1
|
Inula viscosa (L.) Greuter, phytochemical composition, antioxidant, total phenolic content, total flavonoids content and neuroprotective effects. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2021.101291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
2
|
Vyunova TV, Andreeva LA, Shevchenko KV, Grigoriev VV, Palyulin VA, Lavrov MI, Bondarenko EV, Kalashnikova EE, Myasoedov NF. Characterization of a New Positive Allosteric Modulator of AMPA Receptors - PAM-43: Specific Binding of the Ligand and its Ability to Potentiate AMPAR Currents. Curr Mol Pharmacol 2020; 13:216-223. [PMID: 32124706 DOI: 10.2174/1874467213666200303140834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/19/2019] [Accepted: 12/11/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Currently, the most dynamic areas in the glutamate receptor system neurobiology are the identification and development of positive allosteric modulators (PAMs) of glutamate ionotropic receptors. PAM-based drugs are of great interest as promising candidates for the treatment of neurological diseases, such as epilepsy, Alzheimer's disease, schizophrenia, etc. Understanding the molecular mechanisms underlying the biological action of natural and synthetic PAMs is a key point for modifying the original chemical compounds as well as for new drug design. OBJECTIVE We are trying to elaborate a system of molecular functional screening of ionotropic glutamate receptor probable PAMs. METHODS The system will be based on the radioligand - receptor method of analysis and will allow rapid quantification of new AMPAR probable PAMs molecular activity. We plan to use a tritiumlabeled analogue of recently elaborated ionotropic GluR probable PAM ([3H]PAM-43) as the main radioligand. RESULTS Here, we characterized the specific binding of the ligand and its ability to potentiate ionotropic GluR currents. The existence of at least two different sites of [3H]PAM-43 specific binding has been shown. One of the above sites is glutamate-dependent and is characterized by higher affinity. "Patchclamp" technique showed the ability of PAM-43 to potentiate ionotropic GluR currents in rat cerebellar Purkinje neurons in a concentration-dependent manner. CONCLUSION The possibility of using PAM-43 as a model compound to study different allosteric effects of potential regulatory drugs (AMPAR allosteric regulators) was shown. [3H]PAM-43 based screening system will allow rapid selection of new AMPAR probable PAM structures and quantification of their molecular activity.
Collapse
Affiliation(s)
- Tatiana V Vyunova
- Sector of Regulatory Peptides, Department of Chemistry of Physiologically Active Substances, Institute of Molecular Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - Lioudmila A Andreeva
- Sector of Regulatory Peptides, Department of Chemistry of Physiologically Active Substances, Institute of Molecular Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - Konstantin V Shevchenko
- Sector of Regulatory Peptides, Department of Chemistry of Physiologically Active Substances, Institute of Molecular Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir V Grigoriev
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - Vladimir A Palyulin
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Mstislav I Lavrov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | - Elena E Kalashnikova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - Nikolay F Myasoedov
- Sector of Regulatory Peptides, Department of Chemistry of Physiologically Active Substances, Institute of Molecular Genetics of the Russian Academy of Sciences, Moscow, Russia,The Mental Health Research Center of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Zhang W, Eibl C, Weeks AM, Riva I, Li YJ, Plested AJR, Howe JR. Unitary Properties of AMPA Receptors with Reduced Desensitization. Biophys J 2017; 113:2218-2235. [PMID: 28863863 DOI: 10.1016/j.bpj.2017.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 01/24/2023] Open
Abstract
Wild-type AMPA receptors display a characteristic rapidly desensitizing phenotype. Many studies point to the dimer interface between pairs of extracellular ligand binding domains as the key region controlling the rate at which the receptors desensitize. However, mutations at the extracellular end of the pore-forming regions (near the putative ion channel gate) have also been shown to alter desensitization. Here we report the behavior of single GluA4 receptors carrying one of two mutations that greatly reduce desensitization at the level of ensemble currents: the dimer interface mutation L484Y and the Lurcher mutation (A623T, GluA4-Lc) in the extracellular end of M3 (the second true transmembrane helix). Analysis of unitary currents in patches with just one active receptor showed that each mutation greatly prolongs bursts of openings without prolonging the apparent duration of individual openings. Each mutation decreases the frequency with which individual receptors visit desensitized states, but both mutant receptors still desensitize multiple times per second. Cyclothiazide (CTZ) reduced desensitization of wild-type receptors and both types of mutant receptor. Analysis of shut-time distributions revealed a form of short-lived desensitization that was resistant to CTZ and was especially prominent for GluA4-Lc receptors. Despite reducing desensitization of GluA4 L484Y receptors, CTZ decreased the amplitude of ensemble currents through GluA2 and GluA4 LY receptor mutants. Single-channel analysis and comparison of the GluA2 L483Y ligand binding domain dimer in complex with glutamate with and without CTZ is consistent with the conclusion that CTZ binding to the dimer interface prevents effects of the LY mutation to modulate receptor activation, resulting in a reduction in the prevalence of large-conductance substates that accounts for the decrease in ensemble current amplitudes. Together, the results show that similar nondesensitizing AMPA-receptor phenotypes of population currents can arise from distinct underlying molecular mechanisms that produce different types of unitary activity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut.
| | - Clarissa Eibl
- Leibniz-Institut für Molekulare Pharmakologie and Cluster of Excellence, NeuroCure, Charité Universitätsmedizin, Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany
| | - Autumn M Weeks
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Irene Riva
- Leibniz-Institut für Molekulare Pharmakologie and Cluster of Excellence, NeuroCure, Charité Universitätsmedizin, Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany
| | - Yan-Jun Li
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Andrew J R Plested
- Leibniz-Institut für Molekulare Pharmakologie and Cluster of Excellence, NeuroCure, Charité Universitätsmedizin, Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany
| | - James R Howe
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
4
|
Ren H, Zhao Y, Wu M, Dwyer DS, Peoples RW. Two adjacent phenylalanines in the NMDA receptor GluN2A subunit M3 domain interactively regulate alcohol sensitivity and ion channel gating. Neuropharmacology 2016; 114:20-33. [PMID: 27876530 DOI: 10.1016/j.neuropharm.2016.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
Abstract
The N-methyl-d-aspartate (NMDA) receptor is a key target of ethanol action in the central nervous system. Alcohol inhibition of NMDA receptor function involves small clusters of residues in the third and fourth membrane-associated (M) domains. Previous results from this laboratory have shown that two adjacent positions in the M3 domain, F636 and F637, can powerfully regulate alcohol sensitivity and ion channel gating. In this study, we report that these positions interact with one another in the regulation of both NMDA receptor gating and alcohol action. Using dual mutant cycle analysis, we detected interactions among various substitution mutants at these positions with respect to regulation of glutamate EC50, steady-state to peak current ratios (Iss:Ip), mean open time, and ethanol IC50. This interaction apparently involves a balancing of forces on the M3 helix, such that the disruption of function due to a substitution at one position can be reversed by a similar substitution at the other position. For example, tryptophan substitution at F636 or F637 increased or decreased channel mean open time, respectively, but tryptophan substitution at both positions did not alter open time. Interestingly, the effects of a number of mutations on receptor kinetics and ethanol sensitivity appeared to depend upon subtle structural differences, such as those between the isomeric amino acids leucine and isoleucine, as they could not be explained on the basis of sidechain molecular volume or hydrophilicity.
Collapse
Affiliation(s)
- Hong Ren
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yulin Zhao
- Laboratory of Membrane Excitability and Disease Mount Sinai School of Medicine, 1425 Madison Avenue, ICAHN 9-26, 28, New York, NY 10029, United States.
| | - Man Wu
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Donard S Dwyer
- Department of Psychiatry, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| | - Robert W Peoples
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201-1881, United States.
| |
Collapse
|
5
|
Griffith TN, Swanson GT. Identification of critical functional determinants of kainate receptor modulation by auxiliary protein Neto2. J Physiol 2015; 593:4815-33. [PMID: 26282342 PMCID: PMC4650415 DOI: 10.1113/jp271103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/11/2015] [Indexed: 02/05/2023] Open
Abstract
KEY POINTS Kainate receptors (KARs) are ionotropic glutamate receptors (iGluRs) that modulate synaptic transmission and intrinsic neuronal excitability. KARs associate with the auxiliary proteins neuropilin- and tolloid-like 1 and 2 (Neto1 and Neto2), which act as allosteric modulators of receptor function impacting all biophysical properties of these receptors studied to date. M3-S2 linkers play a critical role in KAR gating; we found that individual residues in these linkers bidirectionally influence Neto2 modulation of KAR desensitization in an agonist specific manner. We also identify the D1 dimer interface as a novel site of Neto2 modulation and functionally correlate the actions of Neto2 modulation of desensitization with modulation of cation sensitivity. We identify these domains as determinants of Neto2 modulation. Thus, our work contributes to the understanding of auxiliary subunit modulation of KAR function and could aid the development of KAR-specific modulators to alter receptor function. ABSTRACT Kainate receptors (KARs) are important modulators of synaptic transmission and intrinsic neuronal excitability in the CNS. Their activity is shaped by the auxiliary proteins Neto1 and Neto2, which impact KAR gating in a receptor subunit- and Neto isoform-specific manner. The structural basis for Neto modulation of KAR gating is unknown. Here we identify the M3-S2 gating linker as a critical determinant contributing to Neto2 modulation of KARs. M3-S2 linkers control both the valence and magnitude of Neto2 modulation of homomeric GluK2 receptors. Furthermore, a single mutation in this domain abolishes Neto2 modulation of heteromeric receptor desensitization. Additionally, we found that cation sensitivity of KAR gating is altered by Neto2 association, suggesting that stability of the D1 dimer interface in the ligand-binding domain (LBD) is an important determinant of Neto2 actions. Moreover, modulation of cation sensitivity was eliminated by mutations in the M3-S2 linkers, thereby correlating the action of Neto2 at these structurally discrete sites on receptor subunits. These results demonstrate that the KAR M3-S2 linkers and LBD dimer interface are critical determinants for Neto2 modulation of receptor function and identify these domains as potential sites of action for the targeted development of KAR-specific modulators that alter the function of auxiliary proteins in native receptors.
Collapse
Affiliation(s)
- Theanne N Griffith
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL, 60611, USA
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL, 60611, USA
| |
Collapse
|
6
|
Highstein SM, Mann MA, Holstein GR, Rabbitt RD. The quantal component of synaptic transmission from sensory hair cells to the vestibular calyx. J Neurophysiol 2015; 113:3827-35. [PMID: 25878150 DOI: 10.1152/jn.00055.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/15/2015] [Indexed: 11/22/2022] Open
Abstract
Spontaneous and stimulus-evoked excitatory postsynaptic currents (EPSCs) were recorded in calyx nerve terminals from the turtle vestibular lagena to quantify key attributes of quantal transmission at this synapse. On average, EPSC events had a magnitude of ∼ 42 pA, a rise time constant of τ(0) ∼ 229 μs, decayed to baseline with a time constant of τ(R) ∼ 690 μs, and carried ∼ 46 fC of charge. Individual EPSCs varied in magnitude and decay time constant. Variability in the EPSC decay time constant was hair cell dependent and due in part to a slow protraction of the EPSC in some cases. Variability in EPSC size was well described by an integer summation of unitary quanta, with each quanta of glutamate gating a unitary postsynaptic current of ∼ 23 pA. The unitary charge was ∼ 26 fC for EPSCs with a simple exponential decay and increased to ∼ 48 fC for EPSCs exhibiting a slow protraction. The EPSC magnitude and the number of simultaneous unitary quanta within each event increased with presynaptic stimulus intensity. During tonic hair cell depolarization, both the EPSC magnitude and event rate exhibited adaptive run down over time. Present data from a reptilian calyx are remarkably similar to noncalyceal vestibular synaptic terminals in diverse species, indicating that the skewed EPSC size distribution and multiquantal release might be an ancestral property of inner ear ribbon synapses.
Collapse
Affiliation(s)
| | | | - Gay R Holstein
- Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Richard D Rabbitt
- Marine Biological Laboratory, Woods Hole, Massachusetts; University of Utah, Salt Lake City, Utah
| |
Collapse
|
7
|
Visitsattapongse S, Sakdee S, Leetacheewa S, Angsuthanasombat C. Single-reversal charge in the β10-β11 receptor-binding loop of Bacillus thuringiensis Cry4Aa and Cry4Ba toxins reflects their different toxicity against Culex spp. larvae. Biochem Biophys Res Commun 2014; 450:948-52. [PMID: 24971536 DOI: 10.1016/j.bbrc.2014.06.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
Bacillus thuringiensis Cry4Aa toxin was previously shown to be much more toxic to Culex mosquito-larvae than its closely related toxin - Cry4Ba, conceivably due to their sequence differences within the β10-β11 receptor-binding loop. Here, single-Ala substitutions of five residues (Pro(510), Thr(512), Tyr(513), Lys(514) and Thr(515)) within the Cry4Aa β10-β11 loop revealed that only Lys(514) corresponding to the relative position of Cry4Ba-Asp(454) is crucial for toxicity against Culex quinquefasciatus larvae. Interestingly, charge-reversal mutations at Cry4Ba-Asp(454) (D454R and D454K) revealed a marked increase in toxicity against such less-susceptible larvae. In situ binding analyses revealed that both Cry4Ba-D454R and D454K mutants exhibited a significant increase in binding to apical microvilli of Culex larval midguts, albeit at lower-binding activity when compared with Cry4Aa. Altogether, our present data suggest that a positively charged side-chain near the tip of the β10-β11 loop plays a critical role in determining target specificity of Cry4Aa against Culex spp., and hence a great increase in the Culex larval toxicity of Cry4Ba was obtained toward an opposite-charge conversion of the corresponding Asp(454).
Collapse
Affiliation(s)
- Sarinporn Visitsattapongse
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakornpathom 73170, Thailand; Bacterial Protein Toxin Research Unit, Institute of Molecular Biosciences, Mahidol University, Nakornpathom 73170, Thailand
| | - Somsri Sakdee
- Bacterial Protein Toxin Research Unit, Institute of Molecular Biosciences, Mahidol University, Nakornpathom 73170, Thailand
| | - Somphob Leetacheewa
- Bacterial Protein Toxin Research Unit, Institute of Molecular Biosciences, Mahidol University, Nakornpathom 73170, Thailand
| | - Chanan Angsuthanasombat
- Bacterial Protein Toxin Research Unit, Institute of Molecular Biosciences, Mahidol University, Nakornpathom 73170, Thailand; Laboratory of Molecular Biophysics and Structural Biochemistry, Biophysics Institute for Research and Development (BIRD), Bangkok 10150, Thailand.
| |
Collapse
|