. Pharmacokinetic studies in mice revealed a plasma half-life of approximately 42 h for this anti-CTSB antibody inhibitor, comparable to that of the parental Herceptin scaffold. This study demonstrates a new approach for the efficient generation of humanized antibody inhibitors with high potency and specificity for human CTSB, which may be extended to develop antibody inhibitors against other disease relevant cathepsin proteases.
Collapse
Affiliation(s)
- Zhefu Dai
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States.,Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States.,Research Center for Liver Diseases, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
5
|
Roca M, Navas-Yuste S, Zinovjev K, López-Estepa M, Gómez S, Fernández FJ, Vega MC, Tuñón I. Elucidating the Catalytic Reaction Mechanism of Orotate Phosphoribosyltransferase by Means of X-ray Crystallography and Computational Simulations. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maite Roca
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| | - Sergio Navas-Yuste
- Structural and Chemical Biology, Center for Biological Research (CIB-CSIC), 28040 Madrid, Spain
| | - Kirill Zinovjev
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K
| | - Miguel López-Estepa
- Structural and Chemical Biology, Center for Biological Research (CIB-CSIC), 28040 Madrid, Spain
| | - Sara Gómez
- Structural and Chemical Biology, Center for Biological Research (CIB-CSIC), 28040 Madrid, Spain
| | - Francisco J. Fernández
- Structural and Chemical Biology, Center for Biological Research (CIB-CSIC), 28040 Madrid, Spain
| | - M. Cristina Vega
- Structural and Chemical Biology, Center for Biological Research (CIB-CSIC), 28040 Madrid, Spain
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| |
Collapse
|
6
|
Abstract
Transition state theory teaches that chemically stable mimics of enzymatic transition states will bind tightly to their cognate enzymes. Kinetic isotope effects combined with computational quantum chemistry provides enzymatic transition state information with sufficient fidelity to design transition state analogues. Examples are selected from various stages of drug development to demonstrate the application of transition state theory, inhibitor design, physicochemical characterization of transition state analogues, and their progress in drug development.
Collapse
Affiliation(s)
- Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
7
|
QM/MM analysis of effect of divalent metal ions on OPRT action. Comput Biol Chem 2018; 74:80-85. [DOI: 10.1016/j.compbiolchem.2018.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 11/19/2022]
|
8
|
Harris LD, Harijan RK, Ducati RG, Evans GB, Hirsch BM, Schramm VL. Synthesis of bis-Phosphate Iminoaltritol Enantiomers and Structural Characterization with Adenine Phosphoribosyltransferase. ACS Chem Biol 2018; 13:152-160. [PMID: 29178779 DOI: 10.1021/acschembio.7b00601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphoribosyl transferases (PRTs) are essential in nucleotide synthesis and salvage, amino acid, and vitamin synthesis. Transition state analysis of several PRTs has demonstrated ribocation-like transition states with a partial positive charge residing on the pentose ring. Core chemistry for synthesis of transition state analogues related to the 5-phospho-α-d-ribosyl 1-pyrophosphate (PRPP) reactant of these enzymes could be developed by stereospecific placement of bis-phosphate groups on an iminoaltritol ring. Cationic character is provided by the imino group and the bis-phosphates anchor both the 1- and 5-phosphate binding sites. We provide a facile synthetic path to these molecules. Cyclic-nitrone redox methodology was applied to the stereocontrolled synthesis of three stereoisomers of a selectively monoprotected diol relevant to the synthesis of transition-state analogue inhibitors. These polyhydroxylated pyrrolidine natural product analogues were bis-phosphorylated to generate analogues of the ribocationic form of 5-phosphoribosyl 1-phosphate. A safe, high yielding synthesis of the key intermediate represents a new route to these transition state mimics. An enantiomeric pair of iminoaltritol bis-phosphates (L-DIAB and D-DIAB) was prepared and shown to display inhibition of Plasmodium falciparum orotate phosphoribosyltransferase and Saccharomyces cerevisiae adenine phosphoribosyltransferase (ScAPRT). Crystallographic inhibitor binding analysis of L- and D-DIAB bound to the catalytic sites of ScAPRT demonstrates accommodation of both enantiomers by altered ring geometry and bis-phosphate catalytic site contacts.
Collapse
Affiliation(s)
- Lawrence D. Harris
- The
Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield
Rd, Lower Hutt, 5010, New Zealand
| | - Rajesh K. Harijan
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Rodrigo G. Ducati
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Gary B. Evans
- The
Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield
Rd, Lower Hutt, 5010, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Brett M. Hirsch
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Vern L. Schramm
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
9
|
Moggré GJ, Poulin MB, Tyler PC, Schramm VL, Parker EJ. Transition State Analysis of Adenosine Triphosphate Phosphoribosyltransferase. ACS Chem Biol 2017; 12:2662-2670. [PMID: 28872824 DOI: 10.1021/acschembio.7b00484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adenosine triphosphate phosphoribosyltransferase (ATP-PRT) catalyzes the first step in histidine biosynthesis, a pathway essential to microorganisms and a validated target for antimicrobial drug design. The ATP-PRT enzyme catalyzes the reversible substitution reaction between phosphoribosyl pyrophosphate and ATP. The enzyme exists in two structurally distinct forms, a short- and a long-form enzyme. These forms share a catalytic core dimer but bear completely different allosteric domains and thus distinct quaternary assemblies. Understanding enzymatic transition states can provide essential information on the reaction mechanisms and insight into how differences in domain structure influence the reaction chemistry, as well as providing a template for inhibitor design. In this study, the transition state structures for ATP-PRT enzymes from Campylobacter jejuni and Mycobacterium tuberculosis (long-form enzymes) and from Lactococcus lactis (short-form) were determined and compared. Intrinsic kinetic isotope effects (KIEs) were obtained at reaction sensitive positions for the reverse reaction using phosphonoacetic acid, an alternative substrate to the natural substrate pyrophosphate. The experimental KIEs demonstrated mechanistic similarities between the three enzymes and provided experimental boundaries for quantum chemical calculations to characterize the transition states. Predicted transition state structures support a dissociative reaction mechanism with a DN*AN‡ transition state. Weak interactions from the incoming nucleophile and a fully dissociated ATP adenine are predicted regardless of the difference in overall structure and quaternary assembly. These studies establish that despite significant differences in the quaternary assembly and regulatory machinery between ATP-PRT enzymes from different sources, the reaction chemistry and catalytic mechanism are conserved.
Collapse
Affiliation(s)
- Gert-Jan Moggré
- Maurice
Wilkins Centre, Biomolecular Interaction Centre and Department of
Chemistry, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
| | - Myles B. Poulin
- Department
of Chemistry and Biochemistry, University of Maryland College Park, College
Park, Maryland 20742, United States
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Peter C. Tyler
- Ferrier
Research Institute, Victoria University of Wellington, P.O. Box 33436, Petone 5046, New Zealand
| | - Vern L. Schramm
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Emily J. Parker
- Maurice
Wilkins Centre, Biomolecular Interaction Centre and Department of
Chemistry, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand
- Ferrier
Research Institute, Victoria University of Wellington, P.O. Box 33436, Petone 5046, New Zealand
| |
Collapse
|
10
|
Solute carriers affect Anopheles stephensi survival and Plasmodium berghei infection in the salivary glands. Sci Rep 2017; 7:6141. [PMID: 28733628 PMCID: PMC5522484 DOI: 10.1038/s41598-017-06317-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022] Open
Abstract
Malaria is caused by mosquito-borne Plasmodium spp. parasites that must infect and survive within mosquito salivary glands (SGs) prior to host transmission. Recent advances in transcriptomics and the complete genome sequencing of mosquito vectors have increased our knowledge of the SG genes and proteins involved in pathogen infection and transmission. Membrane solute carriers are key proteins involved in drug transport and are useful in the development of new interventions for transmission blocking. Herein, we applied transcriptomics analysis to compare SGs mRNA levels in Anopheles stephensi fed on non-infected and P. berghei-infected mice. The A. stephensi solute carriers prestinA and NDAE1 were up-regulated in response to infection. These molecules are predicted to interact with each other, and are reportedly involved in the maintenance of cell homeostasis. To further evaluate their functions in mosquito survival and parasite infection, these genes were knocked down by RNA interference. Knockdown of prestinA and NDAE1 resulted in reduction of the number of sporozoites in mosquito SGs. Moreover, NDAE1 knockdown strongly impacted mosquito survival, resulting in the death of half of the treated mosquitoes. Overall, our findings indicate the importance of prestinA and NDAE1 in interactions between mosquito SGs and Plasmodium, and suggest the need for further research.
Collapse
|
11
|
Physiologic Medium Rewires Cellular Metabolism and Reveals Uric Acid as an Endogenous Inhibitor of UMP Synthase. Cell 2017; 169:258-272.e17. [PMID: 28388410 DOI: 10.1016/j.cell.2017.03.023] [Citation(s) in RCA: 404] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/06/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023]
Abstract
A complex interplay of environmental factors impacts the metabolism of human cells, but neither traditional culture media nor mouse plasma mimic the metabolite composition of human plasma. Here, we developed a culture medium with polar metabolite concentrations comparable to those of human plasma (human plasma-like medium [HPLM]). Culture in HPLM, relative to that in traditional media, had widespread effects on cellular metabolism, including on the metabolome, redox state, and glucose utilization. Among the most prominent was an inhibition of de novo pyrimidine synthesis-an effect traced to uric acid, which is 10-fold higher in the blood of humans than of mice and other non-primates. We find that uric acid directly inhibits uridine monophosphate synthase (UMPS) and consequently reduces the sensitivity of cancer cells to the chemotherapeutic agent 5-fluorouracil. Thus, media that better recapitulates the composition of human plasma reveals unforeseen metabolic wiring and regulation, suggesting that HPLM should be of broad utility.
Collapse
|
12
|
Mishra M, Mishra VK, Kashaw V, Iyer AK, Kashaw SK. Comprehensive review on various strategies for antimalarial drug discovery. Eur J Med Chem 2016; 125:1300-1320. [PMID: 27886547 DOI: 10.1016/j.ejmech.2016.11.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 01/14/2023]
Abstract
The resistance of malaria parasites to existing drugs carries on growing and progressively limiting our ability to manage this severe disease and finally lead to a massive global health burden. Till now, malaria control has relied upon the traditional quinoline, antifolate and artemisinin compounds. Very few new antimalarials were developed in the past 50 years. Among recent approaches, identification of novel chemotherapeutic targets, exploration of natural products with medicinal significance, covalent bitherapy having a dual mode of action into a single hybrid molecule and malaria vaccine development are explored heavily. The proper execution of these approaches and proper investment from international agencies will accelerate the discovery of drugs that provide new hope for the control or eventual eradication of this global infectious disease. This review explores various strategies for assessment and development of new antimalarial drugs. Current status and scientific value of previous approaches are systematically reviewed and new approaches provide a pragmatic forecast for future developments are introduced as well.
Collapse
Affiliation(s)
- Mitali Mishra
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Vikash K Mishra
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Varsha Kashaw
- SVN Institute of Pharmaceutical Sciences, SVN University, Sagar, MP, India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Sushil Kumar Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India; Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
13
|
An organism-independent unified model for activity of orotate phosphoribosyltransferases for orotidine monophosphate synthesis. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Evans GB, Gainsford GJ, Schramm VL, Tyler PC. The synthesis of possible transition state analogue inhibitors of thymidine phosphorylase. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.11.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Liu L, Richard J, Kim S, Wojcik EJ. Small molecule screen for candidate antimalarials targeting Plasmodium Kinesin-5. J Biol Chem 2014; 289:16601-14. [PMID: 24737313 DOI: 10.1074/jbc.m114.551408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasmodium falciparum and vivax are responsible for the majority of malaria infections worldwide, resulting in over a million deaths annually. Malaria parasites now show measured resistance to all currently utilized drugs. Novel antimalarial drugs are urgently needed. The Plasmodium Kinesin-5 mechanoenzyme is a suitable "next generation" target. Discovered via small molecule screen experiments, the human Kinesin-5 has multiple allosteric sites that are "druggable." One site in particular, unique in its sequence divergence across all homologs in the superfamily and even within the same family, exhibits exquisite drug specificity. We propose that Plasmodium Kinesin-5 shares this allosteric site and likewise can be targeted to uncover inhibitors with high specificity. To test this idea, we performed a screen for inhibitors selective for Plasmodium Kinesin-5 ATPase activity in parallel with human Kinesin-5. Our screen of nearly 2000 compounds successfully identified compounds that selectively inhibit both P. vivax and falciparum Kinesin-5 motor domains but, as anticipated, do not impact human Kinesin-5 activity. Of note is a candidate drug that did not biochemically compete with the ATP substrate for the conserved active site or disrupt the microtubule-binding site. Together, our experiments identified MMV666693 as a selective allosteric inhibitor of Plasmodium Kinesin-5; this is the first identified protein target for the Medicines of Malaria Venture validated collection of parasite proliferation inhibitors. This work demonstrates that chemical screens against human kinesins are adaptable to homologs in disease organisms and, as such, extendable to strategies to combat infectious disease.
Collapse
Affiliation(s)
- Liqiong Liu
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Jessica Richard
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Sunyoung Kim
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Edward J Wojcik
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|