1
|
Shao S, Cui D, Zheng C, Xiong X, Zhao Y. WSB2 inhibits apoptosis and autophagy by targeting NOXA for degradation. MedComm (Beijing) 2025; 6:e70071. [PMID: 39866840 PMCID: PMC11758357 DOI: 10.1002/mco2.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/28/2025] Open
Affiliation(s)
- Shengpeng Shao
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
| | - Danrui Cui
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
| | - Chutian Zheng
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
| | - Xiufang Xiong
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
| | - Yongchao Zhao
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
2
|
Chen W, Sun M, Sun Y, Yang Q, Gao H, Li L, Fu R, Dong N. Proteasome inhibition induces apoptosis through simultaneous inactivation of MCL-1/BCL-XL by NOXA independent of CHOP and JNK pathways. Toxicology 2024; 508:153906. [PMID: 39117261 DOI: 10.1016/j.tox.2024.153906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Proteasome inhibitors have been employed in the treatment of relapsed multiple myeloma and mantle cell lymphoma. The observed toxicity caused by proteasome inhibitors is a universal phenotype in numerous cancer cells with different sensitivity. In this study, we investigate the conserved mechanisms underlying the toxicity of the proteasome inhibitor bortezomib using gene editing approaches. Our findings utilizing different caspase knocking out cells reveal that bortezomib induces classic intrinsic apoptosis by activating caspase-9 and caspase-3/7, leading to pore-forming protein GSDME cleavage and subsequent lytic cell death or called secondary necrosis, a phenotype also observed in many apoptosis triggers like TNFα plus CHX, DTT and tunicamycin treatment in HeLa cells. Furthermore, through knocking out of nearly all BH3-only proteins including BIM, BAD, BID, BMF and PUMA, we demonstrate that NOXA is the sole BH3-only protein responsible for bortezomib-induced apoptosis. Of note, NOXA is well known for selectively binding to MCL-1 and A1, but our studies utilizing different BH3 mimetics as well as immunoprecipitation assays indicate that, except for the constitutive interaction of NOXA with MCL-1, the accumulation of NOXA after bortezomib treatment allows it to interact with BCL-XL, then simultaneous relieving suppression on apoptosis by both anti-apoptotic proteins BCL-XL and MCL-1. In addition, though bortezomib-induced significant ER stress and JNK activation were observed in the study, further genetic depletion experiments prove that bortezomib-induced apoptosis occurs independently of ER stress-related apoptosis factor CHOP and JNK. In summary, these results provide a solid conclusion about the critical role of NOXA in inactivation of BCL-XL except MCL-1 in bortezomib-induced apoptosis.
Collapse
Affiliation(s)
- Wenjuan Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mengning Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yi Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qinglan Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hui Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Li Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rongrong Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Na Dong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Nguyen D, Osterlund E, Kale J, Andrews DW. The C-terminal sequences of Bcl-2 family proteins mediate interactions that regulate cell death. Biochem J 2024; 481:903-922. [PMID: 38985308 PMCID: PMC11346437 DOI: 10.1042/bcj20210352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Programmed cell death via the both intrinsic and extrinsic pathways is regulated by interactions of the Bcl-2 family protein members that determine whether the cell commits to apoptosis via mitochondrial outer membrane permeabilization (MOMP). Recently the conserved C-terminal sequences (CTSs) that mediate localization of Bcl-2 family proteins to intracellular membranes, have been shown to have additional protein-protein binding functions that contribute to the functions of these proteins in regulating MOMP. Here we review the pivotal role of CTSs in Bcl-2 family interactions including: (1) homotypic interactions between the pro-apoptotic executioner proteins that cause MOMP, (2) heterotypic interactions between pro-apoptotic and anti-apoptotic proteins that prevent MOMP, and (3) heterotypic interactions between the pro-apoptotic executioner proteins and the pro-apoptotic direct activator proteins that promote MOMP.
Collapse
Affiliation(s)
- Dang Nguyen
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
- Biological Sciences Platform, Odette Cancer Program, Sunnybrook Research Institute, Toronto, Canada
| | - Elizabeth Osterlund
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Science, McMaster University, Hamilton, Canada
| | - Justin Kale
- Biological Sciences Platform, Odette Cancer Program, Sunnybrook Research Institute, Toronto, Canada
| | - David W. Andrews
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
- Biological Sciences Platform, Odette Cancer Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Deng H, Han Y, Liu L, Zhang H, Liu D, Wen J, Huang M, Zhao L. Targeting Myeloid Leukemia-1 in Cancer Therapy: Advances and Directions. J Med Chem 2024; 67:5963-5998. [PMID: 38597264 DOI: 10.1021/acs.jmedchem.3c01998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
As a tripartite cell death switch, B-cell lymphoma protein 2 (Bcl-2) family members precisely regulate the endogenous apoptosis pathway in response to various cell signal stresses through protein-protein interactions. Myeloid leukemia-1 (Mcl-1), a key anti-apoptotic Bcl-2 family member, is positioned downstream in the endogenous apoptotic pathway and plays a central role in regulating mitochondrial function. Mcl-1 is highly expressed in a variety of hematological malignancies and solid tumors, contributing to tumorigenesis, poor prognosis, and chemoresistance, making it an attractive target for cancer treatment. This Perspective aims to discuss the mechanism by which Mcl-1 regulates apoptosis and non-apoptotic functions in cancer cells and to outline the discovery and optimization process of potent Mcl-1 modulators. In addition, we summarize the structural characteristics of potent inhibitors that bind to Mcl-1 through multiple co-crystal structures and analyze the cardiotoxicity caused by current Mcl-1 inhibitors, providing prospects for rational targeting of Mcl-1.
Collapse
Affiliation(s)
- Hongguang Deng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Han
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liang Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hong Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiachen Wen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
5
|
Heckmeier PJ, Ruf J, Janković BG, Hamm P. MCL-1 promiscuity and the structural resilience of its binding partners. J Chem Phys 2023; 158:095101. [PMID: 36889945 DOI: 10.1063/5.0137239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The allosteric protein MCL-1 and its natural inhibitors, the BH3-only proteins PUMA, BIM, and NOXA regulate apoptosis by interacting promiscuously within an entangled binding network. Little is known about the transient processes and dynamic conformational fluctuations that are the basis for the formation and stability of the MCL-1/BH3-only complex. In this study, we designed photoswitchable versions of MCL-1/PUMA and MCL-1/NOXA, and investigated the protein response after an ultrafast photo-perturbation with transient infrared spectroscopy. We observed partial α-helical unfolding in all cases, albeit on strongly varying timescales (1.6 ns for PUMA, 9.7 ns for the previously studied BIM, and 85 ns for NOXA). These differences are interpreted as a BH3-only-specific "structural resilience" to defy the perturbation while remaining in MCL-1's binding pocket. Thus, the presented insights could help to better understand the differences between PUMA, BIM, and NOXA, the promiscuity of MCL-1, in general, and the role of the proteins in the apoptotic network.
Collapse
Affiliation(s)
| | - Jeannette Ruf
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Synergistic activity of ABT-263 and ONC201/TIC10 against solid tumor cell lines is associated with suppression of anti-apoptotic Mcl-1, BAG3, pAkt, and upregulation of pro-apoptotic Noxa and Bax cleavage during apoptosis. Am J Cancer Res 2023; 13:307-325. [PMID: 36777502 PMCID: PMC9906082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/24/2022] [Indexed: 02/14/2023] Open
Abstract
A major underlying cause of the resistance of solid tumor cells to cancer therapy is the evasion of cell death following anti-cancer drug treatment. We explored the combination of TRAIL-inducing compound ONC201/TIC10 and Bcl-xL/Bcl-2 inhibitor ABT-263 to target the extrinsic and intrinsic apoptotic pathways, respectively, in solid tumor cell lines (N = 13) derived from different tissues (colon, prostate, lung, breast, ovary, bladder). We found an IC50 range of 0.83-20.10 μM for ONC201 and 0.06-14.75 μM for ABT-263 among the 13 cancer cell lines. We show that combination of ONC201 and ABT-263 produces a strong synergistic effect leading to tumor cell death, and that the combination is not toxic to human fibroblast cells. In OVCAR-3 ovarian cancer cells, 2.5 μM ONC201 and 1.25 μM ABT-263 yielded 37% and 27% inhibition of viability, respectively, while the combination of the two agents yielded 92% inhibition of viability, resulting in a high synergy score of 52; conversely, the same combination in the HFF-1 human fibroblast cells yielded 2.45% inhibition of viability and a synergy score of 6.92 (synergy scores were calculated using SynergyFinder; scores greater than 10 are considered synergistic). We also found that the combination of these two agents resulted in synergistic caspase activation and PARP cleavage consistent with induction of apoptosis. Combination therapy-induced cell death correlated with decreased levels of Mcl-1, BAG3, pAkt, and upregulation of Noxa along with Bax cleavage during apoptosis at 48 hours, and ATF4, TRAIL, and DR5 induction at 24 hours. There was some heterogeneity in the cell lines with regard to these responses. Our data provide evidence for synergy from the combination of ONC201 and ABT-263 against human solid tumor cell lines associated with alterations in cell death and pro-survival mediators. The combination of ONC201 and ABT-263 merits further exploration in vivo and in clinical trials against a variety of solid malignancies.
Collapse
|
7
|
Fraser CS, Spetz JKE, Qin X, Presser A, Choiniere J, Li C, Yu S, Blevins F, Hata AN, Miller JW, Bradshaw GA, Kalocsay M, Sanchorawala V, Sarosiek S, Sarosiek KA. Exploiting endogenous and therapy-induced apoptotic vulnerabilities in immunoglobulin light chain amyloidosis with BH3 mimetics. Nat Commun 2022; 13:5789. [PMID: 36184661 PMCID: PMC9527241 DOI: 10.1038/s41467-022-33461-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/16/2022] [Indexed: 01/11/2023] Open
Abstract
Immunoglobulin light chain (AL) amyloidosis is an incurable hematologic disorder typically characterized by the production of amyloidogenic light chains by clonal plasma cells. These light chains misfold and aggregate in healthy tissues as amyloid fibrils, leading to life-threatening multi-organ dysfunction. Here we show that the clonal plasma cells in AL amyloidosis are highly primed to undergo apoptosis and dependent on pro-survival proteins MCL-1 and BCL-2. Notably, this MCL-1 dependency is indirectly targeted by the proteasome inhibitor bortezomib, currently the standard of care for this disease and the related plasma cell disorder multiple myeloma, due to upregulation of pro-apoptotic Noxa and its inhibitory binding to MCL-1. BCL-2 inhibitors sensitize clonal plasma cells to multiple front-line therapies including bortezomib, dexamethasone and lenalidomide. Strikingly, in mice bearing AL amyloidosis cell line xenografts, single agent treatment with the BCL-2 inhibitor ABT-199 (venetoclax) produces deeper remissions than bortezomib and triples median survival. Mass spectrometry-based proteomic analysis reveals rewiring of signaling pathways regulating apoptosis, proliferation and mitochondrial metabolism between isogenic AL amyloidosis and multiple myeloma cells that divergently alter their sensitivity to therapies. These findings provide a roadmap for the use of BH3 mimetics to exploit endogenous and induced apoptotic vulnerabilities in AL amyloidosis.
Collapse
Affiliation(s)
- Cameron S Fraser
- John B. Little Center for Radiation Sciences, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
- Program in Molecular and Integrative Physiological Sciences, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, 02115, USA
| | - Johan K E Spetz
- John B. Little Center for Radiation Sciences, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
- Program in Molecular and Integrative Physiological Sciences, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, 02115, USA
| | - Xingping Qin
- John B. Little Center for Radiation Sciences, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
- Program in Molecular and Integrative Physiological Sciences, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, 02115, USA
| | - Adam Presser
- John B. Little Center for Radiation Sciences, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
- Program in Molecular and Integrative Physiological Sciences, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, 02115, USA
| | - Jonathan Choiniere
- John B. Little Center for Radiation Sciences, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
- Program in Molecular and Integrative Physiological Sciences, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, 02115, USA
| | - Chendi Li
- Massachusetts General Hospital Cancer Center, Charlestown, MA, 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Stacey Yu
- John B. Little Center for Radiation Sciences, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
- Program in Molecular and Integrative Physiological Sciences, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, 02115, USA
| | - Frances Blevins
- Section of Hematology & Medical Oncology, Boston Medical Center, Boston, MA, 02118, USA
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Aaron N Hata
- Massachusetts General Hospital Cancer Center, Charlestown, MA, 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeffrey W Miller
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Gary A Bradshaw
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, 02115, USA
| | - Marian Kalocsay
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, 02115, USA
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vaishali Sanchorawala
- Section of Hematology & Medical Oncology, Boston Medical Center, Boston, MA, 02118, USA
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Shayna Sarosiek
- Section of Hematology & Medical Oncology, Boston Medical Center, Boston, MA, 02118, USA.
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, 02118, USA.
- Dana-Farber Cancer Institute, Harvard Cancer Center, Boston, 02215, USA.
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA.
- Program in Molecular and Integrative Physiological Sciences, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA.
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, 02115, USA.
| |
Collapse
|
8
|
Pal P, Zhang P, Poddar SK, Zheng G. Patent landscape of inhibitors and PROTACs of the anti-apoptotic BCL-2 family proteins. Expert Opin Ther Pat 2022; 32:1003-1026. [PMID: 35993382 PMCID: PMC9942934 DOI: 10.1080/13543776.2022.2116311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The anti-apoptotic BCL-2 family proteins, such as BCL-2, BCL-XL, and MCL-1, are excellent cancer therapeutic targets. The FDA approval of BCL-2 selective inhibitor venetoclax in 2016 validated the strategy of targeting these proteins with BH3 mimetic small molecule inhibitors. AREAS COVERED This review provides an overview of the patent literature between 2016 and 2021 covering inhibitors and PROTACs of the anti-apoptotic BCL-2 proteins. EXPERT OPINION Since the FDA approval of venetoclax, tremendous efforts have been made to develop its analogues with improved drug properties. These activities will likely result in new drugs in coming years. Significant progress on MCL-1 inhibitors has also been made, with multiple compounds entering clinical trials. However, MCL-1 inhibition could cause on-target toxicity to normal tissues especially the heart. Similar issue exists with BCL-XL inhibitors, which cause on-target platelet toxicity. To overcome this issue, several strategies have been applied, including prodrug, dendrimer-based drug delivery, antibody-drug conjugate (ADC), and proteolysis targeting chimera (PROTAC); and amazingly, each of these approaches has resulted in a drug candidate entering clinical trials. We envision technologies like ADC and PROTAC could also be utilized to increase the therapeutic index of MCL-1 inhibitors.
Collapse
Affiliation(s)
- Pratik Pal
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Peiyi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Saikat K Poddar
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Asuzu DT, Alvarez R, Fletcher PA, Mandal D, Johnson K, Wu W, Elkahloun A, Clavijo P, Allen C, Maric D, Ray-Chaudhury A, Rajan S, Abdullaev Z, Nwokoye D, Aldape K, Nieman LK, Stratakis C, Stojilkovic SS, Chittiboina P. Pituitary adenomas evade apoptosis via noxa deregulation in Cushing's disease. Cell Rep 2022; 40:111223. [PMID: 36001971 PMCID: PMC9527711 DOI: 10.1016/j.celrep.2022.111223] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/03/2022] [Accepted: 07/26/2022] [Indexed: 12/13/2022] Open
Abstract
Sporadic pituitary adenomas occur in over 10% of the population. Hormone-secreting adenomas, including those causing Cushing’s disease (CD), cause severe morbidity and early mortality. Mechanistic studies of CD are hindered by a lack of in vitro models and control normal human pituitary glands. Here, we surgically annotate adenomas and adjacent normal glands in 25 of 34 patients. Using single-cell RNA sequencing (RNA-seq) analysis of 27594 cells, we identify CD adenoma transcriptomic signatures compared with adjacent normal cells, with validation by bulk RNA-seq, DNA methylation, qRT-PCR, and immunohistochemistry. CD adenoma cells include a subpopulation of proliferating, terminally differentiated corticotrophs. In CD adenomas, we find recurrent promoter hypomethylation and transcriptional upregulation of PMAIP1 (encoding pro-apoptotic BH3-only bcl-2 protein noxa) but paradoxical noxa downregulation. Using primary CD adenoma cell cultures and a corticotroph-enriched mouse cell line, we find that selective proteasomal inhibition with bortezomib stabilizes noxa and induces apoptosis, indicating its utility as an anti-tumor agent. Asuzu et al. perform single-cell transcriptomic profiling in Cushing’s disease (CD) adenomas and find overexpression and DNA hypomethylation of PMAIP1, which encodes the pro-apoptotic protein noxa. Noxa is degraded by the proteasome. Proteasomal inhibition rescues noxa and induces apoptosis in CD.
Collapse
Affiliation(s)
- David T Asuzu
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Reinier Alvarez
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA; Florida International University Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Debjani Mandal
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA
| | - Kory Johnson
- DIR Bioinformatics Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Weiwei Wu
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Abdel Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Paul Clavijo
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA
| | - Clint Allen
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Abhik Ray-Chaudhury
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Sharika Rajan
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Zied Abdullaev
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Diana Nwokoye
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Lynnette K Nieman
- Section on Translational Endocrinology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Constantine Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
10
|
Artesunate improves venetoclax plus cytarabine AML cell targeting by regulating the Noxa/Bim/Mcl-1/p-Chk1 axis. Cell Death Dis 2022; 13:379. [PMID: 35443722 PMCID: PMC9021233 DOI: 10.1038/s41419-022-04810-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Venetoclax plus cytarabine therapy is approved for elderly acute myeloid leukemia (AML) patients and needs further improvement. We studied the mechanisms of venetoclax plus cytarabine treatment and searched for a third agent to enhance their effects. Cytarabine induces S phase arrest-mediated DNA damage with activation of DNA replication checkpoint kinase 1 (Chk1) through phosphorylation, while venetoclax induces B cell lymphoma 2 (Bcl-2)-interacting mediator of cell death (Bim)-mediated apoptotic DNA damage. Myeloid cell leukemia-1 (Mcl-1) plays negative roles in both events by sequestering Bim and accelerating Chk1 phosphorylation. Venetoclax releases Bim from Bcl-2 with increased Bim binding to Mcl-1. Artesunate, an antimalaria drug, induces Noxa to replace Bim from Mcl-1 and induces synergistic apoptosis with venetoclax accompanied with Mcl-1 reduction. Silencing Mcl-1 or adding venetoclax/artesunate diminishes the cytarabine resistance pathway p-Chk1. The triple combination exhibits S phase arrest with enhanced DNA damage, improves AML colony formation inhibition, and prolongs survival of two mice xenograft models compared to the venetoclax/cytarabine dual combination. Artesunate serves as a bridge for venetoclax and cytarabine combination by Noxa and Bim-mediated apoptosis and Mcl-1 reduction. We provide a new triple combination for AML treatment by targeting the Noxa/Mcl-1/Bim axis to reverse Mcl-1/p-Chk1 resistance of cytarabine therapy.
Collapse
|
11
|
Potent, p53-independent induction of NOXA sensitizes MLL-rearranged B-cell acute lymphoblastic leukemia cells to venetoclax. Oncogene 2022; 41:1600-1609. [PMID: 35091682 PMCID: PMC8913358 DOI: 10.1038/s41388-022-02196-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 01/02/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
The prognosis for B-cell precursor acute lymphoblastic leukemia patients with Mixed-Lineage Leukemia (MLL) gene rearrangements (MLLr BCP-ALL) is still extremely poor. Inhibition of anti-apoptotic protein BCL-2 with venetoclax emerged as a promising strategy for this subtype of BCP-ALL, however, lack of sufficient responses in preclinical models and the possibility of developing resistance exclude using venetoclax as monotherapy. Herein, we aimed to uncover potential mechanisms responsible for limited venetoclax activity in MLLr BCP-ALL and to identify drugs that could be used in combination therapy. Using RNA-seq, we observed that long-term exposure to venetoclax in vivo in a patient-derived xenograft model leads to downregulation of several tumor protein 53 (TP53)-related genes. Interestingly, auranofin, a thioredoxin reductase inhibitor, sensitized MLLr BCP-ALL to venetoclax in various in vitro and in vivo models, independently of the p53 pathway functionality. Synergistic activity of these drugs resulted from auranofin-mediated upregulation of NOXA pro-apoptotic protein and potent induction of apoptotic cell death. More specifically, we observed that auranofin orchestrates upregulation of the NOXA-encoding gene Phorbol-12-Myristate-13-Acetate-Induced Protein 1 (PMAIP1) associated with chromatin remodeling and increased transcriptional accessibility. Altogether, these results present an efficacious drug combination that could be considered for the treatment of MLLr BCP-ALL patients, including those with TP53 mutations.
Collapse
|
12
|
Selective BH3 mimetics synergize with BET inhibition to induce mitochondrial apoptosis in rhabdomyosarcoma cells. Neoplasia 2021; 24:109-119. [PMID: 34959030 PMCID: PMC8718565 DOI: 10.1016/j.neo.2021.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Co-inhibition of BET proteins and anti-apoptotic BCL-2 proteins induces apoptosis in RMS. JQ1 and BH3-mimetics synergistically induce cell death in RMS. Cell death is caspase-dependent and displays hallmarks of intrinsic apoptosis. JQ1/A-1331852-mediated apoptosis is dependent on BIM and NOXA. JQ1/S638450-mediated apoptosis is dependent on BIM but not NOXA.
BH3 mimetics are promising novel anticancer therapeutics. By selectively inhibiting BCL-2, BCL-xL, or MCL-1 (i.e. ABT-199, A-1331852, S63845) they shift the balance of pro- and anti-apoptotic proteins in favor of apoptosis. As Bromodomain and Extra Terminal (BET) protein inhibitors promote pro-apoptotic rebalancing, we evaluated the potential of the BET inhibitor JQ1 in combination with ABT-199, A-1331852 or S63845 in rhabdomyosarcoma (RMS) cells. The strongest synergistic interaction was identified for JQ1/A-1331852 and JQ1/S63845 co-treatment, which reduced cell viability and long-term clonogenic survival. Mechanistic studies revealed that JQ1 upregulated BIM and NOXA accompanied by downregulation of BCL-xL, promoting pro-apoptotic rebalancing of BCL-2 proteins. JQ1/A-1331852 and JQ1/S63845 co-treatment enhanced this pro-apoptotic rebalancing and triggered BAK- and BAX-dependent apoptosis since a) genetic silencing of BIM, BAK or BAX, b) inhibition of caspase activity with zVAD.fmk and c) overexpression of BCL-2 all rescued JQ1/A-1331852- and JQ1/S63845-induced cell death. Interestingly, NOXA played a different role in both treatments, as genetic silencing of NOXA significantly rescued from JQ1/A-1331852-mediated apoptosis but not from JQ1/S63845-mediated apoptosis. In summary, JQ1/A-1331852 and JQ1/S63845 co-treatment represent new promising therapeutic strategies to synergistically trigger mitochondrial apoptosis in RMS.
Collapse
|
13
|
Domostegui A, Peddigari S, Mercer CA, Iannizzotto F, Rodriguez ML, Garcia-Cajide M, Amador V, Diepstraten ST, Kelly GL, Salazar R, Kozma SC, Kusnadi EP, Kang J, Gentilella A, Pearson RB, Thomas G, Pelletier J. Impaired ribosome biogenesis checkpoint activation induces p53-dependent MCL-1 degradation and MYC-driven lymphoma death. Blood 2021; 137:3351-3364. [PMID: 33512431 PMCID: PMC8212515 DOI: 10.1182/blood.2020007452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
MYC-driven B-cell lymphomas are addicted to increased levels of ribosome biogenesis (RiBi), offering the potential for therapeutic intervention. However, it is unclear whether inhibition of RiBi suppresses lymphomagenesis by decreasing translational capacity and/or by p53 activation mediated by the impaired RiBi checkpoint (IRBC). Here we generated Eμ-Myc lymphoma cells expressing inducible short hairpin RNAs to either ribosomal protein L7a (RPL7a) or RPL11, the latter an essential component of the IRBC. The loss of either protein reduced RiBi, protein synthesis, and cell proliferation to similar extents. However, only RPL7a depletion induced p53-mediated apoptosis through the selective proteasomal degradation of antiapoptotic MCL-1, indicating the critical role of the IRBC in this mechanism. Strikingly, low concentrations of the US Food and Drug Administration-approved anticancer RNA polymerase I inhibitor Actinomycin D (ActD) dramatically prolonged the survival of mice harboring Trp53+/+;Eμ-Myc but not Trp53-/-;Eμ-Myc lymphomas, which provides a rationale for treating MYC-driven B-cell lymphomas with ActD. Importantly, the molecular effects of ActD on Eμ-Myc cells were recapitulated in human B-cell lymphoma cell lines, highlighting the potential for ActD as a therapeutic avenue for p53 wild-type lymphoma.
Collapse
Affiliation(s)
- Ana Domostegui
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Suresh Peddigari
- Division of Hematology Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Carol A Mercer
- Division of Hematology Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Flavia Iannizzotto
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Marta L Rodriguez
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Marta Garcia-Cajide
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Virginia Amador
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ramón Salazar
- Catalan Institute of Oncology, Molecular Mechanisms and Experimental Therapy in Oncology Program, IDIBELL, Barcelona, Spain
| | - Sara C Kozma
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Eric P Kusnadi
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Jian Kang
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Antonio Gentilella
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Richard B Pearson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; and
| | - George Thomas
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Joffrey Pelletier
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
14
|
Wang H, Guo M, Wei H, Chen Y. Targeting MCL-1 in cancer: current status and perspectives. J Hematol Oncol 2021; 14:67. [PMID: 33883020 PMCID: PMC8061042 DOI: 10.1186/s13045-021-01079-1] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Myeloid leukemia 1 (MCL-1) is an antiapoptotic protein of the BCL-2 family that prevents apoptosis by binding to the pro-apoptotic BCL-2 proteins. Overexpression of MCL-1 is frequently observed in many tumor types and is closely associated with tumorigenesis, poor prognosis and drug resistance. The central role of MCL-1 in regulating the mitochondrial apoptotic pathway makes it an attractive target for cancer therapy. Significant progress has been made with regard to MCL-1 inhibitors, some of which have entered clinical trials. Here, we discuss the mechanism by which MCL-1 regulates cancer cell apoptosis and review the progress related to MCL-1 small molecule inhibitors and their role in cancer therapy.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
15
|
CHIP ubiquitylates NOXA and induces its lysosomal degradation in response to DNA damage. Cell Death Dis 2020; 11:740. [PMID: 32913203 PMCID: PMC7484759 DOI: 10.1038/s41419-020-02923-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
The BH3-only protein NOXA is a regulator of mitochondrial apoptosis by specifically antagonizing the anti-apoptotic protein MCL-1. Here we show that the E3 ubiquitin ligase CHIP controls NOXA stability after DNA damage. Our findings reveal that CHIP and MCL-1 are binding partners of NOXA and differentially define the fate of NOXA. Whereas NOXA is initially targeted to mitochondria upon MCL-1-binding, CHIP mediates ubiquitylation of cytosolic NOXA and promotes lysosomal degradation of NOXA, which is not bound by MCL-1. Our data indicate that MCL-1 defines NOXA abundance and its pro-apoptotic activity. Increased NOXA levels beyond this threshold are effectively removed by lysosomal protein degradation triggered via CHIP-mediated ubiquitylation. Together, these results shed new light on regulatory circuits controlling DNA damage response and identified the E3 ligase CHIP as a new molecular guardian, which restricts the cytosolic accumulation of NOXA upon genotoxic stress.
Collapse
|
16
|
Mallick DJ, Eastman A. AT101 [(-)-Gossypol] Selectively Inhibits MCL1 and Sensitizes Carcinoma to BH3 Mimetics by Inducing and Stabilizing NOXA. Cancers (Basel) 2020; 12:E2298. [PMID: 32824203 PMCID: PMC7464284 DOI: 10.3390/cancers12082298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Anti-apoptotic BCL2 proteins are important targets for cancer therapy as cancers depend on their activity for survival. Direct inhibitors of MCL1 have entered clinical trials, although their efficacy may be limited by toxicity. An alternative approach may be to induce the pro-apoptotic protein NOXA which selectively inhibits MCL1 in cells. Many compounds originally proposed as inhibitors of the BCL2 family were subsequently found to induce the pro-apoptotic protein NOXA through the unfolded protein response. In the present study, we compared various putative BH3 mimetics across a panel of carcinoma cell lines and measured expression of NOXA protein and mRNA, as well as the kinetics of NOXA induction. We found that AT101 [(-)-gossypol] induces high levels of NOXA in carcinoma cell lines yet cells survive. When combined with an appropriate BCL2 or BCL-XL inhibitor, NOXA-dependent sensitization occurs. NOXA protein continues to accumulate for many hours after AT101 is removed, providing a window for administering these combinations. As MCL1 promotes drug resistance and overall survival, we propose that NOXA induction is an alternative therapeutic strategy to target MCL1 and either kill cancer cells that are dependent on MCL1 or sensitize cancer cells to other BCL2 inhibitors.
Collapse
Affiliation(s)
- David J. Mallick
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA;
| | - Alan Eastman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA;
- Department of Molecular and Systems Biology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
17
|
Djajawi TM, Liu L, Gong JN, Huang AS, Luo MJ, Xu Z, Okamoto T, Call MJ, Huang DCS, van Delft MF. MARCH5 requires MTCH2 to coordinate proteasomal turnover of the MCL1:NOXA complex. Cell Death Differ 2020; 27:2484-2499. [PMID: 32094511 PMCID: PMC7370232 DOI: 10.1038/s41418-020-0517-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/29/2022] Open
Abstract
MCL1, a BCL2 relative, is critical for the survival of many cells. Its turnover is often tightly controlled through both ubiquitin-dependent and -independent mechanisms of proteasomal degradation. Several cell stress signals, including DNA damage and cell cycle arrest, are known to elicit distinct E3 ligases to ubiquitinate and degrade MCL1. Another trigger that drives MCL1 degradation is engagement by NOXA, one of its BH3-only protein ligands, but the mechanism responsible has remained unclear. From an unbiased genome-wide CRISPR-Cas9 screen, we discovered that the ubiquitin E3 ligase MARCH5, the ubiquitin E2 conjugating enzyme UBE2K, and the mitochondrial outer membrane protein MTCH2 co-operate to mark MCL1 for degradation by the proteasome—specifically when MCL1 is engaged by NOXA. This mechanism of degradation also required the MCL1 transmembrane domain and distinct MCL1 lysine residues to proceed, suggesting that the components likely act on the MCL1:NOXA complex by associating with it in a specific orientation within the mitochondrial outer membrane. MTCH2 has not previously been reported to regulate protein stability, but is known to influence the mitochondrial localization of certain key apoptosis regulators and to impact metabolism. We have now pinpointed an essential but previously unappreciated role for MTCH2 in turnover of the MCL1:NOXA complex by MARCH5, further strengthening its links to BCL2-regulated apoptosis.
Collapse
Affiliation(s)
- Tirta Mario Djajawi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lei Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Jia-Nan Gong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Allan Shuai Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ming-Jie Luo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,School of Medicine, Tsinghua University, Beijing, China
| | - Zhen Xu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Melissa J Call
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Mark F van Delft
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
18
|
Haschka MD, Karbon G, Soratroi C, O'Neill KL, Luo X, Villunger A. MARCH5-dependent degradation of MCL1/NOXA complexes defines susceptibility to antimitotic drug treatment. Cell Death Differ 2020; 27:2297-2312. [PMID: 32015503 PMCID: PMC7370223 DOI: 10.1038/s41418-020-0503-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/19/2023] Open
Abstract
Cells experiencing delays in mitotic progression are prone to undergo apoptosis unless they can exit mitosis before proapoptotic factors reach a critical threshold. Microtubule targeting agents (MTAs) arrest cells in mitosis and induce apoptotic cell death engaging the BCL2 network. Degradation of the antiapoptotic BCL2 family member MCL-1 is considered to set the time until onset of apoptosis upon MTA treatment. MCL1 degradation involves its interaction with one of its key binding partners, the proapoptotic BH3-only protein NOXA. Here, we report that the mitochondria-associated E3-ligase MARCH5, best known for its role in mitochondrial quality control and regulation of components of the mitochondrial fission machinery, controls the levels of MCL1/NOXA protein complexes in steady state as well as during mitotic arrest. Inhibition of MARCH5 function sensitizes cancer cells to the proapoptotic effects of MTAs by the accumulation of NOXA and primes cancer cells that may undergo slippage to escape death in mitosis to cell death in the next G1 phase. We propose that inhibition of MARCH5 may be a suitable strategy to sensitize cancer cells to antimitotic drug treatment.
Collapse
Affiliation(s)
- Manuel D Haschka
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Gerlinde Karbon
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Claudia Soratroi
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Katelyn L O'Neill
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria. .,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria. .,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
| |
Collapse
|
19
|
Huang K, O'Neill KL, Li J, Zhou W, Han N, Pang X, Wu W, Struble L, Borgstahl G, Liu Z, Zhang L, Luo X. BH3-only proteins target BCL-xL/MCL-1, not BAX/BAK, to initiate apoptosis. Cell Res 2019; 29:942-952. [PMID: 31551537 PMCID: PMC6888900 DOI: 10.1038/s41422-019-0231-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/30/2019] [Indexed: 12/25/2022] Open
Abstract
It has been widely accepted that mitochondria-dependent apoptosis initiates when select BH3-only proteins (BID, BIM, etc.) directly engage and allosterically activate effector proteins BAX/BAK. Here, through reconstitution of cells lacking all eight pro-apoptotic BH3-only proteins, we demonstrate that all BH3-only proteins primarily target the anti-apoptotic BCL-2 proteins BCL-xL/MCL-1, whose simultaneous suppression enables membrane-mediated spontaneous activation of BAX/BAK. BH3-only proteins' apoptotic activities correlate with affinities for BCL-xL/MCL-1 instead of abilities to directly activate BAX/BAK. Further, BID and BIM do not distinguish BAX from BAK or accelerate BAX/BAK activation following inactivation of BCL-xL/MCL-1. Remarkably, death ligand-induced apoptosis in cells lacking BH3-only proteins and MCL-1 is fully restored by BID mutants capable of neutralizing BCL-xL, but not direct activation of BAX/BAK. Taken together, our findings provide a "Membrane-mediated Permissive" model, in which the BH3-only proteins only indirectly activate BAX/BAK by neutralizing the anti-apoptotic BCL-2 proteins, and thus allowing BAX/BAK to undergo unimpeded, spontaneous activation in the mitochondrial outer membrane milieu, leading to apoptosis initiation.
Collapse
Affiliation(s)
- Kai Huang
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
| | - Katelyn L O'Neill
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
| | - Jian Li
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
| | - Wei Zhou
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Na Han
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Xiaming Pang
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
| | - Wei Wu
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Lucas Struble
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
| | - Gloria Borgstahl
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
| | - Zhaorui Liu
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Liqiang Zhang
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA.
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA.
| |
Collapse
|
20
|
Mallick DJ, Soderquist RS, Bates D, Eastman A. Confounding off-target effects of BH3 mimetics at commonly used concentrations: MIM1, UMI-77, and A-1210477. Cell Death Dis 2019; 10:185. [PMID: 30796196 PMCID: PMC6385300 DOI: 10.1038/s41419-019-1426-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 01/09/2023]
Abstract
Targeting anti-apoptotic BCL2 family proteins has become an attractive therapeutic strategy for many cancers, and the BCL2-selective inhibitor ABT-199 (venetoclax) has obtained clinical success. However, MCL1 can promote drug resistance and overall cancer cell survival. Thus, there is a critical need to develop an effective drug that antagonizes MCL1. However, most putative MCL1 inhibitors have been misclassified as they fail to directly inhibit MCL1 in cells, but rather induce the pro-apoptotic protein NOXA. We have investigated three putative MCL1 inhibitors: MIM1, UMI-77, and A-1210477. All three compounds were developed in cell-free assays and then found to be cytotoxic, and hence assumed to directly target MCL1 in cells. Here, we investigated whether these compounds directly inhibit MCL1 or inhibit MCL1 indirectly through the induction of NOXA. Both MIM1- and UMI-77-induced NOXA through the unfolded protein response pathway, and sensitized leukemia cells to ABT-199; this cytotoxicity was dependent on NOXA suggesting that these compounds do not directly target MCL1. A-1210477 was the only compound that did not induce NOXA, but it still sensitized cells to ABT-199. A-1210477 induced accumulation of MCL1 protein consistent with it binding and preventing MCL1 degradation. However, at concentrations used in several prior studies, A-1210477 also induced cytochrome c release, caspase activation, and apoptosis in a BAX/BAK-independent manner. Furthermore, the release of cytochrome c occurred without loss of mitochondrial membrane potential. This apoptosis was extremely rapid, sometimes occurring within 0.5-1 h. Hence, we have identified a novel mechanism of apoptosis that circumvents the known mechanisms of cytochrome c release. It remains to be determined whether these unexpected mechanisms of action of putative BH3 mimetics will have therapeutic potential.
Collapse
Affiliation(s)
- David J Mallick
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Ryan S Soderquist
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Darcy Bates
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Alan Eastman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA. .,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
| |
Collapse
|
21
|
Lin HC, Yeh CW, Chen YF, Lee TT, Hsieh PY, Rusnac DV, Lin SY, Elledge SJ, Zheng N, Yen HCS. C-Terminal End-Directed Protein Elimination by CRL2 Ubiquitin Ligases. Mol Cell 2019; 70:602-613.e3. [PMID: 29775578 DOI: 10.1016/j.molcel.2018.04.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/12/2018] [Accepted: 04/05/2018] [Indexed: 12/31/2022]
Abstract
The proteolysis-assisted protein quality control system guards the proteome from potentially detrimental aberrant proteins. How miscellaneous defective proteins are specifically eliminated and which molecular characteristics direct them for removal are fundamental questions. We reveal a mechanism, DesCEND (destruction via C-end degrons), by which CRL2 ubiquitin ligase uses interchangeable substrate receptors to recognize the unusual C termini of abnormal proteins (i.e., C-end degrons). C-end degrons are mostly less than ten residues in length and comprise a few indispensable residues along with some rather degenerate ones. The C-terminal end position is essential for C-end degron function. Truncated selenoproteins generated by translation errors and the USP1 N-terminal fragment from post-translational cleavage are eliminated by DesCEND. DesCEND also targets full-length proteins with naturally occurring C-end degrons. The C-end degron in DesCEND echoes the N-end degron in the N-end rule pathway, highlighting the dominance of protein "ends" as indicators for protein elimination.
Collapse
Affiliation(s)
- Hsiu-Chuan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Chi-Wei Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yen-Fu Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ting-Ting Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Pei-Yun Hsieh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Domnita V Rusnac
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Sung-Ya Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Stephen J Elledge
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ning Zheng
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Hsueh-Chi S Yen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan.
| |
Collapse
|
22
|
Phenotypic miRNA Screen Identifies miR-26b to Promote the Growth and Survival of Endothelial Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:29-43. [PMID: 30227275 PMCID: PMC6141730 DOI: 10.1016/j.omtn.2018.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022]
Abstract
Endothelial cell (EC) proliferation is a crucial event in physiological and pathological angiogenesis. MicroRNAs (miRNAs) have emerged as important modulators of the angiogenic switch. Here we conducted high-content screening of a human miRNA mimic library to identify novel regulators of EC growth systematically. Several miRNAs were nominated that enhanced or inhibited EC growth. Of these, we focused on miR-26b, which is a conserved candidate and expressed in multiple human EC types. miR-26b overexpression enhanced EC proliferation, migration, and tube formation, while inhibition of miR-26b suppressed the proliferative and angiogenic capacity of ECs. A combinatory functional small interfering RNA (siRNA) screening of 48 predicted gene targets revealed that miR-26b enhanced EC growth and survival through inhibiting PTEN expression. Local administration of miR-26b mimics promoted the growth of new microvessels in the Matrigel plug model. In the mouse model of hindlimb ischemia, miR-26b was found to be downregulated in endothelium in the first week following ischemia, and local overexpression of miR-26b improved the survival of capillaries and muscle fibers in ischemic muscles. Our findings suggest that miR-26b enhances EC proliferation, survival, and angiogenesis. miR-26b is a potential target for developing novel pro-angiogenic therapeutics in ischemic disease.
Collapse
|
23
|
Wu H, Medeiros LJ, Young KH. Apoptosis signaling and BCL-2 pathways provide opportunities for novel targeted therapeutic strategies in hematologic malignances. Blood Rev 2018; 32:8-28. [PMID: 28802908 DOI: 10.1016/j.blre.2017.08.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/05/2017] [Accepted: 08/06/2017] [Indexed: 12/14/2022]
Abstract
Apoptosis is an essential biological process involved in tissue homeostasis and immunity. Aberrations of the two main apoptotic pathways, extrinsic and intrinsic, have been identified in hematological malignancies; many of these aberrations are associated with pathogenesis, prognosis and resistance to standard chemotherapeutic agents. Targeting components of the apoptotic pathways, especially the chief regulatory BCL-2 family in the intrinsic pathway, has proved to be a promising therapeutic approach for patients with hematological malignances, with the expectation of enhanced efficacy and reduced adverse events. Continuous investigations regarding the biological importance of each of the BCL-2 family components and the clinical rationale to achieve optimal therapeutic outcomes, using either monotherapy or in combination with other targeted agents, have generated inspiring progress in the field. Genomic, epigenomic and biological analyses including BH3 profiling facilitate effective evaluation of treatment response, cancer recurrence and drug resistance. In this review, we summarize the biological features of each of the components in the BCL-2 apoptotic pathways, analyze the regulatory mechanisms and the pivotal roles of BCL-2 family members in the pathogenesis of major types of hematologic malignances, and evaluate the potential of apoptosis- and BCL-2-targeted strategies as effective approaches in anti-cancer therapies.
Collapse
Affiliation(s)
- Huanling Wu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Laboratory Medicine, Shandong Provincial Hospital affiliated to Shandong University, Shandong, China
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas Graduate School of Biomedical Science, Houston, TX, USA.
| |
Collapse
|
24
|
Bate-Eya LT, den Hartog IJM, van der Ploeg I, Schild L, Koster J, Santo EE, Westerhout EM, Versteeg R, Caron HN, Molenaar JJ, Dolman MEM. High efficacy of the BCL-2 inhibitor ABT199 (venetoclax) in BCL-2 high-expressing neuroblastoma cell lines and xenografts and rational for combination with MCL-1 inhibition. Oncotarget 2017; 7:27946-58. [PMID: 27056887 PMCID: PMC5053701 DOI: 10.18632/oncotarget.8547] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/18/2016] [Indexed: 01/04/2023] Open
Abstract
The anti-apoptotic protein B cell lymphoma/leukaemia 2 (BCL-2) is highly expressed in neuroblastoma and plays an important role in oncogenesis. In this study, the selective BCL-2 inhibitor ABT199 was tested in a panel of neuroblastoma cell lines with diverse expression levels of BCL-2 and other BCL-2 family proteins. ABT199 caused apoptosis more potently in neuroblastoma cell lines expressing high BCL-2 and BIM/BCL-2 complex levels than low expressing cell lines. Effects on cell viability correlated with effects on BIM displacement from BCL-2 and cytochrome c release from the mitochondria. ABT199 treatment of mice with neuroblastoma tumors expressing high BCL-2 levels only resulted in growth inhibition, despite maximum BIM displacement from BCL-2 and the induction of a strong apoptotic response. We showed that neuroblastoma cells might survive ABT199 treatment due to its acute upregulation of the anti-apoptotic BCL-2 family protein myeloid cell leukaemia sequence 1 (MCL-1) and BIM sequestration by MCL-1. In vitro inhibition of MCL-1 sensitized neuroblastoma cell lines to ABT199, confirming the pivotal role of MCL-1 in ABT199 resistance. Our findings suggest that neuroblastoma patients with high BCL-2 and BIM/BCL-2 complex levels might benefit from combination treatment with ABT199 and compounds that inhibit MCL-1 expression.
Collapse
Affiliation(s)
- Laurel T Bate-Eya
- Department of Oncogenomics, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Ida van der Ploeg
- Department of Oncogenomics, University of Amsterdam, Amsterdam, The Netherlands
| | - Linda Schild
- Department of Oncogenomics, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Koster
- Department of Oncogenomics, University of Amsterdam, Amsterdam, The Netherlands
| | - Evan E Santo
- Department of Oncogenomics, University of Amsterdam, Amsterdam, The Netherlands
| | - Ellen M Westerhout
- Department of Oncogenomics, University of Amsterdam, Amsterdam, The Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, University of Amsterdam, Amsterdam, The Netherlands
| | - Huib N Caron
- Department of Pediatric Oncology, Emma Kinderziekenhuis, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan J Molenaar
- Department of Oncogenomics, University of Amsterdam, Amsterdam, The Netherlands
| | - M Emmy M Dolman
- Department of Oncogenomics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Cao B, He X, Wang W, Shi M. [SIRT1 Influences the Sensitivity of A549 Non-small Cell Lung Cancer Cell Line to
Cisplatin via Modulating the Noxa Expression]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:57-63. [PMID: 26903157 PMCID: PMC6015143 DOI: 10.3779/j.issn.1009-3419.2016.02.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
背景与目的 非小细胞肺癌的顺铂耐药是常见的临床现象,严重制约了患者的化疗效果,是亟待解决的问题。SIRT1和Noxa的表达变化影响肿瘤细胞对化疗药物的敏感性。本研究旨在研究SIRT1表达对非小细胞肺癌对顺铂的敏感性的影响,并探讨其涉及Noxa表达的机制,以求为提高非小细胞肺癌细胞对顺铂敏感性提供希望。 方法 利用实时荧光定量PCR和Western blot分析A549细胞及顺铂耐药的A549/DDP细胞SIRT1及Noxa mRNA和蛋白水平的表达差异。利用siRNA干扰技术抑制A549/DDP细胞的SIRT1表达,进而使用Cell Titer Blue试验、流式细胞术从细胞增殖、细胞周期和细胞凋亡方面分析SIRT1沉默对A549/DPP细胞顺铂敏感性的影响。同时利用实时荧光定量PCR和Western blot分析SIRT1抑制对A549/DPP细胞Noxa表达的影响。 结果 A549细胞和A549/DDP细胞对顺铂的敏感性有显著差异,与A549细胞相比,A549/DDP细胞的SIRT1表达较高,但Noxa表达较低。使用siRNA抑制A549/DPP细胞的SIRT1表达后,与未抑制SIRT1细胞相比,4 μg/mL顺铂处理后的细胞存活率降低,G2期/M期阻滞比例增加,凋亡率提高。同时,SIRT1沉默导致A549/DPP细胞的Noxa表达增加。 结论 较高的SIRT1可能引起A549细胞对顺铂的耐药性,抑制SIRT1可以提高A549/DDP细胞对顺铂的敏感性,其机制可能涉及SIRT1对Noxa的调节。
Collapse
Affiliation(s)
- Bin Cao
- Department of Thoracic-Cardio Surgery, the Affiliated Drum Tower Hospital of Nangjing University Medical School, Nanjing 210008, China
| | - Xiaofeng He
- Department of Thoracic-Cardio Surgery, the Affiliated Drum Tower Hospital of Nangjing University Medical School, Nanjing 210008, China
| | - Wengong Wang
- Department of Thoracic-Cardio Surgery, the Affiliated Drum Tower Hospital of Nangjing University Medical School, Nanjing 210008, China
| | - Minke Shi
- Department of Thoracic-Cardio Surgery, the Affiliated Drum Tower Hospital of Nangjing University Medical School, Nanjing 210008, China
| |
Collapse
|
26
|
Andreu-Fernández V, García-Murria MJ, Bañó-Polo M, Martin J, Monticelli L, Orzáez M, Mingarro I. The C-terminal Domains of Apoptotic BH3-only Proteins Mediate Their Insertion into Distinct Biological Membranes. J Biol Chem 2016; 291:25207-25216. [PMID: 27758854 DOI: 10.1074/jbc.m116.733634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/31/2016] [Indexed: 11/06/2022] Open
Abstract
Changes in the equilibrium of pro- and anti-apoptotic members of the B-cell lymphoma-2 (Bcl-2) protein family in the mitochondrial outer membrane (MOM) induce structural changes that commit cells to apoptosis. Bcl-2 homology-3 (BH3)-only proteins participate in this process by either activating pro-apoptotic effectors or inhibiting anti-apoptotic components and by promoting MOM permeabilization. The association of BH3-only proteins with MOMs is necessary for the activation and amplification of death signals; however, the nature of this association remains controversial, as these proteins lack a canonical transmembrane sequence. Here we used an in vitro expression system to study the insertion capacity of hydrophobic C-terminal regions of the BH3-only proteins Bik, Bim, Noxa, Bmf, and Puma into microsomal membranes. An Escherichia coli complementation assay was used to validate the results in a cellular context, and peptide insertions were modeled using molecular dynamics simulations. We also found that some of the C-terminal domains were sufficient to direct green fluorescent protein fusion proteins to specific membranes in human cells, but the domains did not activate apoptosis. Thus, the hydrophobic regions in the C termini of BH3-only members associated in distinct ways with various biological membranes, suggesting that a detailed investigation of the entire process of apoptosis should include studying the membranes as a setting for protein-protein and protein-membrane interactions.
Collapse
Affiliation(s)
- Vicente Andreu-Fernández
- From the Departament de Bioquímica i Biologia Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain.,the Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain, and
| | - María J García-Murria
- From the Departament de Bioquímica i Biologia Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain
| | - Manuel Bañó-Polo
- From the Departament de Bioquímica i Biologia Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain
| | - Juliette Martin
- the Bases Moléculaires et Structurales des Systèmes Infectieux (BMSSI), CNRS UMR 5086, 7 Passage du Vercors, 69007 Lyon, France
| | - Luca Monticelli
- the Bases Moléculaires et Structurales des Systèmes Infectieux (BMSSI), CNRS UMR 5086, 7 Passage du Vercors, 69007 Lyon, France
| | - Mar Orzáez
- the Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain, and
| | - Ismael Mingarro
- From the Departament de Bioquímica i Biologia Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain,
| |
Collapse
|
27
|
Zhou W, Xu J, Li H, Xu M, Chen ZJ, Wei W, Pan Z, Sun Y. Neddylation E2 UBE2F Promotes the Survival of Lung Cancer Cells by Activating CRL5 to Degrade NOXA via the K11 Linkage. Clin Cancer Res 2016; 23:1104-1116. [PMID: 27591266 DOI: 10.1158/1078-0432.ccr-16-1585] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 01/09/2023]
Abstract
Purpose: Recent studies have shown that the process of protein neddylation was abnormally activated in several human cancers. However, it is unknown whether and how UBE2F, a less characterized neddylation E2, regulates lung cancer cell survival, and whether and how NOXA, a proapoptotic protein, is ubiquitylated and degraded by which E3 and via which ubiquitin linkage.Experimental Design: Methods of immunohistochemistry and immunoblotting were utilized to examine UBE2F protein expression. The biological functions of UBE2F were evaluated by in vitro cell culture and in vivo xenograft models. The in vivo complex formation among UBE2F-SAG-CUL5-NOXA was measured by a pulldown assay. Polyubiquitylation of NOXA was evaluated by in vivo and in vitro ubiquitylation assays.Results: UBE2F is overexpressed in non-small cell lung cancer (NSCLC) and predicts poor patient survival. While UBE2F overexpression promotes lung cancer growth both in vitro and in vivo, UBE2F knockdown selectively inhibits tumor growth. By promoting CUL5 neddylation, UBE2F/SAG/CUL5 tri-complex activates CRL5 (Cullin-RING-ligase-5) to ubiquitylate NOXA via a novel K11, but not K48, linkage for targeted proteasomal degradation. CRL5 inactivation or forced expression of K11R ubiquitin mutant caused NOXA accumulation to induce apoptosis, which is rescued by NOXA knockdown. Notably, NOXA knockdown rescues the UBE2F silencing effect, indicating a causal role of NOXA in this process. In lung cancer tissues, high levels of UBE2F and CUL5 correlate with a low level of NOXA and poor patient survival.Conclusions: By ubiquitylating and degrading NOXA through activating CRL5, UBE2F selectively promotes lung cancer cell survival and could, therefore, serve as a novel cancer target. Clin Cancer Res; 23(4); 1104-16. ©2016 AACR.
Collapse
Affiliation(s)
- Weihua Zhou
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Jie Xu
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Haomin Li
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ming Xu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhijian J Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Zhenqiang Pan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan. .,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Cui J, Placzek WJ. PTBP1 modulation of MCL1 expression regulates cellular apoptosis induced by antitubulin chemotherapeutics. Cell Death Differ 2016; 23:1681-90. [PMID: 27367564 DOI: 10.1038/cdd.2016.60] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/30/2016] [Accepted: 05/30/2016] [Indexed: 01/01/2023] Open
Abstract
Myeloid cell leukemia sequence 1 (MCL1), an anti-apoptotic BCL2 family protein, is a key regulator of intrinsic apoptosis. Normal cells require strict control over MCL1 expression with aberrant MCL1 expression linked to the emergence of various diseases and chemoresistance. Previous studies have detailed how MCL1 expression is regulated by multiple mechanisms both transcriptionally and translationally. However, characterization of the post-transcriptional regulators of MCL1 mRNA is limited. Polypyrimidine tract binding protein 1 (PTBP1) is a known regulator of post-transcriptional gene expression that can control mRNA splicing, translation, stability and localization. Here we demonstrate that PTBP1 binds to MCL1 mRNA and that knockdown of PTBP1 upregulates MCL1 expression in cancer cells by stabilizing MCL1 mRNA and increasing MCL1 mRNA accumulation in cytoplasm. Further, we show that depletion of PTBP1 protects cancer cells from antitubulin agent-induced apoptosis in a MCL1-dependent manner. Taken together, our findings suggest that PTBP1 is a novel regulator of MCL1 mRNA by which it controls apoptotic response to antitubulin chemotherapeutics.
Collapse
Affiliation(s)
- J Cui
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - W J Placzek
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
29
|
Kvansakul M, Hinds MG. The Bcl-2 family: structures, interactions and targets for drug discovery. Apoptosis 2015; 20:136-50. [PMID: 25398535 DOI: 10.1007/s10495-014-1051-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two phylogenetically and structurally distinct groups of proteins regulate stress induced intrinsic apoptosis, the programmed disassembly of cells. Together they form the B cell lymphoma-2 (Bcl-2) family. Bcl-2 proteins appeared early in metazoan evolution and are identified by the presence of up to four short conserved sequence blocks known as Bcl-2 homology (BH) motifs, or domains. The simple BH3-only proteins bear only a BH3-motif and are intrinsically disordered proteins and antagonize or activate the other group, the multi-motif Bcl-2 proteins that have up to four BH motifs, BH1-BH4. Multi-motif Bcl-2 proteins are either pro-survival or pro-apoptotic in action and have remarkably similar α-helical bundle structures that provide a binding groove formed from the BH1, BH2, and BH3-motifs for their BH3-bearing antagonists. In mammals a network of interactions between Bcl-2 members regulates mitochondrial outer membrane permeability (MOMP) and efflux of cytochrome c and other death inducing factors from mitochondria to initiate the apoptotic caspase cascade, but the molecular events leading to MOMP are uncertain. Dysregulation of the Bcl-2 family occurs in many diseases and pathogenic viruses have assimilated pro-survival Bcl-2 proteins to evade immune responses. Their role in disease has made the Bcl-2 family the focus of drug design attempts and clinical trials are showing promise for 'BH3-mimics', drugs that mimic the ability of BH3-only proteins to neutralize selected pro-survival proteins to induce cell death in tumor cells. This review focuses on the structural biology of Bcl-2 family proteins, their interactions and attempts to harness them as targets for drug design.
Collapse
Affiliation(s)
- Marc Kvansakul
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, 3086, Australia,
| | | |
Collapse
|
30
|
Noxa upregulation by oncogenic activation of MEK/ERK through CREB promotes autophagy in human melanoma cells. Oncotarget 2015; 5:11237-51. [PMID: 25365078 PMCID: PMC4294377 DOI: 10.18632/oncotarget.2616] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 10/21/2014] [Indexed: 01/07/2023] Open
Abstract
Reduction in the expression of the anti-survival BH3-only proteins PUMA and Bim is associated with the pathogenesis of melanoma. However, we have found that the expression of the other BH3-only protein Noxa is commonly upregulated in melanoma cells, and that this is driven by oncogenic activation of MEK/ERK. Immunohistochemistry studies showed that Noxa was expressed at higher levels in melanomas than nevi. Moreover, the expression of Noxa was increased in metastatic compared to primary melanomas, and in thick primaries compared to thin primaries. Inhibition of oncogenic BRAFV600E or MEK downregulated Noxa, whereas activation of MEK/ERK caused its upregulation. In addition, introduction of BRAFV600E increased Noxa expression in melanocytes. Upregulation of Noxa was due to a transcriptional increase mediated by cAMP responsive element binding protein, activation of which was also increased by MEK/ERK signaling in melanoma cells. Significantly, Noxa appeared necessary for constitutive activation of autophagy, albeit at low levels, by MEK/ERK in melanoma cells. Furthermore, it was required for autophagy activation that delayed apoptosis in melanoma cells undergoing nutrient deprivation. These results reveal that oncogenic activation of MEK/ERK drives Noxa expression to promote autophagy, and suggest that Noxa has an indirect anti-apoptosis role in melanoma cells under nutrient starvation conditions.
Collapse
|
31
|
Harnett CC, Abusneina A, Clément J, Gauthier ER. Inhibition of MCL-1 by obatoclax sensitizes Sp2/0-Ag14 hybridoma cells to glutamine deprivation-induced apoptosis. Cell Biochem Funct 2015; 33:334-40. [DOI: 10.1002/cbf.3121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/06/2015] [Accepted: 05/14/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Curtis C. Harnett
- Biomolecular Sciences Ph.D. program; Laurentian University; Sudbury Ontario Canada
| | | | - Julie Clément
- Department of Chemistry and Biochemistry; Laurentian University; Sudbury Ontario Canada
| | - Eric R. Gauthier
- Biomolecular Sciences Ph.D. program; Laurentian University; Sudbury Ontario Canada
- Department of Chemistry and Biochemistry; Laurentian University; Sudbury Ontario Canada
- Biology Department; Laurentian University; Sudbury Ontario Canada
| |
Collapse
|
32
|
Early downregulation of Mcl-1 regulates apoptosis triggered by cardiac glycoside UNBS1450. Cell Death Dis 2015; 6:e1782. [PMID: 26068790 PMCID: PMC4669823 DOI: 10.1038/cddis.2015.134] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 04/01/2015] [Accepted: 04/21/2015] [Indexed: 01/09/2023]
Abstract
Cardiac glycosides (CGs), prescribed to treat cardiovascular alterations, display potent anti-cancer activities. Despite their well-established target, the sodium/potassium (Na+/K+)-ATPase, downstream mechanisms remain poorly elucidated. UNBS1450 is a hemi-synthetic cardenolide derived from 2″-oxovorusharin extracted from the plant Calotropis procera, which is effective against various cancer cell types with an excellent differential toxicity. By comparing adherent and non-adherent cancer cell types, we validated Mcl-1 as a general and early target of UNBS1450. A panel of CGs including cardenolides ouabain, digitoxin and digoxin as well as bufadienolides cinobufagin and proscillaridin A allowed us to generalize our findings. Our results show that Mcl-1, but not Bcl-xL nor Bcl-2, is rapidly downregulated prior to induction of apoptosis. From a mechanistic point of view, we exclude an effect on transcription and demonstrate involvement of a pathway affecting protein stability and requiring the proteasome in the early CG-induced Mcl-1 downregulation, without the involvement of caspases or the BH3-only protein NOXA. Strategies aiming at preventing UNBS1450-induced Mcl-1 downregulation by overexpression of a mutated, non-ubiquitinable form of the protein or the use of the proteasome inhibitor MG132 inhibited the compound's ability to induce apoptosis. Altogether our results point at Mcl-1 as a ubiquitous factor, downregulated by CGs, whose modulation is essential to achieve cell death.
Collapse
|
33
|
Cao B, Shi Q, Wang W. Higher expression of SIRT1 induced resistance of esophageal squamous cell carcinoma cells to cisplatin. J Thorac Dis 2015; 7:711-9. [PMID: 25973238 DOI: 10.3978/j.issn.2072-1439.2015.04.01] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/06/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND High expression of Sirtuin type 1 (SIRT1) exists in some cancer cells. However, it is still unclear whether SIRT1 affects the sensitivity of esophageal cancer cells to cisplatin. This study was designed to explore the relationship between SIRT1 expression and resistance of esophageal squamous cell carcinoma (ESCC) cells to cisplatin and reveal the underlying mechanism. METHODS The tissue samples of 68 ESCC patients were collected from Nanjing Drum Tower Hospital, China. All the patients had undergone cisplatin based combination chemotherapy. The expression of SIRT1and Noxa in tissue samples were analyzed by quantitative real-time reverse PCR (qRT-PCR) and Western blot. Human ESCC cell line (ECa9706 cells) was cultured and a cisplatin-resistant subline (ECa9706-CisR cells) was established by continuous exposure to cisplatin at different concentrations. The expression of SIRT1 and Noxa in both cell lines was analyzed by qRT-PCR and Western blot. siRNA technology was utilized to down-regulate the SIRT1 expression in ECa9706-CisR cells. The influence of SIRT1 silence on sensitivity of ECa9706-CisR cells to cisplatin was confirmed using CCK-8 assay and flow cytometry. Furthermore, the level change of Noxa after SIRT1 silence in ECa9706-CisR cells was determined by qRT-PCR and Western blot. RESULT SIRT1 and Noxa expression in chemo-resistant patients was significantly increased and decreased respectively, compared with chemo-sensitive patients. SIRT1 expression in ECa9706-CisR cells was significantly increased with a lower Noxa level, compared with normal ECa9706 cells. Cisplatin 5 µM could cause proliferation inhibition, G2/M phase arrest and apoptosis in ECa9706-CisR cells and these effects could be enhanced dramatically by SIRT1 silencing. Moreover, Noxa expression was increased after treated with SIRT1 siRNA. CONCLUSIONS Over-expression of SIRT1 may cause resistance of ESCC cells to cisplatin through the mechanism involved with Noxa expression.
Collapse
Affiliation(s)
- Bin Cao
- Department of cardiothoracic surgery, Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Qintong Shi
- Department of cardiothoracic surgery, Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Wengong Wang
- Department of cardiothoracic surgery, Nanjing Drum Tower Hospital, Nanjing 210008, China
| |
Collapse
|