1
|
Wang F, Cai N, Leng Y, Wu C, Wang Y, Tian S, Zhang C, Xu Q, Peng H, Chen N, Li Y. Metabolic Engineering of Corynebacterium glutamicum for the High-Level Production of l-Valine under Aerobic Conditions. ACS Synth Biol 2024; 13:2861-2872. [PMID: 38946081 DOI: 10.1021/acssynbio.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
l-Valine, an essential amino acid, serves as a valuable compound in various industries. However, engineering strains with both high yield and purity are yet to be delivered for microbial l-valine production. We engineered a Corynebacterium glutamicum strain capable of highly efficient production of l-valine. We initially introduced an acetohydroxy acid synthase mutant from an industrial l-valine producer and optimized a cofactor-balanced pathway, followed by the activation of the nonphosphoenolpyruvate-dependent carbohydrate phosphotransferase system and the introduction of an exogenous Entner-Doudoroff pathway. Subsequently, we weakened anaplerotic pathways, and attenuated the tricarboxylic acid cycle via start codon substitution in icd, encoding isocitrate dehydrogenase. Finally, to balance bacterial growth and l-valine production, an l-valine biosensor-dependent genetic circuit was established to dynamically repress citrate synthase expression. The engineered strain Val19 produced 103 g/L of l-valine with a high yield of 0.35 g/g glucose and a productivity of 2.67 g/L/h. This represents the highest reported l-valine production in C. glutamicum via direct fermentation and exhibits potential for its industrial-scale production, leveraging the advantages of C. glutamicum over other microbes.
Collapse
Affiliation(s)
- Feiao Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ningyun Cai
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanlin Leng
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Wu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Siyu Tian
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenglin Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingyang Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huadong Peng
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanjun Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
2
|
McLeod MJ, Holyoak T. Biochemical, structural, and kinetic characterization of PP i -dependent phosphoenolpyruvate carboxykinase from Propionibacterium freudenreichii. Proteins 2023; 91:1261-1275. [PMID: 37226637 DOI: 10.1002/prot.26513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Phosphoenolpyruvate carboxykinases (PEPCK) are a well-studied family of enzymes responsible for the regulation of TCA cycle flux, where they catalyze the interconversion of oxaloacetic acid (OAA) and phosphoenolpyruvate (PEP) using a phosphoryl donor/acceptor. These enzymes have typically been divided into two nucleotide-dependent classes, those that use ATP and those that use GTP. In the 1960's and early 1970's, a group of papers detailed biochemical properties of an enzyme named phosphoenolpyruvate carboxytransphosphorylase (later identified as a third PEPCK) from Propionibacterium freudenreichii (PPi -PfPEPCK), which instead of using a nucleotide, utilized PPi to catalyze the same interconversion of OAA and PEP. The presented work expands upon the initial biochemical experiments for PPi -PfPEPCK and interprets these data considering both the current understanding of nucleotide-dependent PEPCKs and is supplemented with a new crystal structure of PPi -PfPEPCK in complex with malate at a putative allosteric site. Most interesting, the data are consistent with PPi -PfPEPCK being a Fe2+ activated enzyme in contrast with the Mn2+ activated nucleotide-dependent enzymes which in part results in some unique kinetic properties for the enzyme when compared to the more widely distributed GTP- and ATP-dependent enzymes.
Collapse
Affiliation(s)
- Matthew J McLeod
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Physics, Cornell University, Ithaca, New York, USA
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
3
|
Sau S, Roy A, Agnivesh PK, Kumar S, Guru SK, Sharma S, Kalia NP. Unravelling the flexibility of Mycobacterium tuberculosis: an escape way for the bacilli. J Med Microbiol 2023; 72. [PMID: 37261969 DOI: 10.1099/jmm.0.001695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
The persistence of Mycobacterium tuberculosis makes it difficult to eradicate the associated infection from the host. The flexible nature of mycobacteria and their ability to adapt to adverse host conditions give rise to different drug-tolerant phenotypes. Granuloma formation restricts nutrient supply, limits oxygen availability and exposes bacteria to a low pH environment, resulting in non-replicating bacteria. These non-replicating mycobacteria, which need high doses and long exposure to anti-tubercular drugs, are the root cause of lengthy chemotherapy. Novel strategies, which are effective against non-replicating mycobacteria, need to be adopted to shorten tuberculosis treatment. This not only will reduce the treatment time but also will help prevent the emergence of multi-drug-resistant strains of mycobacteria.
Collapse
Affiliation(s)
- Shashikanta Sau
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Arnab Roy
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Puja Kumari Agnivesh
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Sunil Kumar
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Santosh Kumar Guru
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Sandeep Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, Punjab -144411, India
| | - Nitin Pal Kalia
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Barwell S, Duman R, Wagner A, Holyoak T. Directional regulation of cytosolic PEPCK catalysis is mediated by competitive binding of anions. Biochem Biophys Res Commun 2022; 637:218-223. [DOI: 10.1016/j.bbrc.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
5
|
Eoh H, Liu R, Lim J, Lee JJ, Sell P. Central carbon metabolism remodeling as a mechanism to develop drug tolerance and drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:958240. [PMID: 36072228 PMCID: PMC9441700 DOI: 10.3389/fcimb.2022.958240] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Suboptimal efficacy of the current antibiotic regimens and frequent emergence of antibiotic-resistant Mycobacterium tuberculosis (Mtb), an etiological agent of tuberculosis (TB), render TB the world’s deadliest infectious disease before the COVID-19 outbreak. Our outdated TB treatment method is designed to eradicate actively replicating populations of Mtb. Unfortunately, accumulating evidence suggests that a small population of Mtb can survive antimycobacterial pressure of antibiotics by entering a “persister” state (slowly replicating or non-replicating and lacking a stably heritable antibiotic resistance, termed drug tolerance). The formation of drug-tolerant Mtb persisters is associated with TB treatment failure and is thought to be an adaptive strategy for eventual development of permanent genetic mutation-mediated drug resistance. Thus, the molecular mechanisms behind persister formation and drug tolerance acquisition are a source of new antibiotic targets to eradicate both Mtb persisters and drug-resistant Mtb. As Mtb persisters are genetically identical to antibiotic susceptible populations, metabolomics has emerged as a vital biochemical tool to differentiate these populations by determining phenotypic shifts and metabolic reprogramming. Metabolomics, which provides detailed insights into the molecular basis of drug tolerance and resistance in Mtb, has unique advantages over other techniques by its ability to identify specific metabolic differences between the two genetically identical populations. This review summarizes the recent advances in our understanding of the metabolic adaptations used by Mtb persisters to achieve intrinsic drug tolerance and facilitate the emergence of drug resistance. These findings present metabolomics as a powerful tool to identify previously unexplored antibiotic targets and improved combinations of drug regimens against drug-resistant TB infection.
Collapse
|
6
|
Burgsdorf I, Sizikov S, Squatrito V, Britstein M, Slaby BM, Cerrano C, Handley KM, Steindler L. Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool. THE ISME JOURNAL 2021; 16:1163-1175. [PMID: 34876682 PMCID: PMC8941161 DOI: 10.1038/s41396-021-01165-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/30/2021] [Accepted: 11/24/2021] [Indexed: 01/19/2023]
Abstract
Marine sponges host a wide diversity of microorganisms, which have versatile modes of carbon and energy metabolism. In this study we describe the major lithoheterotrophic and autotrophic processes in 21 microbial sponge-associated phyla using novel and existing genomic and transcriptomic datasets. We show that the main microbial carbon fixation pathways in sponges are the Calvin–Benson–Bassham cycle (energized by light in Cyanobacteria, by sulfur compounds in two orders of Gammaproteobacteria, and by a wide range of compounds in filamentous Tectomicrobia), the reductive tricarboxylic acid cycle (used by Nitrospirota), and the 3-hydroxypropionate/4-hydroxybutyrate cycle (active in Thaumarchaeota). Further, we observed that some sponge symbionts, in particular Acidobacteria, are capable of assimilating carbon through anaplerotic processes. The lithoheterotrophic lifestyle was widespread and CO oxidation is the main energy source for sponge lithoheterotrophs. We also suggest that the molybdenum-binding subunit of dehydrogenase (encoded by coxL) likely evolved to benefit also organoheterotrophs that utilize various organic substrates. Genomic potential does not necessarily inform on actual contribution of autotrophs to light and dark carbon budgets. Radioisotope assays highlight variability in the relative contributions of photo- and chemoautotrophs to the total carbon pool across different sponge species, emphasizing the importance of validating genomic potential with physiology experimentation.
Collapse
Affiliation(s)
- I Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - S Sizikov
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - V Squatrito
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - M Britstein
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - B M Slaby
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Ecology, RU Marine Symbioses, Kiel, Germany
| | - C Cerrano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - K M Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - L Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
7
|
Phosphoenolpyruvate depletion mediates both growth arrest and drug tolerance of Mycobacterium tuberculosis in hypoxia. Proc Natl Acad Sci U S A 2021; 118:2105800118. [PMID: 34426499 DOI: 10.1073/pnas.2105800118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection is difficult to treat because Mtb spends the majority of its life cycle in a nonreplicating (NR) state. Since NR Mtb is highly tolerant to antibiotic effects and can mutate to become drug resistant (DR), our conventional tuberculosis (TB) treatment is not effective. Thus, a novel strategy to kill NR Mtb is required. Accumulating evidence has shown that repetitive exposure to sublethal doses of antibiotics enhances the level of drug tolerance, implying that NR Mtb is formed by adaptive metabolic remodeling. As such, metabolic modulation strategies to block the metabolic remodeling needed to form NR Mtb have emerged as new therapeutic options. Here, we modeled in vitro NR Mtb using hypoxia, applied isotope metabolomics, and revealed that phosphoenolpyruvate (PEP) is nearly completely depleted in NR Mtb. This near loss of PEP reduces PEP-carbon flux toward multiple pathways essential for replication and drug sensitivity. Inversely, supplementing with PEP restored the carbon flux and the activities of the foregoing pathways, resulting in growth and heightened drug susceptibility of NR Mtb, which ultimately prevented the development of DR. Taken together, PEP depletion in NR Mtb is associated with the acquisition of drug tolerance and subsequent emergence of DR, demonstrating that PEP treatment is a possible metabolic modulation strategy to resensitize NR Mtb to conventional TB treatment and prevent the emergence of DR.
Collapse
|
8
|
Thomas GH. Microbial Musings – June 2021. Microbiology (Reading) 2021; 167. [DOI: 10.1099/mic.0.001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Serafini A. Interplay between central carbon metabolism and metal homeostasis in mycobacteria and other human pathogens. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34080971 DOI: 10.1099/mic.0.001060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial nutrition is a fundamental aspect of pathogenesis. While the host environment is in principle nutrient-rich, hosts have evolved strategies to interfere with nutrient acquisition by pathogens. In turn, pathogens have developed mechanisms to circumvent these restrictions. Changing the availability of bioavailable metal ions is a common strategy used by hosts to limit bacterial replication. Macrophages and neutrophils withhold iron, manganese, and zinc ions to starve bacteria. Alternatively, they can release manganese, zinc, and copper ions to intoxicate microorganisms. Metals are essential micronutrients and participate in catalysis, macromolecular structure, and signalling. This review summarises our current understanding of how central carbon metabolism in pathogens adapts to local fluctuations in free metal ion concentrations. We focus on the transcriptomics and proteomics data produced in studies of the iron-sparing response in Mycobacterium tuberculosis, the etiological agent of tuberculosis, and consequently generate a hypothetical model linking trehalose accumulation, succinate secretion and substrate-level phosphorylation in iron-starved M. tuberculosis. This review also aims to highlight a large gap in our knowledge of pathogen physiology: the interplay between metal homeostasis and central carbon metabolism, two cellular processes which are usually studied separately. Integrating metabolism and metal biology would allow the discovery of new weaknesses in bacterial physiology, leading to the development of novel and improved antibacterial therapies.
Collapse
Affiliation(s)
- Agnese Serafini
- Independent researcher 00012 Guidonia Montecelio, Rome, Italy
| |
Collapse
|
10
|
Snášel J, Machová I, Šolínová V, Kašička V, Krečmerová M, Pichová I. Phosphofructokinases A and B from Mycobacterium tuberculosis Display Different Catalytic Properties and Allosteric Regulation. Int J Mol Sci 2021; 22:1483. [PMID: 33540748 PMCID: PMC7867265 DOI: 10.3390/ijms22031483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB) remains one of the major health concerns worldwide. Mycobacterium tuberculosis (Mtb), the causative agent of TB, can flexibly change its metabolic processes during different life stages. Regulation of key metabolic enzyme activities by intracellular conditions, allosteric inhibition or feedback control can effectively contribute to Mtb survival under different conditions. Phosphofructokinase (Pfk) is one of the key enzymes regulating glycolysis. Mtb encodes two Pfk isoenzymes, Pfk A/Rv3010c and Pfk B/Rv2029c, which are differently expressed upon transition to the hypoxia-induced non-replicating state of the bacteria. While pfkB gene and protein expression are upregulated under hypoxic conditions, Pfk A levels decrease. Here, we present biochemical characterization of both Pfk isoenzymes, revealing that Pfk A and Pfk B display different kinetic properties. Although the glycolytic activity of Pfk A is higher than that of Pfk B, it is markedly inhibited by an excess of both substrates (fructose-6-phosphate and ATP), reaction products (fructose-1,6-bisphosphate and ADP) and common metabolic allosteric regulators. In contrast, synthesis of fructose-1,6-bisphosphatase catalyzed by Pfk B is not regulated by higher levels of substrates, and metabolites. Importantly, we found that only Pfk B can catalyze the reverse gluconeogenic reaction. Pfk B thus can support glycolysis under conditions inhibiting Pfk A function.
Collapse
Affiliation(s)
| | | | | | | | | | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic; (J.S.); (I.M.); (V.Š.); (V.K.); (M.K.)
| |
Collapse
|
11
|
Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis. Nat Commun 2020; 11:6092. [PMID: 33257709 PMCID: PMC7705017 DOI: 10.1038/s41467-020-19959-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
The approval of bedaquiline (BDQ) for the treatment of tuberculosis has generated substantial interest in inhibiting energy metabolism as a therapeutic paradigm. However, it is not known precisely how BDQ triggers cell death in Mycobacterium tuberculosis (Mtb). Using 13C isotopomer analysis, we show that BDQ-treated Mtb redirects central carbon metabolism to induce a metabolically vulnerable state susceptible to genetic disruption of glycolysis and gluconeogenesis. Metabolic flux profiles indicate that BDQ-treated Mtb is dependent on glycolysis for ATP production, operates a bifurcated TCA cycle by increasing flux through the glyoxylate shunt, and requires enzymes of the anaplerotic node and methylcitrate cycle. Targeting oxidative phosphorylation (OXPHOS) with BDQ and simultaneously inhibiting substrate level phosphorylation via genetic disruption of glycolysis leads to rapid sterilization. Our findings provide insight into the metabolic mechanism of BDQ-induced cell death and establish a paradigm for the development of combination therapies that target OXPHOS and glycolysis.
Collapse
|
12
|
Hasegawa S, Jojima T, Suda M, Inui M. Isobutanol production in Corynebacterium glutamicum: Suppressed succinate by-production by pckA inactivation and enhanced productivity via the Entner–Doudoroff pathway. Metab Eng 2020; 59:24-35. [DOI: 10.1016/j.ymben.2020.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/24/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
|
13
|
Llamas-Ramírez R, Takahashi-Iñiguez T, Flores ME. The phosphoenolpyruvate-pyruvate-oxaloacetate node genes and enzymes in Streptomyces coelicolor M-145. Int Microbiol 2020; 23:429-439. [PMID: 31900743 DOI: 10.1007/s10123-019-00116-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/11/2019] [Accepted: 12/15/2019] [Indexed: 01/19/2023]
Abstract
The phosphoenolpyruvate-pyruvate-oxaloacetate node is a major branch within the central carbon metabolism and acts as a connection point between glycolysis, gluconeogenesis, and the TCA cycle. Phosphoenolpyruvate carboxylase, pyruvate carboxylase, phosphoenolpyruvate carboxykinase, malic enzymes, and pyruvate kinase, among others, are enzymes included in this node. We determined the mRNA levels and specific activity profiles of some of these genes and enzymes in Streptomyces coelicolor M-145. The results obtained in the presence of glucose demonstrated that all genes studied of the phosphoenolpyruvate-pyruvate-oxaloacetate node were expressed, although at different levels, with 10- to 100-fold differences. SCO3127 (phosphoenolpyruvate carboxylase gene) and SCO5261 (NADP+-dependent malic enzyme gene) showed the highest expression in the rapid growth phase, and the mRNA levels corresponding to SCO5896 (phosphoenolpyruvate-utilizing enzyme gene), and SCO0546 (pyruvate carboxylase gene) increased 5- to 10-fold towards the stationary phase. In casamino acids, in general mRNA levels of S. coelicolor were lower than in glucose, however, results showed greater mRNA expression of SCO4979 (PEP carboxykinase), SCO0208 (pyruvate phosphate dikinase gene), and SCO5261 (NADP+-dependent malic enzyme). These results suggest that PEP carboxylase (SCO3127) is an important enzyme during glucose catabolism and oxaloacetate replenishment. On the other hand, phosphoenolpyruvate carboxykinase, pyruvate phosphate dikinase, and NADP+-malic enzyme could have an important role in gluconeogenesis in S. coelicolor.
Collapse
Affiliation(s)
- Reneé Llamas-Ramírez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.,Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Toshiko Takahashi-Iñiguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - María Elena Flores
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
14
|
Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis. Nat Rev Microbiol 2019; 16:496-507. [PMID: 29691481 DOI: 10.1038/s41579-018-0013-4] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metabolism was once relegated to the supply of energy and biosynthetic precursors, but it has now become clear that it is a specific mediator of nearly all physiological processes. In the context of microbial pathogenesis, metabolism has expanded outside its canonical role in bacterial replication. Among human pathogens, this expansion has emerged perhaps nowhere more visibly than for Mycobacterium tuberculosis, the causative agent of tuberculosis. Unlike most pathogens, M. tuberculosis has evolved within humans, which are both host and reservoir. This makes unrestrained replication and perpetual quiescence equally incompatible strategies for survival as a species. In this Review, we summarize recent work that illustrates the diversity of metabolic functions that not only enable M. tuberculosis to establish and maintain a state of chronic infection within the host but also facilitate its survival in the face of drug pressure and, ultimately, completion of its life cycle.
Collapse
|
15
|
Snášel J, Pichová I. Allosteric regulation of pyruvate kinase from Mycobacterium tuberculosis by metabolites. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:125-139. [PMID: 30419357 DOI: 10.1016/j.bbapap.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/26/2018] [Accepted: 11/08/2018] [Indexed: 12/01/2022]
Abstract
Mycobacterium tuberculosis (Mtb) causes both acute tuberculosis and latent, symptom-free infection that affects roughly one-third of the world's population. It is a globally important pathogen that poses multiple dangers. Mtb reprograms its metabolism in response to the host niche, and this adaptation contributes to its pathogenicity. Knowledge of the metabolic regulation mechanisms in Mtb is still limited. Pyruvate kinase, involved in the late stage of glycolysis, helps link various metabolic routes together. Here, we demonstrate that Mtb pyruvate kinase (Mtb PYK) predominantly catalyzes the reaction leading to the production of pyruvate, but its activity is influenced by multiple metabolites from closely interlinked pathways that act as allosteric regulators (activators and inhibitors). We identified allosteric activators and inhibitors of Mtb PYK originating from glycolysis, citrate cycle, nucleotide/nucleoside inter-conversion related pathways that had not been described so far. Enzyme was found to be activated by fructose-1,6-bisphosphate, ribose-5-phosphate, adenine, adenosine, hypoxanthine, inosine, L-2-phosphoglycerate, l-aspartate, glycerol-2-phosphate, glycerol-3-phosphate. On the other hand thiamine pyrophosphate, glyceraldehyde-3-phosphate and L-malate were identified as inhibitors of Mtb PYK. The detailed kinetic analysis indicated a morpheein model of Mtb PYK allosteric control which is strictly dependent on Mg2+ and substantially increased by the co-presence of Mg2+ and K+.
Collapse
Affiliation(s)
- Jan Snášel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 166 10, Czech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 166 10, Czech Republic.
| |
Collapse
|
16
|
Bose T, Das C, Dutta A, Mahamkali V, Sadhu S, Mande SS. Understanding the role of interactions between host and Mycobacterium tuberculosis under hypoxic condition: an in silico approach. BMC Genomics 2018; 19:555. [PMID: 30053801 PMCID: PMC6064076 DOI: 10.1186/s12864-018-4947-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/19/2018] [Indexed: 01/17/2023] Open
Abstract
Background Mycobacterium tuberculosis infection in humans is often associated with extended period of latency. To adapt to the hostile hypoxic environment inside a macrophage, M. tuberculosis cells undergo several physiological and metabolic changes. Previous studies have mostly focused on inspecting individual facets of this complex process. In order to gain deeper insights into the infection process and to understand the coordination among different regulatory/ metabolic pathways in the pathogen, the current in silico study investigates three aspects, namely, (i) host-pathogen interactions (HPIs) between human and M. tuberculosis proteins, (ii) gene regulatory network pertaining to adaptation of M. tuberculosis to hypoxia and (iii) alterations in M. tuberculosis metabolism under hypoxic condition. Subsequently, cross-talks between these components have been probed to evaluate possible gene-regulatory events as well as HPIs which are likely to drive metabolic changes during pathogen’s adaptation to the intra-host hypoxic environment. Results The newly identified HPIs suggest the pathogen’s ability to subvert host mediated reactive oxygen intermediates/ reactive nitrogen intermediates (ROI/ RNI) stress as well as their potential role in modulating host cell cycle and cytoskeleton structure. The results also indicate a significantly pronounced effect of HPIs on hypoxic metabolism of M. tuberculosis. Findings from the current study underscore the necessity of investigating the infection process from a systems-level perspective incorporating different facets of intra-cellular survival of the pathogen. Conclusions The comprehensive host-pathogen interaction network, a Boolean model of M. tuberculosis H37Rv (Mtb) hypoxic gene-regulation, as well as a genome scale metabolic model of Mtb, built for this study are expected to be useful resources for future studies on tuberculosis infection. Electronic supplementary material The online version of this article (10.1186/s12864-018-4947-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tungadri Bose
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Limited, Pune, India.,Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Chandrani Das
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Limited, Pune, India.,Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anirban Dutta
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Limited, Pune, India.
| | - Vishnuvardhan Mahamkali
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Limited, Pune, India.,Present Address: Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Sudipta Sadhu
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Limited, Pune, India
| | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Limited, Pune, India.
| |
Collapse
|
17
|
Basu P, Sandhu N, Bhatt A, Singh A, Balhana R, Gobe I, Crowhurst NA, Mendum TA, Gao L, Ward JL, Beale MH, McFadden J, Beste DJV. The anaplerotic node is essential for the intracellular survival of Mycobacterium tuberculosis. J Biol Chem 2018; 293:5695-5704. [PMID: 29475946 PMCID: PMC5900758 DOI: 10.1074/jbc.ra118.001839] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/20/2018] [Indexed: 12/14/2022] Open
Abstract
Enzymes at the phosphoenolpyruvate (PEP)–pyruvate–oxaloacetate or anaplerotic (ANA) node control the metabolic flux to glycolysis, gluconeogenesis, and anaplerosis. Here we used genetic, biochemical, and 13C isotopomer analysis to characterize the role of the enzymes at the ANA node in intracellular survival of the world's most successful bacterial pathogen, Mycobacterium tuberculosis (Mtb). We show that each of the four ANA enzymes, pyruvate carboxylase (PCA), PEP carboxykinase (PCK), malic enzyme (MEZ), and pyruvate phosphate dikinase (PPDK), performs a unique and essential metabolic function during the intracellular survival of Mtb. We show that in addition to PCK, intracellular Mtb requires PPDK as an alternative gateway into gluconeogenesis. Propionate and cholesterol detoxification was also identified as an essential function of PPDK revealing an unexpected role for the ANA node in the metabolism of these physiologically important intracellular substrates and highlighting this enzyme as a tuberculosis (TB)-specific drug target. We show that anaplerotic fixation of CO2 through the ANA node is essential for intracellular survival of Mtb and that Mtb possesses three enzymes (PCA, PCK, and MEZ) capable of fulfilling this function. In addition to providing a back-up role in anaplerosis we show that MEZ also has a role in lipid biosynthesis. MEZ knockout strains have an altered cell wall and were deficient in the initial entry into macrophages. This work reveals that the ANA node is a focal point for controlling the intracellular replication of Mtb, which goes beyond canonical gluconeogenesis and represents a promising target for designing novel anti-TB drugs.
Collapse
Affiliation(s)
- Piyali Basu
- From the Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH
| | - Noor Sandhu
- From the Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH
| | - Apoorva Bhatt
- the School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, and
| | - Albel Singh
- the School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, and
| | - Ricardo Balhana
- From the Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH
| | - Irene Gobe
- From the Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH
| | - Nicola A Crowhurst
- From the Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH
| | - Tom A Mendum
- From the Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH
| | - Liang Gao
- the Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Jane L Ward
- the Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Michael H Beale
- the Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Johnjoe McFadden
- From the Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH
| | - Dany J V Beste
- From the Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH,
| |
Collapse
|
18
|
Ang MLT, Zainul Rahim SZ, de Sessions PF, Lin W, Koh V, Pethe K, Hibberd ML, Alonso S. EthA/R-Independent Killing of Mycobacterium tuberculosis by Ethionamide. Front Microbiol 2017; 8:710. [PMID: 28487681 PMCID: PMC5403819 DOI: 10.3389/fmicb.2017.00710] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/06/2017] [Indexed: 11/13/2022] Open
Abstract
Ethionamide (ETH) is part of the drug arsenal available to treat multi-drug resistant tuberculosis. The current paradigm of this pro-drug activation involves the mycobacterial enzyme EthA and the transcriptional repressor, EthR. However, several lines of evidence suggest the involvement of additional players. The ethA/R locus was deleted in Mycobacterium bovis BCG and three Mycobacterium tuberculosis (MTB) strains. While complete resistance to ETH was observed with BCG ethA/R KO, drug susceptibility and dose-dependent killing were retained in the ethA/R KO MTB mutants, suggesting the existence of an alternative pathway of ETH bio-activation in MTB. We further demonstrated that this alternative pathway is EthR-independent, whereby re-introduction of ethR in ethA/R KO MTB did not lead to increased resistance to ETH. Consistently, ethA KO MTB (with intact ethR expression) displayed similar ETH susceptibility profile as their ethA/R KO counterparts. To identify the alternative ETH bio-activator, spontaneous ETH-resistant mutants were obtained from ethA/R KO MTB and whole genome sequencing identified single nucleotide polymorphisms in mshA, involved in mycothiol biosynthesis and previously linked to ETH resistance. Deletion of mshA in ethA/R KO MTB led to complete ETH resistance, supporting that the role of MshA in ETH killing is EthA/R-independent. Furthermore mshA single KO MTB displayed levels of ETH resistance similar or greater than those obtained with ethA/R KO strains, supporting that mshA is as critical as ethA/R for ETH killing efficacy.
Collapse
Affiliation(s)
- Michelle L T Ang
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineSingapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of SingaporeSingapore, Singapore
| | - Siti Z Zainul Rahim
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineSingapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of SingaporeSingapore, Singapore
| | | | - Wenwei Lin
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineSingapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of SingaporeSingapore, Singapore
| | - Vanessa Koh
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineSingapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of SingaporeSingapore, Singapore
| | - Kevin Pethe
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological UniversitySingapore, Singapore
| | - Martin L Hibberd
- Genome Institute of SingaporeSingapore, Singapore.,Department of Pathogen Molecular Biology, London School of Hygiene and Tropical MedicineLondon, UK
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineSingapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of SingaporeSingapore, Singapore
| |
Collapse
|
19
|
Machová I, Hubálek M, Lepšík M, Bednárová L, Pazderková M, Kopecký V, Snášel J, Dostál J, Pichová I. The Role of Cysteine Residues in Catalysis of Phosphoenolpyruvate Carboxykinase from Mycobacterium tuberculosis. PLoS One 2017; 12:e0170373. [PMID: 28135343 PMCID: PMC5279734 DOI: 10.1371/journal.pone.0170373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/04/2017] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium tuberculosis (MTb), the causative agent of tuberculosis, can persist in macrophages for decades, maintaining its basic metabolic activities. Phosphoenolpyruvate carboxykinase (Pck; EC 4.1.1.32) is a key player in central carbon metabolism regulation. In replicating MTb, Pck is associated with gluconeogenesis, but in non-replicating MTb, it also catalyzes the reverse anaplerotic reaction. Here, we explored the role of selected cysteine residues in function of MTb Pck under different redox conditions. Using mass spectrometry analysis we confirmed formation of S–S bridge between cysteines C391 and C397 localized in the C-terminal subdomain. Molecular dynamics simulations of C391-C397 bridged model indicated local conformation changes needed for formation of the disulfide. Further, we used circular dichroism and Raman spectroscopy to analyze the influence of C391 and C397 mutations on Pck secondary and tertiary structures, and on enzyme activity and specificity. We demonstrate the regulatory role of C391 and C397 that form the S–S bridge and in the reduced form stabilize Pck tertiary structure and conformation for gluconeogenic and anaplerotic reactions.
Collapse
Affiliation(s)
- Iva Machová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Markéta Pazderková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
| | - Vladimír Kopecký
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
| | - Jan Snášel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Dostál
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
20
|
Hartman TE, Wang Z, Jansen RS, Gardete S, Rhee KY. Metabolic Perspectives on Persistence. Microbiol Spectr 2017; 5:10.1128/microbiolspec.TBTB2-0026-2016. [PMID: 28155811 PMCID: PMC5302851 DOI: 10.1128/microbiolspec.tbtb2-0026-2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence has left little doubt about the importance of persistence or metabolism in the biology and chemotherapy of tuberculosis. However, knowledge of the intersection between these two factors has only recently begun to emerge. Here, we provide a focused review of metabolic characteristics associated with Mycobacterium tuberculosis persistence. We focus on metabolism because it is the biochemical foundation of all physiologic processes and a distinguishing hallmark of M. tuberculosis physiology and pathogenicity. In addition, it serves as the chemical interface between host and pathogen. Existing knowledge, however, derives largely from physiologic contexts in which replication is the primary biochemical objective. The goal of this review is to reframe current knowledge of M. tuberculosis metabolism in the context of persistence, where quiescence is often a key distinguishing characteristic. Such a perspective may help ongoing efforts to develop more efficient cures and inform on novel strategies to break the cycle of transmission sustaining the pandemic.
Collapse
Affiliation(s)
- Travis E. Hartman
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Zhe Wang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Robert S. Jansen
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Susana Gardete
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Kyu Y. Rhee
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
- Department of Microbiology & Immunology, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
21
|
Tyagi P, Dharmaraja AT, Bhaskar A, Chakrapani H, Singh A. Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide. Free Radic Biol Med 2015; 84:344-354. [PMID: 25819161 PMCID: PMC4459714 DOI: 10.1016/j.freeradbiomed.2015.03.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis (Mtb) has evolved protective and detoxification mechanisms to maintain cytoplasmic redox balance in response to exogenous oxidative stress encountered inside host phagocytes. In contrast, little is known about the dynamic response of this pathogen to endogenous oxidative stress generated within Mtb. Using a noninvasive and specific biosensor of cytoplasmic redox state of Mtb, we for first time discovered a surprisingly high sensitivity of this pathogen to perturbation in redox homeostasis induced by elevated endogenous reactive oxygen species (ROS). We synthesized a series of hydroquinone-based small molecule ROS generators and found that ATD-3169 permeated mycobacteria to reliably enhance endogenous ROS including superoxide radicals. When Mtb strains including multidrug-resistant (MDR) and extensively drug-resistant (XDR) patient isolates were exposed to this compound, a dose-dependent, long-lasting, and irreversible oxidative shift in intramycobacterial redox potential was detected. Dynamic redox potential measurements revealed that Mtb had diminished capacity to restore cytoplasmic redox balance in comparison with Mycobacterium smegmatis (Msm), a fast growing nonpathogenic mycobacterial species. Accordingly, Mtb strains were extremely susceptible to inhibition by ATD-3169 but not Msm, suggesting a functional linkage between dynamic redox changes and survival. Microarray analysis showed major realignment of pathways involved in redox homeostasis, central metabolism, DNA repair, and cell wall lipid biosynthesis in response to ATD-3169, all consistent with enhanced endogenous ROS contributing to lethality induced by this compound. This work provides empirical evidence that the cytoplasmic redox poise of Mtb is uniquely sensitive to manipulation in steady-state endogenous ROS levels, thus revealing the importance of targeting intramycobacterial redox metabolism for controlling TB infection.
Collapse
Affiliation(s)
- Priyanka Tyagi
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research (CIDR), Indian Institute of Science, Bangalore-12, India; International Centre for Genetic Engineering and Biotechnology, New Delhi 67, India
| | - Allimuthu T Dharmaraja
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 08, India
| | - Ashima Bhaskar
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research (CIDR), Indian Institute of Science, Bangalore-12, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 08, India.
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research (CIDR), Indian Institute of Science, Bangalore-12, India.
| |
Collapse
|
22
|
Machová I, Snášel J, Dostál J, Brynda J, Fanfrlík J, Singh M, Tarábek J, Vaněk O, Bednárová L, Pichová I. Structural and functional studies of phosphoenolpyruvate carboxykinase from Mycobacterium tuberculosis. PLoS One 2015; 10:e0120682. [PMID: 25798914 PMCID: PMC4370629 DOI: 10.1371/journal.pone.0120682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/05/2015] [Indexed: 12/04/2022] Open
Abstract
Tuberculosis, the second leading infectious disease killer after HIV, remains a top public health priority. The causative agent of tuberculosis, Mycobacterium tuberculosis (Mtb), which can cause both acute and clinically latent infections, reprograms metabolism in response to the host niche. Phosphoenolpyruvate carboxykinase (Pck) is the enzyme at the center of the phosphoenolpyruvate-pyruvate-oxaloacetate node, which is involved in regulating the carbon flow distribution to catabolism, anabolism, or respiration in different states of Mtb infection. Under standard growth conditions, Mtb Pck is associated with gluconeogenesis and catalyzes the metal-dependent formation of phosphoenolpyruvate. In non-replicating Mtb, Pck can catalyze anaplerotic biosynthesis of oxaloacetate. Here, we present insights into the regulation of Mtb Pck activity by divalent cations. Through analysis of the X-ray structure of Pck-GDP and Pck-GDP-Mn2+ complexes, mutational analysis of the GDP binding site, and quantum mechanical (QM)-based analysis, we explored the structural determinants of efficient Mtb Pck catalysis. We demonstrate that Mtb Pck requires presence of Mn2+ and Mg2+ cations for efficient catalysis of gluconeogenic and anaplerotic reactions. The anaplerotic reaction, which preferably functions in reducing conditions that are characteristic for slowed or stopped Mtb replication, is also effectively activated by Fe2+ in the presence of Mn2+ or Mg2+ cations. In contrast, simultaneous presence of Fe2+ and Mn2+ or Mg2+ inhibits the gluconeogenic reaction. These results suggest that inorganic ions can contribute to regulation of central carbon metabolism by influencing the activity of Pck. Furthermore, the X-ray structure determination, biochemical characterization, and QM analysis of Pck mutants confirmed the important role of the Phe triad for proper binding of the GDP-Mn2+ complex in the nucleotide binding site and efficient catalysis of the anaplerotic reaction.
Collapse
Affiliation(s)
- Iva Machová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Snášel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Dostál
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Mahavir Singh
- LIONEX diagnostics & Therapeutics, Braunschweig, Germany
| | - Ján Tarábek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Sciences, Charles University in Prague, Prague, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
23
|
Cui T, He ZG. Improved understanding of pathogenesis from protein interactions inMycobacteriumtuberculosis. Expert Rev Proteomics 2014; 11:745-55. [DOI: 10.1586/14789450.2014.971762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|