1
|
Wickramaratne AC, Wickner S, Kravats AN. Hsp90, a team player in protein quality control and the stress response in bacteria. Microbiol Mol Biol Rev 2024; 88:e0017622. [PMID: 38534118 PMCID: PMC11332350 DOI: 10.1128/mmbr.00176-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
SUMMARYHeat shock protein 90 (Hsp90) participates in proteostasis by facilitating protein folding, activation, disaggregation, prevention of aggregation, degradation, and protection against degradation of various cellular proteins. It is highly conserved from bacteria to humans. In bacteria, protein remodeling by Hsp90 involves collaboration with the Hsp70 molecular chaperone and Hsp70 cochaperones. In eukaryotes, protein folding by Hsp90 is more complex and involves collaboration with many Hsp90 cochaperones as well as Hsp70 and Hsp70 cochaperones. This review focuses primarily on bacterial Hsp90 and highlights similarities and differences between bacterial and eukaryotic Hsp90. Seminal research findings that elucidate the structure and the mechanisms of protein folding, disaggregation, and reactivation promoted by Hsp90 are discussed. Understanding the mechanisms of bacterial Hsp90 will provide fundamental insight into the more complex eukaryotic chaperone systems.
Collapse
Affiliation(s)
- Anushka C. Wickramaratne
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrea N. Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| |
Collapse
|
2
|
Lejeune C, Cornu D, Sago L, Redeker V, Virolle MJ. The stringent response is strongly activated in the antibiotic producing strain, Streptomyces coelicolor. Res Microbiol 2024; 175:104177. [PMID: 38159786 DOI: 10.1016/j.resmic.2023.104177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
S. lividans and S. coelicolor are phylogenetically closely related strains with different abilities to produce the same specialized metabolites. Previous studies revealed that the strong antibiotic producer, S. coelicolor, had a lower ability to assimilate nitrogen and phosphate than the weak producer, Streptomyces lividans, and this resulted into a lower growth rate. A comparative proteomic dataset was used to establish the consequences of these nutritional stresses on the abundance of proteins of the translational apparatus of these strains, grown in low and high phosphate availability. Our study revealed that most proteins of the translational apparatus were less abundant in S. coelicolor than in S. lividans whereas it was the opposite for ET-Tu 3 and a TrmA-like methyltransferase. The expression of the latter being known to be under the positive control of the stringent response whereas that of the other ribosomal proteins is under its negative control, this indicated the occurrence of a strong activation of the stringent response in S. coelicolor. Furthermore, in S. lividans, ribosomal proteins were more abundant in phosphate proficiency than in phosphate limitation suggesting that a limitation in phosphate, that was also shown to trigger RelA expression, contributes to the induction of the stringent response.
Collapse
Affiliation(s)
- Clara Lejeune
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| | - David Cornu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| | - Laila Sago
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| | - Virginie Redeker
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France; Institut Francois Jacob, Molecular Imaging Center (MIRCen), Laboratory of Neurodegenerative Diseases, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France.
| | - Marie-Joelle Virolle
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Sun YY, Guo HY, Liu BS, Zhang N, Zhu KC, Xian L, Zhao PH, Yang HY, Zhang DC. Genome-wide identification of heat shock protein gene family and their responses to pathogen challenge in Trachinotus ovatus. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109309. [PMID: 38142023 DOI: 10.1016/j.fsi.2023.109309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Heat Shock Proteins (HSPs) are a widely distributed family of proteins produced in response to heat and other stresses. To develop a deeper understanding of the mechanisms governing expression of HSPs in the bony fish Trachinotus ovatus, we carried out a whole genome analysis and identified 43 HSP genes. Based on their phylogenetic relationships with Danio rerio, Seriola dumerili, and Seriola lalandi, they were divided into four subfamilies: HSP20, HSP60, HSP70, and HSP90. We performed an analysis of the predicted physicochemical properties and subcellular localization of proteins encoded by these genes. The chromosomal localization results showed that the HSP genes are distributed across 20 chromosomes of T. ovatus.These genes were found to be expressed in different tissues, and they showed differential expression in the immune response against Streptococcus agalactiae. However, there was no significant differential expression in the different skin tissue locations of T. ovatus after infection by Cryptocaryon irritans Brown. This study provides basic information for further research on the evolution and structure and function of HSPs in teleosts.
Collapse
Affiliation(s)
- Yi-Yao Sun
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066000, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, PR China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China
| | - Lin Xian
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, PR China
| | - Peng-Hai Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China
| | - Hui-Yuan Yang
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066000, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
4
|
Gollapalli P, Rudrappa S, Kumar V, Santosh Kumar HS. Domain Architecture Based Methods for Comparative Functional Genomics Toward Therapeutic Drug Target Discovery. J Mol Evol 2023; 91:598-615. [PMID: 37626222 DOI: 10.1007/s00239-023-10129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
Genes duplicate, mutate, recombine, fuse or fission to produce new genes, or when genes are formed from de novo, novel functions arise during evolution. Researchers have tried to quantify the causes of these molecular diversification processes to know how these genes increase molecular complexity over a period of time, for instance protein domain organization. In contrast to global sequence similarity, protein domain architectures can capture key structural and functional characteristics, making them better proxies for describing functional equivalence. In Prokaryotes and eukaryotes it has proven that, domain designs are retained over significant evolutionary distances. Protein domain architectures are now being utilized to categorize and distinguish evolutionarily related proteins and find homologs among species that are evolutionarily distant from one another. Additionally, structural information stored in domain structures has accelerated homology identification and sequence search methods. Tools for functional protein annotation have been developed to discover, protein domain content, domain order, domain recurrence, and domain position as all these contribute to the prediction of protein functional accuracy. In this review, an attempt is made to summarise facts and speculations regarding the use of protein domain architecture and modularity to identify possible therapeutic targets among cellular activities based on the understanding their linked biological processes.
Collapse
Affiliation(s)
- Pavan Gollapalli
- Center for Bioinformatics and Biostatistics, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Sushmitha Rudrappa
- Department of Biotechnology and Bioinformatics, Jnana Sahyadri Campus, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka, 577451, India
| | - Vadlapudi Kumar
- Department of Biochemistry, Davangere University, Shivagangothri, Davangere, Karnataka, 577007, India
| | - Hulikal Shivashankara Santosh Kumar
- Department of Biotechnology and Bioinformatics, Jnana Sahyadri Campus, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka, 577451, India.
| |
Collapse
|
5
|
Wickramaratne AC, Liao JY, Doyle SM, Hoskins JR, Puller G, Scott ML, Alao JP, Obaseki I, Dinan JC, Maity TK, Jenkins LM, Kravats AN, Wickner S. J-domain Proteins form Binary Complexes with Hsp90 and Ternary Complexes with Hsp90 and Hsp70. J Mol Biol 2023; 435:168184. [PMID: 37348754 PMCID: PMC10527347 DOI: 10.1016/j.jmb.2023.168184] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Hsp90 and Hsp70 are highly conserved molecular chaperones that help maintain proteostasis by participating in protein folding, unfolding, remodeling and activation of proteins. Both chaperones are also important for cellular recovery following environmental stresses. Hsp90 and Hsp70 function collaboratively for the remodeling and activation of some client proteins. Previous studies using E. coli and S. cerevisiae showed that residues in the Hsp90 middle domain directly interact with a region in the Hsp70 nucleotide binding domain, in the same region known to bind J-domain proteins. Importantly, J-domain proteins facilitate and stabilize the interaction between Hsp90 and Hsp70 both in E. coli and S. cerevisiae. To further explore the role of J-domain proteins in protein reactivation, we tested the hypothesis that J-domain proteins participate in the collaboration between Hsp90 and Hsp70 by simultaneously interacting with Hsp90 and Hsp70. Using E. coli Hsp90, Hsp70 (DnaK), and a J-domain protein (CbpA), we detected a ternary complex containing all three proteins. The interaction involved the J-domain of CbpA, the DnaK binding region of E. coli Hsp90, and the J-domain protein binding region of DnaK where Hsp90 also binds. Additionally, results show that E. coli Hsp90 interacts with E. coli J-domain proteins, DnaJ and CbpA, and that yeast Hsp90, Hsp82, interacts with a yeast J-domain protein, Ydj1. Together these results suggest that the complexes may be transient intermediates in the pathway of collaborative protein remodeling by Hsp90 and Hsp70.
Collapse
Affiliation(s)
- Anushka C Wickramaratne
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jui-Yun Liao
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shannon M Doyle
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joel R Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabrielle Puller
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Madison L Scott
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Paul Alao
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Ikponwmosa Obaseki
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Jerry C Dinan
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tapan K Maity
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea N Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Mangla N, Singh R, Agarwal N. HtpG Is a Metal-Dependent Chaperone Which Assists the DnaK/DnaJ/GrpE Chaperone System of Mycobacterium tuberculosis via Direct Association with DnaJ2. Microbiol Spectr 2023; 11:e0031223. [PMID: 37022172 PMCID: PMC10269695 DOI: 10.1128/spectrum.00312-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Protein folding is a crucial process in maintaining protein homeostasis, also known as proteostasis, in the cell. The requirement for the assistance of molecular chaperones in the appropriate folding of several proteins has already called into question the previously held view of spontaneous protein folding. These chaperones are highly ubiquitous cellular proteins, which not only help in mediating the proper folding of other nascent polypeptides but are also involved in refolding of the misfolded or the aggregated proteins. Hsp90 family proteins such as high-temperature protein G (HtpG) are abundant and ubiquitously expressed in both eukaryotic and prokaryotic cells. Although HtpG is known as an ATP-dependent chaperone protein in most organisms, function of this protein remains obscured in mycobacterial pathogens. Here, we aim to investigate significance of HtpG as a chaperone in the physiology of Mycobacterium tuberculosis. We report that M. tuberculosis HtpG (mHtpG) is a metal-dependent ATPase which exhibits chaperonin activity towards denatured proteins in coordination with the DnaK/DnaJ/GrpE chaperone system via direct association with DnaJ2. Increased expression of DnaJ1, DnaJ2, ClpX, and ClpC1 in a ΔhtpG mutant strain further suggests cooperativity of mHtpG with various chaperones and proteostasis machinery in M. tuberculosis. IMPORTANCE M. tuberculosis is exposed to variety of extracellular stressful conditions and has evolved mechanisms to endure and adapt to the adverse conditions for survival. mHtpG, despite being dispensable for M. tuberculosis growth under in vitro conditions, exhibits a strong and direct association with DnaJ2 cochaperone and assists the mycobacterial DnaK/DnaJ/GrpE (KJE) chaperone system. These findings suggest the potential role of mHtpG in stress management of the pathogen. Mycobacterial chaperones are responsible for folding of nascent protein as well as reactivation of protein aggregates. M. tuberculosis shows differential adaptive response subject to the availability of mHtpG. While its presence facilitates improved protein refolding via stimulation of the KJE chaperone activity, in the absence of mHtpG, M. tuberculosis enhances expression of DnaJ1/J2 cochaperones as well as Clp protease machinery for maintenance of proteostasis. Overall, this study provides a framework for future investigation to better decipher the mycobacterial proteostasis network in the light of stress adaptability and/or survival.
Collapse
Affiliation(s)
- Nikita Mangla
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Ramandeep Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
7
|
Abstract
The Hsp70/Hsp90 organising protein (Hop, also known as stress-inducible protein 1/STI1/STIP1) has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins, although recent evidence suggests that eukaryotic Hop is regulatory within chaperone complexes rather than essential. Consequently, Hop is implicated in many key signalling pathways, including aberrant pathways leading to cancer. Hop is also secreted, and it is now well established that Hop interacts with the prion protein, PrPC, to mediate multiple signalling events. The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrPC. While the various cellular functions of Hop have been described, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseased states.
Collapse
|
8
|
Uncoupling the Hsp90 and DnaK chaperone activities revealed the in vivo relevance of their collaboration in bacteria. Proc Natl Acad Sci U S A 2022; 119:e2201779119. [PMID: 36070342 PMCID: PMC9478669 DOI: 10.1073/pnas.2201779119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chaperone proteins are essential in all living cells to ensure protein homeostasis. Hsp90 is a major adenosine triphosphate (ATP)-dependent chaperone highly conserved from bacteria to eukaryotes. Recent studies have shown that bacterial Hsp90 is essential in some bacteria in stress conditions and that it participates in the virulence of pathogenic bacteria. In vitro, bacterial Hsp90 directly interacts and collaborates with the Hsp70 chaperone DnaK to reactivate model substrate proteins; however, it is still unknown whether this collaboration is relevant in vivo with physiological substrates. Here, we used site-directed mutagenesis on Hsp90 to impair DnaK binding, thereby uncoupling the chaperone activities. We tested the mutants in vivo in two bacterial models in which Hsp90 has known physiological functions. We found that the Hsp90 point mutants were defective to support (1) growth under heat stress and activation of an essential Hsp90 client in the aquatic bacterium Shewanella oneidensis and (2) biosynthesis of the colibactin toxin involved in the virulence of pathogenic Escherichia coli. Our study therefore demonstrates the essentiality of the direct collaboration between Hsp90 and DnaK in vivo in bacteria to support client folding. It also suggests that this collaboration already functional in bacteria has served as an evolutionary basis for a more complex Hsp70-Hsp90 collaboration found in eukaryotes.
Collapse
|
9
|
Chang F, Li N, Shi X, Olga V, Wang X, Diao X, Zhou H, Tang X. Physiological and muscle tissue responses in Litopenaeus vannamei under hypoxic stress via iTRAQ. Front Physiol 2022; 13:979472. [PMID: 36111157 PMCID: PMC9468788 DOI: 10.3389/fphys.2022.979472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
White L. vannamei have become the most widely cultivated shrimp species worldwide. Cultivation of L. vannamei is one of the predominant sectors in China’s aquaculture industry. This study focused on the physiological and biochemical responses, differential protein expression, and expression characteristics of the related crucial functional protein genes under low oxygen conditions among different strains of L. vannamei. It was found that 6 h of hypoxic stress caused a significant reduction in the total hemocyte number in both strains, while the hypoxia-sensitive strain showed a stronger reduction. In contrast, the hemocyanin concentration showed only an overall upward trend. Proteomic analysis of L. vannamei muscle tissue revealed 3,417 differential proteins after 12 h of hypoxic stress. Among them, 29 differentially expressed proteins were downregulated and 244 were upregulated in the hypoxia-sensitive strain. In contrast, there were only 10 differentially expressed proteins with a downregulation pattern and 25 with an upregulation pattern in the hypoxia-tolerant strain. Five protein genes that responded significantly to hypoxic stress were selected for quantitative real-time PCR analysis, namely, hemocyanin, chitinase, heat shock protein 90 (HSP 90), programmed death protein, and glycogen phosphorylase. The results showed that the gene expression patterns were consistent with proteomic experimental data except for death protein and glycogen phosphorylase. These results can enrich the general knowledge of hypoxic stress in L. vannamei and the information provided differentially expressed proteins which may be used to assist breeding programs of L. vannamei of new strains with tolerance to hypoxia.
Collapse
Affiliation(s)
- Fengtong Chang
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| | - Na Li
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| | - Xiang Shi
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| | - Volovych Olga
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| | - Xiaobing Wang
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, Hainan, China
- *Correspondence: Xiaobing Wang, ; Hailong Zhou, ; Xianming Tang,
| | - Xiaoping Diao
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, China
| | - Hailong Zhou
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, Hainan, China
- *Correspondence: Xiaobing Wang, ; Hailong Zhou, ; Xianming Tang,
| | - Xianming Tang
- Hainan Provincial Key Laboratory of Tropical Maricultural Technology, Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, China
- *Correspondence: Xiaobing Wang, ; Hailong Zhou, ; Xianming Tang,
| |
Collapse
|
10
|
Amankwah YS, Collins P, Fleifil Y, Unruh E, Ruiz Márquez KJ, Vitou K, Kravats AN. Grp94 works upstream of BiP in protein remodeling under heat stress. J Mol Biol 2022; 434:167762. [PMID: 35905823 DOI: 10.1016/j.jmb.2022.167762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Hsp90 and Hsp70 are highly conserved molecular chaperones that promote the proper folding and activation of substrate proteins that are often referred to as clients. The two chaperones functionally collaborate to fold specific clients in an ATP-dependent manner. In eukaryotic cytosol, initial client folding is done by Hsp70 and its co-chaperones, followed by a direct transfer of client refolding intermediates to Hsp90 for final client processing. However, the mechanistic details of collaboration of organelle specific Hsp70 and Hsp90 are lacking. This work investigates the collaboration of the endoplasmic reticulum (ER) Hsp70 and Hsp90, BiP and Grp94 respectively, in protein remodeling using in vitro refolding assays. We show that under milder denaturation conditions, BiP collaborates with its co-chaperones to refold misfolded proteins in an ATP-dependent manner. Grp94 does not play a major role in this refolding reaction. However, under stronger denaturation conditions that favor aggregation, Grp94 works in an ATP-independent manner to bind and hold misfolded clients in a folding competent state for subsequent remodeling by the BiP system. We also show that the collaboration of Grp94 and BiP is not simply a reversal of the eukaryotic refolding mechanism since a direct interaction of Grp94 and BiP is not required for client transfer. Instead, ATP binding but not hydrolysis by Grp94 facilitates the release of the bound client, which is then picked up by the BiP system for subsequent refolding in a Grp94-independent manner.
Collapse
Affiliation(s)
- Yaa S Amankwah
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Preston Collins
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Yasmeen Fleifil
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Erin Unruh
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | | | - Katherine Vitou
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Andrea N Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056.
| |
Collapse
|
11
|
Kojima R, Takai S, Osada H, Yamamoto L, Furukawa M, Gullans SR. Novel function of the C-Terminal region of the Hsp110 family member Osp94 in unfolded protein refolding. J Cell Sci 2022; 135:274905. [PMID: 35237814 DOI: 10.1242/jcs.258542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
Osp94, a member of the Hsp110/Sse1 family of heat shock proteins, has a longer C-terminus than Hsc70/Hsp70, composed of the loop region with partial SBDβ (L), and SBDα and the C-terminal extension (H), but the functions of these domains are poorly understood. Osp94 suppressed heat-induced aggregation of luciferase (Luc). Osp94-bound heat-inactivated Luc was reactivated in the presence of rabbit reticulocyte lysate (RRL) and/or a combination of Hsc70 and Hsp40. Targeted deletion mutagenesis revealed that the SBDβ and H domains of Osp94 are critical for protein disaggregation and RRL-mediated refolding. Reactivation of Hsp90-bound heat-inactivated Luc was abolished in the absence of RRL but compensated by PA28α, a proteasome activator. Interestingly, the LH domain also reactivated heat-inactivated Luc, independent of PA28α. Biotin-tag cross-linking experiments indicated that the LH domain and PA28α interact with Luc bound by Hsp90 during refolding. A chimera protein in which the H domain was exchanged for PA28α also mediated disaggregation and reactivation of heat-inactivated Luc. These results indicate that Osp94 acts as a holdase and that the C-terminal region plays a PA28α-like role in the refolding of unfolded proteins.
Collapse
Affiliation(s)
- Ryoji Kojima
- Laboratory of Analytical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, 468-8503, Japan
| | - Shinichi Takai
- Laboratory of Analytical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, 468-8503, Japan
| | - Hinako Osada
- Laboratory of Analytical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, 468-8503, Japan
| | - Lina Yamamoto
- Laboratory of Analytical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, 468-8503, Japan
| | - Misa Furukawa
- Laboratory of Analytical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, 468-8503, Japan
| | | |
Collapse
|
12
|
Potteth US, Upadhyay T, Saini S, Saraogi I. Novel Antibacterial Targets in Protein Biogenesis Pathways. Chembiochem 2021; 23:e202100459. [PMID: 34643994 DOI: 10.1002/cbic.202100459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Indexed: 11/11/2022]
Abstract
Antibiotic resistance has emerged as a global threat due to the ability of bacteria to quickly evolve in response to the selection pressure induced by anti-infective drugs. Thus, there is an urgent need to develop new antibiotics against resistant bacteria. In this review, we discuss pathways involving bacterial protein biogenesis as attractive antibacterial targets since many of them are essential for bacterial survival and virulence. We discuss the structural understanding of various components associated with bacterial protein biogenesis, which in turn can be utilized for rational antibiotic design. We highlight efforts made towards developing inhibitors of these pathways with insights into future possibilities and challenges. We also briefly discuss other potential targets related to protein biogenesis.
Collapse
Affiliation(s)
- Upasana S Potteth
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Tulsi Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Snehlata Saini
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Ishu Saraogi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India.,Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal - 462066, Madhya Pradesh, India
| |
Collapse
|
13
|
Wickner S, Nguyen TLL, Genest O. The Bacterial Hsp90 Chaperone: Cellular Functions and Mechanism of Action. Annu Rev Microbiol 2021; 75:719-739. [PMID: 34375543 DOI: 10.1146/annurev-micro-032421-035644] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that folds and remodels proteins, thereby regulating the activity of numerous substrate proteins. Hsp90 is widely conserved across species and is essential in all eukaryotes and in some bacteria under stress conditions. To facilitate protein remodeling, bacterial Hsp90 collaborates with the Hsp70 molecular chaperone and its cochaperones. In contrast, the mechanism of protein remodeling performed by eukaryotic Hsp90 is more complex, involving more than 20 Hsp90 cochaperones in addition to Hsp70 and its cochaperones. In this review, we focus on recent progress toward understanding the basic mechanisms of bacterial Hsp90-mediated protein remodeling and the collaboration between Hsp90 and Hsp70. We describe the universally conserved structure and conformational dynamics of these chaperones and their interactions with one another and with client proteins. The physiological roles of Hsp90 in Escherichia coli and other bacteria are also discussed. We anticipate that the information gained from exploring the mechanism of the bacterial chaperone system will provide a framework for understanding the more complex eukaryotic Hsp90 system. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Thu-Lan Lily Nguyen
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Olivier Genest
- Aix-Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France;
| |
Collapse
|
14
|
Akter T, Nakamoto H. pH-mediated control of anti-aggregation activities of cyanobacterial and E. coli chaperonin GroELs. J Biochem 2021; 169:351-361. [PMID: 32997746 DOI: 10.1093/jb/mvaa108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/10/2020] [Indexed: 11/12/2022] Open
Abstract
In contrast to Escherichia coli, cyanobacteria have multiple GroELs, the bacterial homologues of chaperonin/Hsp60. We have shown that cyanobacterial GroELs are mutually distinct and different from E. coli GroEL with which the paradigm for chaperonin structure/function has been established. However, little is known about regulation of cyanobacterial GroELs. This study investigated effect of pH (varied from 7.0 to 8.5) on chaperone activity of GroEL1 and GroEL2 from the cyanobacterium Synechococcus elongatus PCC7942 and E. coli GroEL. GroEL1 and GroEL2 showed pH dependency in suppression of aggregation of heat-denatured malate dehydrogenase, lactate dehydrogenase and citrate synthase. They exhibited higher anti-aggregation activity at more alkaline pHs. Escherichia coli GroEL showed a similar pH-dependence in suppressing aggregation of heat-denatured lactate dehydrogenase. No pH dependence was observed in all the GroELs when urea-denatured lactate dehydrogenase was used for anti-aggregation assay, suggesting that the pH-dependence is related to some denatured structures. There was no significant influence of pH on the chaperone activity of all the GroELs to promote refolding of heat-denatured malate dehydrogenase. It is known that pH in cyanobacterial cytoplasm increases by one pH unit following a shift from darkness to light, suggesting that the pH-change modulates chaperone activity of cyanobacterial GroEL1 and GroEL2.
Collapse
Affiliation(s)
| | - Hitoshi Nakamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
15
|
Abstract
In vivo diagnostic imaging of bacterial infections is currently reliant on targeting their metabolic pathways, an ineffective method to identify microbial species with low metabolic activity. Here, we establish HS-198 as a small-molecule fluorescent conjugate that selectively targets the highly conserved bacterial protein HtpG (high-temperature protein G), within Borrelia burgdorferi, the bacterium responsible for Lyme disease. We describe the use of HS-198 to target morphologic forms of B. burgdorferi in both the logarithmic growth phase and the metabolically dormant stationary phase as well as in inactivated spirochetes. Furthermore, in a murine infection model, systemically injected HS-198 identified B. burgdorferi as revealed by imaging in postnecropsy tissue sections. These findings demonstrate how small-molecule probes directed at conserved bacterial protein targets can function to identify the microbe using noninvasive imaging and potentially as scaffolds to deliver antimicrobial agents to the pathogen.
Collapse
|
16
|
Akter T, Nakamoto H. pH-regulated chaperone function of cyanobacterial Hsp90 and Hsp70: Implications for light/dark regulation. J Biochem 2021; 170:463-471. [PMID: 33993259 DOI: 10.1093/jb/mvab061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/06/2021] [Indexed: 11/14/2022] Open
Abstract
We have shown that cyanobacterial chaperonins have pH-dependent anti-aggregation activity. The pH in cyanobacterial cytosol increases by one pH unit following a shift from darkness to light. In the present study, we examined whether other major chaperones such as Hsp90 (HtpG) and Hsp70 (DnaK2) from the cyanobacterium Synechococcus elongatus PCC7942 also display pH-dependent activity. Suppressing aggregation of various heat-denatured proteins, especially lactate dehydrogenase, at an equimolar ratio of cyanobacterial Hsp90 to protein substrate was found to be pH-dependent. Hsp90 showed the highest activity at pH 8.5 over the examined pH range of 7.0 to 8.5. pH affected the anti-aggregation activity of DnaK2 in a similar manner to that of Hsp90 in the presence of half equimolar DnaK2 to the protein substrate. The ATPase activity of cyanobacterial Hsp90 was pH-dependent, with a four-fold increase in activity when the pH was raised from 7.0 to 8.5. The ATPase activity of DnaK2 was also regulated by pH in a similar manner. Finally, an increase in pH from 7.0 to 8.5 enhanced activities of both Hsp90 and Hsp70 in protein-folding assistance by two- to three-fold. These results suggest that changes in pH may regulate chaperone function during a light-dark cycle in cyanobacterial cells.
Collapse
Affiliation(s)
- Tahmina Akter
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Hitoshi Nakamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| |
Collapse
|
17
|
Fauvet B, Finka A, Castanié-Cornet MP, Cirinesi AM, Genevaux P, Quadroni M, Goloubinoff P. Bacterial Hsp90 Facilitates the Degradation of Aggregation-Prone Hsp70-Hsp40 Substrates. Front Mol Biosci 2021; 8:653073. [PMID: 33937334 PMCID: PMC8082187 DOI: 10.3389/fmolb.2021.653073] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/17/2021] [Indexed: 01/27/2023] Open
Abstract
In eukaryotes, the 90-kDa heat shock proteins (Hsp90s) are profusely studied chaperones that, together with 70-kDa heat shock proteins (Hsp70s), control protein homeostasis. In bacteria, however, the function of Hsp90 (HtpG) and its collaboration with Hsp70 (DnaK) remains poorly characterized. To uncover physiological processes that depend on HtpG and DnaK, we performed comparative quantitative proteomic analyses of insoluble and total protein fractions from unstressed wild-type (WT) Escherichia coli and from knockout mutants ΔdnaKdnaJ (ΔKJ), ΔhtpG (ΔG), and ΔdnaKdnaJΔhtpG (ΔKJG). Whereas the ΔG mutant showed no detectable proteomic differences with wild-type, ΔKJ expressed more chaperones, proteases and ribosomes and expressed dramatically less metabolic and respiratory enzymes. Unexpectedly, we found that the triple mutant ΔKJG showed higher levels of metabolic and respiratory enzymes than ΔKJ, suggesting that bacterial Hsp90 mediates the degradation of aggregation-prone Hsp70-Hsp40 substrates. Further in vivo experiments suggest that such Hsp90-mediated degradation possibly occurs through the HslUV protease.
Collapse
Affiliation(s)
- Bruno Fauvet
- Department of Plant Molecular Biology (DBMV), University of Lausanne, Lausanne, Switzerland
| | - Andrija Finka
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Zadar, Croatia
| | - Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et de Génétique Moléculaires, Center de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Anne-Marie Cirinesi
- Laboratoire de Microbiologie et de Génétique Moléculaires, Center de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Center de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Manfredo Quadroni
- Protein Analysis Facility, University of Lausanne, Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology (DBMV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Grindle MP, Carter B, Alao JP, Connors K, Tehver R, Kravats AN. Structural Communication between the E. coli Chaperones DnaK and Hsp90. Int J Mol Sci 2021; 22:ijms22042200. [PMID: 33672263 PMCID: PMC7926864 DOI: 10.3390/ijms22042200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/03/2023] Open
Abstract
The 70 kDa and 90 kDa heat shock proteins Hsp70 and Hsp90 are two abundant and highly conserved ATP-dependent molecular chaperones that participate in the maintenance of cellular homeostasis. In Escherichia coli, Hsp90 (Hsp90Ec) and Hsp70 (DnaK) directly interact and collaborate in protein remodeling. Previous work has produced a model of the direct interaction of both chaperones. The locations of the residues involved have been confirmed and the model has been validated. In this study, we investigate the allosteric communication between Hsp90Ec and DnaK and how the chaperones couple their conformational cycles. Using elastic network models (ENM), normal mode analysis (NMA), and a structural perturbation method (SPM) of asymmetric and symmetric DnaK-Hsp90Ec, we extract biologically relevant vibrations and identify residues involved in allosteric signaling. When one DnaK is bound, the dominant normal modes favor biological motions that orient a substrate protein bound to DnaK within the substrate/client binding site of Hsp90Ec and release the substrate from the DnaK substrate binding domain. The presence of one DnaK molecule stabilizes the entire Hsp90Ec protomer to which it is bound. Conversely, the symmetric model of DnaK binding results in steric clashes of DnaK molecules and suggests that the Hsp90Ec and DnaK chaperone cycles operate independently. Together, this data supports an asymmetric binding of DnaK to Hsp90Ec.
Collapse
Affiliation(s)
- Matthew P. Grindle
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA; (M.P.G.); (J.P.A.); (K.C.)
| | - Ben Carter
- Department of Physics, Denison University, Granville, OH 43023, USA; (B.C.); (R.T.)
| | - John Paul Alao
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA; (M.P.G.); (J.P.A.); (K.C.)
| | - Katherine Connors
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA; (M.P.G.); (J.P.A.); (K.C.)
| | - Riina Tehver
- Department of Physics, Denison University, Granville, OH 43023, USA; (B.C.); (R.T.)
| | - Andrea N. Kravats
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA; (M.P.G.); (J.P.A.); (K.C.)
- Correspondence:
| |
Collapse
|
19
|
The Hsp70-Hsp90 go-between Hop/Stip1/Sti1 is a proteostatic switch and may be a drug target in cancer and neurodegeneration. Cell Mol Life Sci 2021; 78:7257-7273. [PMID: 34677645 PMCID: PMC8629791 DOI: 10.1007/s00018-021-03962-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/24/2021] [Accepted: 09/24/2021] [Indexed: 01/17/2023]
Abstract
The Hsp70 and Hsp90 molecular chaperone systems are critical regulators of protein homeostasis (proteostasis) in eukaryotes under normal and stressed conditions. The Hsp70 and Hsp90 systems physically and functionally interact to ensure cellular proteostasis. Co-chaperones interact with Hsp70 and Hsp90 to regulate and to promote their molecular chaperone functions. Mammalian Hop, also called Stip1, and its budding yeast ortholog Sti1 are eukaryote-specific co-chaperones, which have been thought to be essential for substrate ("client") transfer from Hsp70 to Hsp90. Substrate transfer is facilitated by the ability of Hop to interact simultaneously with Hsp70 and Hsp90 as part of a ternary complex. Intriguingly, in prokaryotes, which lack a Hop ortholog, the Hsp70 and Hsp90 orthologs interact directly. Recent evidence shows that eukaryotic Hsp70 and Hsp90 can also form a prokaryote-like binary chaperone complex in the absence of Hop, and that this binary complex displays enhanced protein folding and anti-aggregation activities. The canonical Hsp70-Hop-Hsp90 ternary chaperone complex is essential for optimal maturation and stability of a small subset of clients, including the glucocorticoid receptor, the tyrosine kinase v-Src, and the 26S/30S proteasome. Whereas many cancers have increased levels of Hop, the levels of Hop decrease in the aging human brain. Since Hop is not essential in all eukaryotic cells and organisms, tuning Hop levels or activity might be beneficial for the treatment of cancer and neurodegeneration.
Collapse
|
20
|
Fauvet B, Finka A, Castanié-Cornet MP, Cirinesi AM, Genevaux P, Quadroni M, Goloubinoff P. Bacterial Hsp90 Facilitates the Degradation of Aggregation-Prone Hsp70-Hsp40 Substrates. Front Mol Biosci 2021. [PMID: 33937334 DOI: 10.1101/451989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
In eukaryotes, the 90-kDa heat shock proteins (Hsp90s) are profusely studied chaperones that, together with 70-kDa heat shock proteins (Hsp70s), control protein homeostasis. In bacteria, however, the function of Hsp90 (HtpG) and its collaboration with Hsp70 (DnaK) remains poorly characterized. To uncover physiological processes that depend on HtpG and DnaK, we performed comparative quantitative proteomic analyses of insoluble and total protein fractions from unstressed wild-type (WT) Escherichia coli and from knockout mutants ΔdnaKdnaJ (ΔKJ), ΔhtpG (ΔG), and ΔdnaKdnaJΔhtpG (ΔKJG). Whereas the ΔG mutant showed no detectable proteomic differences with wild-type, ΔKJ expressed more chaperones, proteases and ribosomes and expressed dramatically less metabolic and respiratory enzymes. Unexpectedly, we found that the triple mutant ΔKJG showed higher levels of metabolic and respiratory enzymes than ΔKJ, suggesting that bacterial Hsp90 mediates the degradation of aggregation-prone Hsp70-Hsp40 substrates. Further in vivo experiments suggest that such Hsp90-mediated degradation possibly occurs through the HslUV protease.
Collapse
Affiliation(s)
- Bruno Fauvet
- Department of Plant Molecular Biology (DBMV), University of Lausanne, Lausanne, Switzerland
| | - Andrija Finka
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Zadar, Croatia
| | - Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et de Génétique Moléculaires, Center de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Anne-Marie Cirinesi
- Laboratoire de Microbiologie et de Génétique Moléculaires, Center de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Center de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Manfredo Quadroni
- Protein Analysis Facility, University of Lausanne, Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology (DBMV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Bhattacharya K, Weidenauer L, Luengo TM, Pieters EC, Echeverría PC, Bernasconi L, Wider D, Sadian Y, Koopman MB, Villemin M, Bauer C, Rüdiger SGD, Quadroni M, Picard D. The Hsp70-Hsp90 co-chaperone Hop/Stip1 shifts the proteostatic balance from folding towards degradation. Nat Commun 2020; 11:5975. [PMID: 33239621 PMCID: PMC7688965 DOI: 10.1038/s41467-020-19783-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Hop/Stip1/Sti1 is thought to be essential as a co-chaperone to facilitate substrate transfer between the Hsp70 and Hsp90 molecular chaperones. Despite this proposed key function for protein folding and maturation, it is not essential in a number of eukaryotes and bacteria lack an ortholog. We set out to identify and to characterize its eukaryote-specific function. Human cell lines and the budding yeast with deletions of the Hop/Sti1 gene display reduced proteasome activity due to inefficient capping of the core particle with regulatory particles. Unexpectedly, knock-out cells are more proficient at preventing protein aggregation and at promoting protein refolding. Without the restraint by Hop, a more efficient folding activity of the prokaryote-like Hsp70-Hsp90 complex, which can also be demonstrated in vitro, compensates for the proteasomal defect and ensures the proteostatic equilibrium. Thus, cells may act on the level and/or activity of Hop to shift the proteostatic balance between folding and degradation. Hop, also known as Stip1 or Sti1, facilitates substrate transfer between the Hsp70 and Hsp90 molecular chaperones. Characterization of proteostasis-related pathways in STIP1 knock-out cell lines reveals that in eukaryotes Stip1 modulates the balance between protein folding and degradation.
Collapse
Affiliation(s)
- Kaushik Bhattacharya
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211, Genève 4, Switzerland
| | - Lorenz Weidenauer
- Protein Analysis Facility, Center for Integrative Genomics, Université de Lausanne, 1015, Lausanne, Switzerland
| | - Tania Morán Luengo
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584, CH, Utrecht, The Netherlands.,Science for Life, Utrecht University, 3584, CH, Utrecht, The Netherlands
| | - Ellis C Pieters
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584, CH, Utrecht, The Netherlands.,Science for Life, Utrecht University, 3584, CH, Utrecht, The Netherlands
| | - Pablo C Echeverría
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211, Genève 4, Switzerland.,European Association for the Study of the Liver, 1203, Genève, Switzerland
| | - Lilia Bernasconi
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211, Genève 4, Switzerland
| | - Diana Wider
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211, Genève 4, Switzerland
| | - Yashar Sadian
- Bioimaging Center, Université de Genève, Sciences II, 1211, Genève 4, Switzerland
| | - Margreet B Koopman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584, CH, Utrecht, The Netherlands.,Science for Life, Utrecht University, 3584, CH, Utrecht, The Netherlands
| | - Matthieu Villemin
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211, Genève 4, Switzerland
| | - Christoph Bauer
- Bioimaging Center, Université de Genève, Sciences II, 1211, Genève 4, Switzerland
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584, CH, Utrecht, The Netherlands.,Science for Life, Utrecht University, 3584, CH, Utrecht, The Netherlands
| | - Manfredo Quadroni
- Protein Analysis Facility, Center for Integrative Genomics, Université de Lausanne, 1015, Lausanne, Switzerland
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211, Genève 4, Switzerland.
| |
Collapse
|
22
|
Kohler V, Andréasson C. Hsp70-mediated quality control: should I stay or should I go? Biol Chem 2020; 401:1233-1248. [PMID: 32745066 DOI: 10.1515/hsz-2020-0187] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/11/2020] [Indexed: 12/30/2022]
Abstract
Chaperones of the 70 kDa heat shock protein (Hsp70) superfamily are key components of the cellular proteostasis system. Together with its co-chaperones, Hsp70 forms proteostasis subsystems that antagonize protein damage during physiological and stress conditions. This function stems from highly regulated binding and release cycles of protein substrates, which results in a flow of unfolded, partially folded and misfolded species through the Hsp70 subsystem. Specific factors control how Hsp70 makes decisions regarding folding and degradation fates of the substrate proteins. In this review, we summarize how the flow of Hsp70 substrates is controlled in the cell with special emphasis on recent advances regarding substrate release mechanisms.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
23
|
Saito M, Watanabe S, Nimura-Matsune K, Yoshikawa H, Nakamoto H. Regulation of the groESL1 transcription by the HrcA repressor and a novel transcription factor Orf7.5 in the cyanobacterium Synechococcus elongatus PCC7942. J GEN APPL MICROBIOL 2020; 66:85-92. [PMID: 32281544 DOI: 10.2323/jgam.2020.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The CIRCE/HrcA system is highly conserved in cyanobacterial genomes. We have shown that heat-shock induction of the groESL1 operon in the cyanobacterium Synechocystis sp. PCC6803 is negatively regulated by the CIRCE/HrcA system. In Synechococcus elongatus PCC7942, a novel heat shock protein, Orf7.5, is involved in positive regulation of the groESL1 transcription. However, Orf7.5 is not conserved in some cyanobacteria, including Synechocystis sp. PCC6803. The purpose of this study is to evaluate the functional conservation of the CIRCE/HrcA system in S. elongatus PCC7942 and to understand the interplay between the CIRCE/HrcA system and the Orf7.5 regulatory system. We constructed single and double mutants of S. elongatus orf7.5, hrcA and orf7.5/hrcA and heat induction of the groESL1 transcription in these mutants was analyzed. Unexpectedly, derepression of the groESL1 transcription in an hrcA mutant was not observed. In all these mutants, the transcription was greatly suppressed under both normal and heat stress conditions, indicating that both HrcA and Orf7.5 are involved in regulation of the groESL1 transcription in a positive way. Consistent with the decrease in the groESL1 mRNA level, all the single and double mutants showed a great loss of acquired thermotolerance. Heat induction of the orf7.5 promoter activity was totally diminished in the orf7.5 mutant, indicating that Orf7.5 activates its own transcription. Yeast two hybrid analysis showed that the principle sigma factor RpoD1 interacts with Orf7.5. These results indicate that Orf7.5 enhances the transcription of groESL1 and orf7.5 by interacting with RpoD1.
Collapse
Affiliation(s)
- Masakazu Saito
- Department of Bioscience, Tokyo University of Agriculture.,Molecular Biology Course, Graduate School of Science and Engineering, Saitama University
| | | | | | | | - Hitoshi Nakamoto
- Molecular Biology Course, Graduate School of Science and Engineering, Saitama University
| |
Collapse
|
24
|
Thurotte A, Seidel T, Jilly R, Kahmann U, Schneider D. DnaK3 Is Involved in Biogenesis and/or Maintenance of Thylakoid Membrane Protein Complexes in the Cyanobacterium Synechocystis sp. PCC 6803. Life (Basel) 2020; 10:life10050055. [PMID: 32366017 PMCID: PMC7281324 DOI: 10.3390/life10050055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
DnaK3, a highly conserved cyanobacterial chaperone of the Hsp70 family, binds to cyanobacterial thylakoid membranes, and an involvement of DnaK3 in the biogenesis of thylakoid membranes has been suggested. As shown here, light triggers synthesis of DnaK3 in the cyanobacterium Synechocystis sp. PCC 6803, which links DnaK3 to the biogenesis of thylakoid membranes and to photosynthetic processes. In a DnaK3 depleted strain, the photosystem content is reduced and the photosystem II activity is impaired, whereas photosystem I is regular active. An impact of DnaK3 on the activity of other thylakoid membrane complexes involved in electron transfer is indicated. In conclusion, DnaK3 is a versatile chaperone required for biogenesis and/or maintenance of thylakoid membrane-localized protein complexes involved in electron transfer reactions. As mentioned above, Hsp70 proteins are involved in photoprotection and repair of PS II in chloroplasts.
Collapse
Affiliation(s)
- Adrien Thurotte
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (A.T.); (T.S.); (R.J.)
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt, Germany
| | - Tobias Seidel
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (A.T.); (T.S.); (R.J.)
| | - Ruven Jilly
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (A.T.); (T.S.); (R.J.)
| | - Uwe Kahmann
- Department of Molecular Cell Biology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (A.T.); (T.S.); (R.J.)
- Correspondence: ; Tel.: +49-6131-39-25833
| |
Collapse
|
25
|
Luan G, Zhang S, Wang M, Lu X. Progress and perspective on cyanobacterial glycogen metabolism engineering. Biotechnol Adv 2019; 37:771-786. [DOI: 10.1016/j.biotechadv.2019.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/09/2019] [Accepted: 04/07/2019] [Indexed: 12/20/2022]
|
26
|
Balasubramanian A, Markovski M, Hoskins JR, Doyle SM, Wickner S. Hsp90 of E. coli modulates assembly of FtsZ, the bacterial tubulin homolog. Proc Natl Acad Sci U S A 2019; 116:12285-12294. [PMID: 31160467 PMCID: PMC6589665 DOI: 10.1073/pnas.1904014116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a highly conserved molecular chaperone involved in ATP-dependent client protein remodeling and activation. It also functions as a protein holdase, binding and stabilizing clients in an ATP-independent process. Hsp90 remodels over 300 client proteins and is essential for cell survival in eukaryotes. In bacteria, Hsp90 is a highly abundant protein, although very few clients have been identified and it is not essential for growth in many bacterial species. We previously demonstrated that in Escherichia coli, Hsp90 causes cell filamentation when expressed at high levels. Here, we have explored the cause of filamentation and identified a potentially important client of E. coli Hsp90 (Hsp90Ec), FtsZ. We observed that FtsZ, a bacterial tubulin homolog essential for cell division, fails to assemble into FtsZ rings (divisomes) in cells overexpressing Hsp90Ec Additionally, Hsp90Ec interacts with FtsZ and inhibits polymerization of FtsZ in vitro, in an ATP-independent holding reaction. The FtsZ-Hsp90Ec interaction involves residues in the client-binding region of Hsp90Ec and in the C-terminal tail of FtsZ, where many cell-division proteins and regulators interact. We observed that E. coli deleted for the Hsp90Ec gene htpG turn over FtsZ more rapidly than wild-type cells. Additionally, the length of ΔhtpG cells is reduced compared to wild-type cells. Altogether, these results suggest that Hsp90Ec is a modulator of cell division, and imply that the polypeptide-holding function of Hsp90 may be a biologically important chaperone activity.
Collapse
Affiliation(s)
- Anuradha Balasubramanian
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Monica Markovski
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Joel R Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shannon M Doyle
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
27
|
Intermolecular Interactions between Hsp90 and Hsp70. J Mol Biol 2019; 431:2729-2746. [PMID: 31125567 DOI: 10.1016/j.jmb.2019.05.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022]
Abstract
Members of the Hsp90 and Hsp70 families of molecular chaperones are imp\ortant for the maintenance of protein homeostasis and cellular recovery following environmental stresses, such as heat and oxidative stress. Moreover, the two chaperones can collaborate in protein remodeling and activation. In higher eukaryotes, Hsp90 and Hsp70 form a functionally active complex with Hop (Hsp90-Hsp70 organizing protein) acting as a bridge between the two chaperones. In bacteria, which do not contain a Hop homolog, Hsp90 and Hsp70, DnaK, directly interact during protein remodeling. Although yeast possesses a Hop-like protein, Sti1, Hsp90, and Hsp70 can directly interact in yeast in the absence of Sti1. Previous studies showed that residues in the middle domain of Escherichia coli Hsp90 are important for interaction with the J-protein binding region of DnaK. The results did not distinguish between the possibility that (i) these sites were involved in direct interaction and (ii) the residues in these sites participate in conformational changes which are transduced to other sites on Hsp90 and DnaK that are involved in the direct interaction. Here we show by crosslinking experiments that the direct interaction is between a site in the middle domain of Hsp90 and the J-protein binding site of Hsp70 in both E. coli and yeast. Moreover, J-protein promotes the Hsp70-Hsp90 interaction in the presence of ATP, likely by converting Hsp70 into the ADP-bound conformation. The identification of the protein-protein interaction site is anticipated to lead to a better understanding of the collaboration between the two chaperones in protein remodeling.
Collapse
|
28
|
Interplay between the Hsp90 Chaperone and the HslVU Protease To Regulate the Level of an Essential Protein in Shewanella oneidensis. mBio 2019; 10:mBio.00269-19. [PMID: 31088919 PMCID: PMC6520445 DOI: 10.1128/mbio.00269-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein synthesis, folding, and degradation are an accurately regulated process occurring in every organism and called proteostasis. This process is essential to maintain a healthy proteome since proteostasis dysregulation is responsible for devastating cellular issues. Proteostasis is controlled by a complex network of molecular chaperones and proteases. Among them, eukaryotic Hsp90, assisted by many cochaperones and the Hsp70 chaperone system, plays a major role in activating hundreds of client proteins, and Hsp90 inhibition usually leads to proteasomal degradation of these clients. In bacteria, however, the precise function of Hsp90 remains quite unclear, and only a few clients are known. Recently, we have shown that Hsp90 is essential at elevated temperature in the aquatic model bacterium Shewanella oneidensis, and we have identified a client of Hsp90, TilS, involved in tRNA modification. Here we found that two members of the proteostasis network with antagonist activities, the Hsp90 chaperone and the HslVU protease, which is considered the proteasome ancestor, together regulate the level of TilS. In particular, we show that deletion of the genes coding for the HslVU protease suppresses the growth defect of an S. oneidensis strain with hsp90 deleted, by increasing the cellular level of the essential TilS protein. These results open up new avenues for understanding how proteostasis is controlled in bacteria, and new Hsp90 clients are much needed now to confirm the interplay between Hsp90 and proteases.IMPORTANCE Maintaining a healthy proteome is essential in every living cell from bacteria to humans. For example, proteostasis (protein homeostasis) imbalance in humans leads to devastating diseases, including neurodegenerative diseases and cancers. Therefore, proteins need to be assisted from their synthesis to their native folding and ultimately to their degradation. To ensure efficient protein turnover, cells possess an intricate network of molecular chaperones and proteases for protein folding and degradation. However, these networks need to be better defined and understood. Here, using the aquatic bacterium Shewanella oneidensis as a model organism, we demonstrate interplay between two proteins with antagonist activities, the Hsp90 chaperone and the HslVU protease, to finely regulate the level of an essential client of Hsp90. Therefore, this work provides a new bacterial model to better study protein regulation and turnover, and it sheds light on how proteostasis by Hsp90 and proteases could be controlled in bacteria.
Collapse
|
29
|
Abouelhadid S, North SJ, Hitchen P, Vohra P, Chintoan-Uta C, Stevens M, Dell A, Cuccui J, Wren BW. Quantitative Analyses Reveal Novel Roles for N-Glycosylation in a Major Enteric Bacterial Pathogen. mBio 2019; 10:e00297-19. [PMID: 31015322 PMCID: PMC6478998 DOI: 10.1128/mbio.00297-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/14/2019] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, glycosylation plays a role in proteome stability, protein quality control, and modulating protein function; however, similar studies in bacteria are lacking. Here, we investigate the roles of general protein glycosylation systems in bacteria using the enteropathogen Campylobacter jejuni as a well-defined example. By using a quantitative proteomic strategy, we were able to monitor changes in the C. jejuni proteome when glycosylation is disrupted. We demonstrate that in C. jejuni, N-glycosylation is essential to maintain proteome stability and protein quality control. These findings guided us to investigate the role of N-glycosylation in modulating bacterial cellular activities. In glycosylation-deficient C. jejuni, the multidrug efflux pump and electron transport pathways were significantly impaired. We demonstrate that in vivo, fully glycosylation-deficient C. jejuni bacteria were unable to colonize its natural avian host. These results provide the first evidence of a link between proteome stability and complex functions via a bacterial general glycosylation system.IMPORTANCE Advances in genomics and mass spectrometry have revealed several types of glycosylation systems in bacteria. However, why bacterial proteins are modified remains poorly defined. Here, we investigated the role of general N-linked glycosylation in a major food poisoning bacterium, Campylobacter jejuni The aim of this study is to delineate the direct and indirect effects caused by disrupting this posttranslational modification. To achieve this, we employed a quantitative proteomic strategy to monitor alterations in the C. jejuni proteome. Our quantitative proteomic results linked general protein N-glycosylation to maintaining proteome stability. Functional analyses revealed novel roles for bacterial N-glycosylation in modulating multidrug efflux pump, enhancing nitrate reduction activity, and promoting host-microbe interaction. This work provides insights on the importance of general glycosylation in proteins in maintaining bacterial physiology, thus expanding our knowledge of the emergence of posttranslational modification in bacteria.
Collapse
Affiliation(s)
- Sherif Abouelhadid
- Department of Pathogen Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Simon J North
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Paul Hitchen
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Prerna Vohra
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Cosmin Chintoan-Uta
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jon Cuccui
- Department of Pathogen Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Brendan W Wren
- Department of Pathogen Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
30
|
Sun M, Kotler JLM, Liu S, Street TO. The endoplasmic reticulum (ER) chaperones BiP and Grp94 selectively associate when BiP is in the ADP conformation. J Biol Chem 2019; 294:6387-6396. [PMID: 30787103 DOI: 10.1074/jbc.ra118.007050] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/09/2019] [Indexed: 11/06/2022] Open
Abstract
Hsp70 and Hsp90 chaperones are critical for protein quality control in the cytosol, whereas organelle-specific Hsp70/Hsp90 paralogs provide similar protection for mitochondria and the endoplasmic reticulum (ER). Cytosolic Hsp70/Hsp90 can operate sequentially with Hsp90 selectively associating with Hsp70 after Hsp70 is bound to a client protein. This observation has long suggested that Hsp90 could have a preference for interacting with clients at their later stages of folding. However, recent work has shown that cytosolic Hsp70/Hsp90 can directly interact even in the absence of a client, which opens up an alternative possibility that the ordered interactions of Hsp70/Hsp90 with clients could be a consequence of regulated changes in the direct interactions between Hsp70 and Hsp90. However, it is unknown how such regulation could occur mechanistically. Here, we find that the ER Hsp70/Hsp90 (BiP/Grp94) can form a direct complex in the absence of a client. Importantly, the direct interaction between BiP and Grp94 is nucleotide-specific, with BiP and Grp94 having higher affinity under ADP conditions and lower affinity under ATP conditions. We show that this nucleotide-specific association between BiP and Grp94 is largely due to the conformation of BiP. When BiP is in the ATP conformation its substrate-binding domain blocks Grp94; in contrast, Grp94 can readily associate with the ADP conformation of BiP, which represents the client-bound state of BiP. Our observations provide a mechanism for the sequential involvement of BiP and Grp94 in client folding where the conformation of BiP provides the signal for the subsequent recruitment of Grp94.
Collapse
Affiliation(s)
- Ming Sun
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453
| | - Judy L M Kotler
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453
| | - Shanshan Liu
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453
| | - Timothy O Street
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453
| |
Collapse
|
31
|
Genest O, Wickner S, Doyle SM. Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling. J Biol Chem 2018; 294:2109-2120. [PMID: 30401745 DOI: 10.1074/jbc.rev118.002806] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heat shock proteins 90 (Hsp90) and 70 (Hsp70) are two families of highly conserved ATP-dependent molecular chaperones that fold and remodel proteins. Both are important components of the cellular machinery involved in protein homeostasis and participate in nearly every cellular process. Although Hsp90 and Hsp70 each carry out some chaperone activities independently, they collaborate in other cellular remodeling reactions. In eukaryotes, both Hsp90 and Hsp70 function with numerous Hsp90 and Hsp70 co-chaperones. In contrast, bacterial Hsp90 and Hsp70 are less complex; Hsp90 acts independently of co-chaperones, and Hsp70 uses two co-chaperones. In this review, we focus on recent progress toward understanding the basic mechanisms of Hsp90-mediated protein remodeling and the collaboration between Hsp90 and Hsp70, with an emphasis on bacterial chaperones. We describe the structure and conformational dynamics of these chaperones and their interactions with each other and with client proteins. The physiological roles of Hsp90 in Escherichia coli and other bacteria are also discussed. We anticipate that the information gained from exploring the mechanism of the bacterial chaperone system will provide the groundwork for understanding the more complex eukaryotic Hsp90 system and its modulation by Hsp90 co-chaperones.
Collapse
Affiliation(s)
- Olivier Genest
- From the Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, 13402 Marseille, France and
| | - Sue Wickner
- the Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Shannon M Doyle
- the Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
32
|
Stimulation of the ATPase activity of Hsp90 by zerumbone modification of its cysteine residues destabilizes its clients and causes cytotoxicity. Biochem J 2018; 475:2559-2576. [DOI: 10.1042/bcj20180230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022]
Abstract
Hsp90 is an ATP-dependent molecular chaperone that assists folding and conformational maturation/maintenance of many proteins. It is a potential cancer drug target because it chaperones oncoproteins. A prokaryotic homolog of Hsp90 (HtpG) is essential for thermo-tolerance in some bacteria and virulence of zoonotic pathogens. To identify a new class of small molecules which target prokaryotic and eukaryotic Hsp90s, we studied the effects of a naturally occurring cyclic sesquiterpene, zerumbone, which inhibits proliferation of a wide variety of tumor cells, on the activity of Hsp90. Zerumbone enhanced the ATPase activity of cyanobacterial Hsp90 (Hsp90SE), yeast Hsp90, and human Hsp90α. It also enhanced the catalytic efficiency of Hsp90SE by greatly increasing kcat. Mass analysis showed that zerumbone binds to cysteine side chains of Hsp90SE covalently. Mutational studies identified 3 cysteine residues (one per each domain of Hsp90SE) that are involved in the enhancement, suggesting the presence of allosteric sites in the middle and C-terminal domains of Hsp90SE. Treatment of cyanobacterial cells with zerumbone caused them to become very temperature-sensitive, a phenotype reminiscent of cyanobacterial Hsp90 mutants, and also decreased the cellular level of linker polypeptides that are clients for Hsp90SE. Zerumbone showed cellular toxicity on cancer-derived mammalian cells by inducing apoptosis. In addition, zerumbone inhibited the binding of Hsp90/Cdc37 to client kinases. Altogether, we conclude that modification of cysteine residues of Hsp90 by zerumbone enhances its ATPase activity and inhibits physiological Hsp90 function. The activation of Hsp90 may provide new strategies to inhibit its chaperone function in cells.
Collapse
|
33
|
Uchida T, Kanemori M. Two J domains ensure high cochaperone activity of DnaJ, Escherichia coli heat shock protein 40. J Biochem 2018; 164:153-163. [PMID: 29635480 DOI: 10.1093/jb/mvy038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Heat shock protein 70 (Hsp70) chaperone systems consist of Hsp70, Hsp40 and a nucleotide-exchange factor and function to help unfolded proteins achieve their native conformations. Typical Hsp40s assume a homodimeric structure and have both chaperone and cochaperone activity. The dimeric structure is critical for chaperone function, whereas the relationship between the dimeric structure and cochaperone function is hardly known. Here, we examined whether two intact protomers are required for cochaperone activity of Hsp40 using an Escherichia coli Hsp70 chaperone system consisting of DnaK, DnaJ and GrpE. The expression systems were generated and two heterodimeric DnaJs that included a mutated protomer lacking cochaperone activity were purified. Normal chaperone activity was demonstrated by assessing aggregation prevention activity using urea-denatured luciferase. The heterodimeric DnaJs were investigated for cochaperone activity by measuring DnaK ATPase activity and the heat-denatured glucose-6-phosphate dehydrogenase refolding activity of the DnaK chaperone system, and they showed reduced cochaperone activity. These results indicate that two intact protomers are required for high cochaperone activity of DnaJ, suggesting that one homodimeric DnaJ molecule promotes the simultaneous binding of multiple DnaK molecules to one substrate molecule, and that this binding mode is required for the efficient folding of denatured proteins.
Collapse
Affiliation(s)
- Tomoya Uchida
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masaaki Kanemori
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
34
|
Vinaiphat A, Thongboonkerd V. Chaperonomics in leptospirosis. Expert Rev Proteomics 2018; 15:569-579. [PMID: 30004813 DOI: 10.1080/14789450.2018.1500901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Knowledge of the function of molecular chaperones is required for a better understanding of cellular proteostasis. Nevertheless, such information is currently dispersed as most of previous studies investigated chaperones on a single-angle basis. Recently, a new subdiscipline of chaperonology, namely 'chaperonomics' (defined as 'systematic analysis of chaperone genes, transcripts, proteins, or their interaction networks using omics technologies'), has been emerging to better understand biological, physiological, and pathological roles of chaperones. Areas covered: This review provides broad overviews of bacterial chaperones, heat shock proteins (HSPs), and leptospirosis, and then focuses on recent progress of chaperonomics applied to define roles of HSPs in various pathogenic and saprophytic leptospiral species and serovars. Expert commentary: Comprehensive analysis of leptospiral chaperones/HSPs using a chaperonomics approach holds great promise for better understanding of functional roles of chaperones/HSPs in bacterial survival and disease pathogenesis. Moreover, this new approach may also lead to further development of chaperones/HSPs-based diagnostics and/or vaccine discovery for leptospirosis.
Collapse
Affiliation(s)
- Arada Vinaiphat
- a Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Visith Thongboonkerd
- a Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| |
Collapse
|
35
|
Morán Luengo T, Kityk R, Mayer MP, Rüdiger SGD. Hsp90 Breaks the Deadlock of the Hsp70 Chaperone System. Mol Cell 2018; 70:545-552.e9. [PMID: 29706537 DOI: 10.1016/j.molcel.2018.03.028] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/17/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
Protein folding in the cell requires ATP-driven chaperone machines such as the conserved Hsp70 and Hsp90. It is enigmatic how these machines fold proteins. Here, we show that Hsp90 takes a key role in protein folding by breaking an Hsp70-inflicted folding block, empowering protein clients to fold on their own. At physiological concentrations, Hsp70 stalls productive folding by binding hydrophobic, core-forming segments. Hsp90 breaks this deadlock and restarts folding. Remarkably, neither Hsp70 nor Hsp90 alters the folding rate despite ensuring high folding yields. In fact, ATP-dependent chaperoning is restricted to the early folding phase. Thus, the Hsp70-Hsp90 cascade does not fold proteins, but instead prepares them for spontaneous, productive folding. This stop-start mechanism is conserved from bacteria to man, assigning also a general function to bacterial Hsp90, HtpG. We speculate that the decreasing hydrophobicity along the Hsp70-Hsp90 cascade may be crucial for enabling spontaneous folding.
Collapse
Affiliation(s)
- Tania Morán Luengo
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Roman Kityk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
36
|
Freilich R, Arhar T, Abrams JL, Gestwicki JE. Protein-Protein Interactions in the Molecular Chaperone Network. Acc Chem Res 2018; 51:940-949. [PMID: 29613769 DOI: 10.1021/acs.accounts.8b00036] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular chaperones play a central role in protein homeostasis (a.k.a. proteostasis) by balancing protein folding, quality control, and turnover. To perform these diverse tasks, chaperones need the malleability to bind nearly any "client" protein and the fidelity to detect when it is misfolded. Remarkably, these activities are carried out by only ∼180 dedicated chaperones in humans. How do a relatively small number of chaperones maintain cellular and organismal proteostasis for an entire proteome? Furthermore, once a chaperone binds a client, how does it "decide" what to do with it? One clue comes from observations that individual chaperones engage in protein-protein interactions (PPIs)-both with each other and with their clients. These physical links coordinate multiple chaperones into organized, functional complexes and facilitate the "handoff" of clients between them. PPIs also link chaperones and their clients to other cellular pathways, such as those that mediate trafficking (e.g., cytoskeleton) and degradation (e.g., proteasome). The PPIs of the chaperone network have a wide range of affinity values (nanomolar to micromolar) and involve many distinct types of domain modules, such as J domains, zinc fingers, and tetratricopeptide repeats. Many of these motifs have the same binding surfaces on shared partners, such that members of one chaperone class often compete for the same interactions. Somehow, this collection of PPIs draws together chaperone families and creates multiprotein subnetworks that are able to make the "decisions" of protein quality control. The key to understanding chaperone-mediated proteostasis might be to understand how PPIs are regulated. This Account will discuss the efforts of our group and others to map, measure, and chemically perturb the PPIs within the molecular chaperone network. Structural biology methods, including X-ray crystallography, NMR spectroscopy, and electron microscopy, have all played important roles in visualizing the chaperone PPIs. Guided by these efforts and -omics approaches to measure PPIs, new advances in high-throughput chemical screening that are specially designed to account for the challenges of this system have emerged. Indeed, chemical biology has played a particularly important role in this effort, as molecules that either promote or inhibit specific PPIs have proven to be invaluable research probes in cells and animals. In addition, these molecules have provided leads for the potential treatment of protein misfolding diseases. One of the major products of this research field has been the identification of putative PPI drug targets within the chaperone network, which might be used to change chaperone "decisions" and rebalance proteostasis.
Collapse
Affiliation(s)
- Rebecca Freilich
- Department of Pharmaceutical Chemistry and The Institute for Neurodegenerative Disease, University of California—San Francisco, San Francisco, California 94158, United States
| | - Taylor Arhar
- Department of Pharmaceutical Chemistry and The Institute for Neurodegenerative Disease, University of California—San Francisco, San Francisco, California 94158, United States
| | - Jennifer L. Abrams
- Department of Pharmaceutical Chemistry and The Institute for Neurodegenerative Disease, University of California—San Francisco, San Francisco, California 94158, United States
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry and The Institute for Neurodegenerative Disease, University of California—San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
37
|
Suzuki H, Kosuge Y, Kobayashi K, Kurosaki Y, Ishii N, Aoyama N, Ishihara K, Ichikawa T. Heat-shock protein 72 promotes platelet aggregation induced by various platelet activators in rats. Biomed Res 2018. [PMID: 28637952 DOI: 10.2220/biomedres.38.175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Increase of thrombus in the coronary arteries is positively correlated with the level of heat-shock protein 72 (HSP72) in the blood of patients with acute myocardial infarction (AMI). Platelet aggregation participates in thrombus formation on ruptured plaque in AMI. In this study, we aimed to clarify the role of HSP72 in thrombus formation by evaluating the effects of HSP72 on platelet aggregation. Platelet aggregation activities were measured in platelet-rich plasma obtained from male Sprague-Dawley rats with or without the platelet activators, such as adenosine diphosphate (ADP), collagen, thrombin receptor-activating peptide-6 (TRAP-6), ristocetin, and arachidonic acid. Changes in aggregation were estimated by the co-addition of recombinant HSP72 and anti-HSP72 antibodies. Our results showed that addition of HSP72 increased platelet aggregation in the presence of low concentrations of ADP, collagen, TRAP-6, ristocetin, and arachidonic acid. Increased platelet aggregation stimulated by ADP and HSP72 was reduced by the co-addition of anti-HSP72 antibodies. Thus, these findings suggested that HSP72 was released extracellularly in response to stress, promoting thrombus formation and AMI. Additionally, treatment with anti-HSP72 antibodies may control platelet aggregation induced by extracellular HSP72.
Collapse
Affiliation(s)
- Hideaki Suzuki
- Department of Medical Technology, Kitasato Junior College of Health and Hygienic Sciences
| | - Yuuko Kosuge
- Department of Medical Technology, Kitasato Junior College of Health and Hygienic Sciences
| | - Koji Kobayashi
- Department of Medical Technology, Kitasato Junior College of Health and Hygienic Sciences
| | - Yoshifumi Kurosaki
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences
| | - Naohito Ishii
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences
| | - Naoyoshi Aoyama
- Research and Development Center for New Medical Frontiers, Department of Comprehensive Medicine, Division of Internal and Emergency Medicine, Kitasato University School of Medicine
| | - Kazuhiko Ishihara
- Department of Medical Technology, Kitasato Junior College of Health and Hygienic Sciences
| | - Takafumi Ichikawa
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences
| |
Collapse
|
38
|
Joyce A, Ijaz UZ, Nzeteu C, Vaughan A, Shirran SL, Botting CH, Quince C, O’Flaherty V, Abram F. Linking Microbial Community Structure and Function During the Acidified Anaerobic Digestion of Grass. Front Microbiol 2018; 9:540. [PMID: 29619022 PMCID: PMC5871674 DOI: 10.3389/fmicb.2018.00540] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Harvesting valuable bioproducts from various renewable feedstocks is necessary for the critical development of a sustainable bioeconomy. Anaerobic digestion is a well-established technology for the conversion of wastewater and solid feedstocks to energy with the additional potential for production of process intermediates of high market values (e.g., carboxylates). In recent years, first-generation biofuels typically derived from food crops have been widely utilized as a renewable source of energy. The environmental and socioeconomic limitations of such strategy, however, have led to the development of second-generation biofuels utilizing, amongst other feedstocks, lignocellulosic biomass. In this context, the anaerobic digestion of perennial grass holds great promise for the conversion of sustainable renewable feedstock to energy and other process intermediates. The advancement of this technology however, and its implementation for industrial applications, relies on a greater understanding of the microbiome underpinning the process. To this end, microbial communities recovered from replicated anaerobic bioreactors digesting grass were analyzed. The bioreactors leachates were not buffered and acidic pH (between 5.5 and 6.3) prevailed at the time of sampling as a result of microbial activities. Community composition and transcriptionally active taxa were examined using 16S rRNA sequencing and microbial functions were investigated using metaproteomics. Bioreactor fraction, i.e., grass or leachate, was found to be the main discriminator of community analysis across the three molecular level of investigation (DNA, RNA, and proteins). Six taxa, namely Bacteroidia, Betaproteobacteria, Clostridia, Gammaproteobacteria, Methanomicrobia, and Negativicutes accounted for the large majority of the three datasets. The initial stages of grass hydrolysis were carried out by Bacteroidia, Gammaproteobacteria, and Negativicutes in the grass biofilms, in addition to Clostridia in the bioreactor leachates. Numerous glycolytic enzymes and carbohydrate transporters were detected throughout the bioreactors in addition to proteins involved in butanol and lactate production. Finally, evidence of the prevalence of stressful conditions within the bioreactors and particularly impacting Clostridia was observed in the metaproteomes. Taken together, this study highlights the functional importance of Clostridia during the anaerobic digestion of grass and thus research avenues allowing members of this taxon to thrive should be explored.
Collapse
Affiliation(s)
- Aoife Joyce
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Umer Z. Ijaz
- Environmental Omics Laboratory, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Corine Nzeteu
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- Microbial Ecology Laboratory, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aoife Vaughan
- Microbial Ecology Laboratory, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sally L. Shirran
- Biomedical Sciences Research Complex, University of St Andrews, Fife, United Kingdom
| | - Catherine H. Botting
- Biomedical Sciences Research Complex, University of St Andrews, Fife, United Kingdom
| | - Christopher Quince
- Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Vincent O’Flaherty
- Microbial Ecology Laboratory, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
39
|
Abstract
Heat shock protein 90 (Hsp90) is a highly conserved ATP-dependent molecular chaperone that is essential in eukaryotes. It is required for the activation and stabilization of more than 200 client proteins, including many kinases and steroid hormone receptors involved in cell-signaling pathways. Hsp90 chaperone activity requires collaboration with a subset of the many Hsp90 cochaperones, including the Hsp70 chaperone. In higher eukaryotes, the collaboration between Hsp90 and Hsp70 is indirect and involves Hop, a cochaperone that interacts with both Hsp90 and Hsp70. Here we show that yeast Hsp90 (Hsp82) and yeast Hsp70 (Ssa1), directly interact in vitro in the absence of the yeast Hop homolog (Sti1), and identify a region in the middle domain of yeast Hsp90 that is required for the interaction. In vivo results using Hsp90 substitution mutants showed that several residues in this region were important or essential for growth at high temperature. Moreover, mutants in this region were defective in interaction with Hsp70 in cell lysates. In vitro, the purified Hsp82 mutant proteins were defective in direct physical interaction with Ssa1 and in protein remodeling in collaboration with Ssa1 and cochaperones. This region of Hsp90 is also important for interactions with several Hsp90 cochaperones and client proteins, suggesting that collaboration between Hsp70 and Hsp90 in protein remodeling may be modulated through competition between Hsp70 and Hsp90 cochaperones for the interaction surface.
Collapse
|
40
|
Hsp90 Is Essential under Heat Stress in the Bacterium Shewanella oneidensis. Cell Rep 2018; 19:680-687. [PMID: 28445720 DOI: 10.1016/j.celrep.2017.03.082] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/13/2017] [Accepted: 03/31/2017] [Indexed: 11/22/2022] Open
Abstract
The Hsp90 chaperone is essential in eukaryotes and activates a large array of client proteins. In contrast, its role is still elusive in bacteria, and only a few Hsp90 bacterial clients are known. Here, we found that Hsp90 is essential in the model bacterium Shewanella oneidensis under heat stress. A genetic screen for Hsp90 client proteins identified TilS, an essential protein involved in tRNA maturation. Overexpression of TilS rescued the growth defect of the hsp90 deletion strain under heat stress. In vivo, the activity and the amount of TilS were significantly reduced in the absence of Hsp90 at high temperature. Furthermore, we showed that Hsp90 interacts with TilS, and Hsp90 prevents TilS aggregation in vitro at high temperature. Together, our results indicate that TilS is a client of Hsp90 in S. oneidensis. Therefore, our study links the essentiality of bacterial Hsp90 at high temperature with the identification of a client.
Collapse
|
41
|
Abstract
Bacterial Hsp90 is an ATP-dependent molecular chaperone involved in protein remodeling and activation. The E. coli Hsp90, Hsp90Ec, collaborates in protein remodeling with another ATP-dependent chaperone, DnaK, the E. coli Hsp70. Both Hsp90Ec and DnaK hydrolyze ATP and client (substrate) proteins stimulate the hydrolysis. Additionally, ATP hydrolysis by the combination of Hsp90Ec and DnaK is synergistically stimulated in the presence of client (substrate). Here, we describe two steady-state ATPase assays used to monitor ATP hydrolysis by Hsp90Ec and DnaK as well as the synergistic stimulation of ATP hydrolysis by the combination of Hsp90Ec and DnaK in the presence of a client (substrate). The first assay is a spectrophotometric assay based on enzyme-coupled reactions that utilize the ADP formed during ATP hydrolysis to oxidize NADH. The second assay is a more sensitive method that directly quantifies the radioactive inorganic phosphate released following the hydrolysis of [γ-33P] ATP or [γ-32P] ATP.
Collapse
Affiliation(s)
- Joel R Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5144, NIH, Bethesda, MD, 20892, USA
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5144, NIH, Bethesda, MD, 20892, USA.
| | - Shannon M Doyle
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5144, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
42
|
Nakamoto H, Kojima K. Non-housekeeping, non-essential GroEL (chaperonin) has acquired novel structure and function beneficial under stress in cyanobacteria. PHYSIOLOGIA PLANTARUM 2017; 161:296-310. [PMID: 28597961 DOI: 10.1111/ppl.12595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/17/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
GroELs which are prokaryotic members of the chaperonin (Cpn)/Hsp60 family are molecular chaperones of which Escherichia coli GroEL is a model for subsequent research. The majority of bacterial species including E. coli and Bacillus subtilis have only one essential groEL gene that forms an operon with the co-chaperone groES gene. In contrast to these model bacteria, two or three groEL genes exist in cyanobacterial genomes. One of them, groEL2, does not form an operon with the groES gene, whereas the other(s) does. In the case of cyanobacteria containing two GroEL homologs, one of the GroELs, GroEL1, substitutes for the native GroEL in an E. coli cell, but GroEL2 does not. Unlike the E. coli GroEL, GroEL2 is not essential, but it plays an important role which is not substitutable by GroEL1 under stress. Regulation of expression and biochemical properties of GroEL2 are different/diversified from GroEL1 and E. coli GroEL in many aspects. We postulate that the groEL2 gene has acquired a novel, beneficial function especially under stresses and become preserved by natural selection, with the groEL1 gene retaining the original, house-keeping function. In this review, we will focus on difference between the two GroELs in cyanobacteria, and divergence of GroEL2 from the E. coli GroEL. We will also compare cyanobacterial GroELs with the chloroplast Cpns (60α and 60β) which are thought to be evolved from the cyanobacterial GroEL1. Chloroplast Cpns appear to follow the different path from cyanobacterial GroELs in the evolution after gene duplication of the corresponding ancestral groEL gene.
Collapse
Affiliation(s)
- Hitoshi Nakamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Kouji Kojima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
43
|
Medina Munoz M, Pollio AR, White HL, Rio RV. Into the Wild: Parallel Transcriptomics of the Tsetse-Wigglesworthia Mutualism within Kenyan Populations. Genome Biol Evol 2017; 9:2276-2291. [PMID: 28934375 PMCID: PMC5601960 DOI: 10.1093/gbe/evx175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/16/2022] Open
Abstract
Tsetse flies (Diptera: Glossinidae) have medical significance as the obligate vectors of African trypanosomes. In addition, tsetse harbor a simple gut microbiota. A predominant gut microbiota member, the Gammaproteobacterium Wigglesworthia spp., has coevolved with tsetse for a significant portion of Glossina radiation proving critical to tsetse fitness. Although multiple roles have been described for Wigglesworthia within colony flies, little research has been dedicated towards functional characterization within wild tsetse. Here, dual RNA-Seq was performed to characterize the tsetse-Wigglesworthia symbiosis within flies captured in Nguruman, Kenya. A significant correlation in Gene Ontology (GO) distribution between tsetse and Wigglesworthia was observed, with homogeneous enrichment in metabolic and transport categories, likely supporting a hallmark of the symbiosis-bidirectional metabolic exchange. Within field flies, highly transcribed Wigglesworthia loci included those involved in B vitamin synthesis and in substrate translocation, including amino acid transporters and multidrug efflux pumps, providing a molecular means for interaction. The universal expression of several Wigglesworthia and G. pallidipes orthologs, putatively involved in nutrient provisioning and resource allocation, was confirmed in sister tsetse species. These transcriptional profiles varied through host age and mating status likely addressing varying symbiont demands and also confirming their global importance within Glossina. This study, not only supports symbiont nutrient provisioning roles, but also serves as a foundation for insight into novel roles and molecular mechanisms associated with vector-microbiota interactions. The role of symbiont B vitamin provisioning towards impacting host epigenetics is discussed. Knowledge of vector-microbiota interactions may lead to the discovery of novel targets in pest control.
Collapse
Affiliation(s)
- Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| | - Adam R. Pollio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| | - Hunter L. White
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| | - Rita V.M. Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| |
Collapse
|
44
|
Sjuts I, Soll J, Bölter B. Import of Soluble Proteins into Chloroplasts and Potential Regulatory Mechanisms. FRONTIERS IN PLANT SCIENCE 2017; 8:168. [PMID: 28228773 PMCID: PMC5296341 DOI: 10.3389/fpls.2017.00168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/26/2017] [Indexed: 05/20/2023]
Abstract
Chloroplasts originated from an endosymbiotic event in which a free-living cyanobacterium was engulfed by an ancestral eukaryotic host. During evolution the majority of the chloroplast genetic information was transferred to the host cell nucleus. As a consequence, proteins formerly encoded by the chloroplast genome are now translated in the cytosol and must be subsequently imported into the chloroplast. This process involves three steps: (i) cytosolic sorting procedures, (ii) binding to the designated receptor-equipped target organelle and (iii) the consecutive translocation process. During import, proteins have to overcome the two barriers of the chloroplast envelope, namely the outer envelope membrane (OEM) and the inner envelope membrane (IEM). In the majority of cases, this is facilitated by two distinct multiprotein complexes, located in the OEM and IEM, respectively, designated TOC and TIC. Plants are constantly exposed to fluctuating environmental conditions such as temperature and light and must therefore regulate protein composition within the chloroplast to ensure optimal functioning of elementary processes such as photosynthesis. In this review we will discuss the recent models of each individual import stage with regard to short-term strategies that plants might use to potentially acclimate to changes in their environmental conditions and preserve the chloroplast protein homeostasis.
Collapse
Affiliation(s)
- Inga Sjuts
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-UniversitätMunich, Germany
| | - Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-UniversitätMunich, Germany
- *Correspondence: Bettina Bölter,
| |
Collapse
|
45
|
Interaction of E. coli Hsp90 with DnaK Involves the DnaJ Binding Region of DnaK. J Mol Biol 2016; 429:858-872. [PMID: 28013030 DOI: 10.1016/j.jmb.2016.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/05/2023]
Abstract
The 90-kDa heat shock protein (Hsp90) is a widely conserved and ubiquitous molecular chaperone that participates in ATP-dependent protein remodeling in both eukaryotes and prokaryotes. It functions in conjunction with Hsp70 and the Hsp70 cochaperones, an Hsp40 (J-protein) and a nucleotide exchange factor. In Escherichia coli, the functional collaboration between Hsp90Ec and Hsp70, DnaK, requires that the two chaperones directly interact. We used molecular docking to model the interaction of Hsp90Ec and DnaK. The top-ranked docked model predicted that a region in the nucleotide-binding domain (NBD) of DnaK interacted with a region in the middle domain of Hsp90Ec. We then made substitution mutants in DnaK residues suggested by the model to interact with Hsp90Ec. Of the 12 mutants tested, 11 were defective or partially defective in their ability to interact with Hsp90Ecin vivo in a bacterial two-hybrid assay and in vitro in a bio-layer interferometry assay. These DnaK mutants were also defective in their ability to function collaboratively in protein remodeling with Hsp90Ec but retained the ability to act with DnaK cochaperones. Taken together, these results suggest that a specific region in the NBD of DnaK is involved in the interaction with Hsp90Ec, and this interaction is functionally important. Moreover, the region of DnaK that we found to be necessary for Hsp90Ec binding includes residues that are also involved in J-protein binding, suggesting a functional interplay among DnaK, DnaK cochaperones, and Hsp90Ec.
Collapse
|
46
|
Rauch JN, Tse E, Freilich R, Mok SA, Makley LN, Southworth DR, Gestwicki JE. BAG3 Is a Modular, Scaffolding Protein that physically Links Heat Shock Protein 70 (Hsp70) to the Small Heat Shock Proteins. J Mol Biol 2016; 429:128-141. [PMID: 27884606 DOI: 10.1016/j.jmb.2016.11.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/26/2022]
Abstract
Small heat shock proteins (sHsps) are a family of ATP-independent molecular chaperones that are important for binding and stabilizing unfolded proteins. In this task, the sHsps have been proposed to coordinate with ATP-dependent chaperones, including heat shock protein 70 (Hsp70). However, it is not yet clear how these two important components of the chaperone network are linked. We report that the Hsp70 co-chaperone, BAG3, is a modular, scaffolding factor to bring together sHsps and Hsp70s. Using domain deletions and point mutations, we found that BAG3 uses both of its IPV motifs to interact with sHsps, including Hsp27 (HspB1), αB-crystallin (HspB5), Hsp22 (HspB8), and Hsp20 (HspB6). BAG3 does not appear to be a passive scaffolding factor; rather, its binding promoted de-oligomerization of Hsp27, likely by competing for the self-interactions that normally stabilize large oligomers. BAG3 bound to Hsp70 at the same time as Hsp22, Hsp27, or αB-crystallin, suggesting that it might physically bring the chaperone families together into a complex. Indeed, addition of BAG3 coordinated the ability of Hsp22 and Hsp70 to refold denatured luciferase in vitro. Together, these results suggest that BAG3 physically and functionally links Hsp70 and sHsps.
Collapse
Affiliation(s)
- Jennifer N Rauch
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Eric Tse
- Department of Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca Freilich
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Sue-Ann Mok
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Leah N Makley
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Daniel R Southworth
- Department of Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
47
|
Lin J. Stress responses of Acinetobacter strain Y during phenol degradation. Arch Microbiol 2016; 199:365-375. [DOI: 10.1007/s00203-016-1310-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 08/10/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022]
|
48
|
Ali MR, Ali HR, Rankin CR, El-Sayed MA. Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy. Biomaterials 2016; 102:1-8. [DOI: 10.1016/j.biomaterials.2016.06.017] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 01/12/2023]
|
49
|
Shi L, Ravikumar V, Derouiche A, Macek B, Mijakovic I. Tyrosine 601 of Bacillus subtilis DnaK Undergoes Phosphorylation and Is Crucial for Chaperone Activity and Heat Shock Survival. Front Microbiol 2016; 7:533. [PMID: 27148221 PMCID: PMC4835898 DOI: 10.3389/fmicb.2016.00533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/31/2016] [Indexed: 01/10/2023] Open
Abstract
In order to screen for cellular substrates of the Bacillus subtilis BY-kinase PtkA, and its cognate phosphotyrosine-protein phosphatase PtpZ, we performed a triple Stable Isotope Labeling by Amino acids in Cell culture-based quantitative phosphoproteome analysis. Detected tyrosine phosphorylation sites for which the phosphorylation level decreased in the ΔptkA strain and increased in the ΔptpZ strain, compared to the wild type (WT), were considered as potential substrates of PtkA/PtpZ. One of those sites was the residue tyrosine 601 of the molecular chaperone DnaK. We confirmed that DnaK is a substrate of PtkA and PtpZ by in vitro phosphorylation and dephosphorylation assays. In vitro, DnaK Y601F mutant exhibited impaired interaction with its co-chaperones DnaJ and GrpE, along with diminished capacity to hydrolyze ATP and assist the re-folding of denatured proteins. In vivo, loss of DnaK phosphorylation in the mutant strain dnaK Y601F, or in the strain overexpressing the phosphatase PtpZ, led to diminished survival upon heat shock, consistent with the in vitro results. The decreased survival of the mutant dnaK Y601F at an elevated temperature could be rescued by complementing with the WT dnaK allele expressed ectopically. We concluded that the residue tyrosine 601 of DnaK can be phosphorylated and dephosphorylated by PtkA and PtpZ, respectively. Furthermore, Y601 is important for DnaK chaperone activity and heat shock survival of B. subtilis.
Collapse
Affiliation(s)
- Lei Shi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | - Vaishnavi Ravikumar
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen Tübingen, Germany
| | - Abderahmane Derouiche
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | - Boris Macek
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen Tübingen, Germany
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| |
Collapse
|
50
|
Maleki F, Khosravi A, Nasser A, Taghinejad H, Azizian M. Bacterial Heat Shock Protein Activity. J Clin Diagn Res 2016; 10:BE01-3. [PMID: 27134861 DOI: 10.7860/jcdr/2016/14568.7444] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/28/2015] [Indexed: 01/09/2023]
Abstract
Bacteria are exposed to different types of stress in their growth conditions. They have developed appropriate responses, modulated by the re-modeling of protein complexes and by phosphorylation dependent signal transduction systems, to adapt and to survive in a variety range of nature. Proteins are essential components for biologic activity in the eukaryotic and prokaryotic cell. Heat Shock Proteins (HSP) have been identified from various organisms and have critical role in cell hemostasis. Chaperone can sense environment and have different potential role in the organism evolution.
Collapse
Affiliation(s)
- Farajollah Maleki
- Lecturer, Clinical Microbiology Research Center, Ilam University of Medical Science , Ilam, Iran
| | - Afra Khosravi
- Professor, Department of Immunology, Faculty of Medicine, Ilam University of Medical Sciences , Ilam, Iran
| | - Ahmad Nasser
- Lecturer, Clinical Microbiology Research Center, Ilam University of Medical Science , Ilam, Iran
| | - Hamid Taghinejad
- Assistant Professor, Department of Nursing, Faculty of Nursing and Midwifery, Ilam University of Medical Sciences , Ilam, Iran
| | - Mitra Azizian
- Lecturer, Clinical Microbiology Research Center, Ilam University of Medical Science , Ilam, Iran
| |
Collapse
|