1
|
Cheng F, Fransson LÅ, Mani K. Interplay between glypican-1, amyloid-β and tau phosphorylation in human neural stem cells. Neuroscience 2024; 553:121-127. [PMID: 38992568 DOI: 10.1016/j.neuroscience.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is characterized by accumulation of amyloid beta (Aβ) and hyperphosphorylated tau (Tau-P) in the brain. Aβ enhances the activity of kinases involved in the formation of Tau-P. Phosphorylation at Thr 181 determines the propagation of multiple tau phosphorylations. Aβ is derived from the amyloid precursor protein (APP). Cleavage of APP by β-secretase also initiates release of heparan sulfate (HS) from the proteoglycan glypican-1 (GPC1). OBJECTIVES In this study, we have explored possible connections between GPC1 expression, HS release, APP processing and Tau-P formation in human neural stem cells. METHODS GPC1 formation was suppressed by using CRISPR/Cas9 and increased by using a vector encoding GPC1. HS release from GPC1 was increased by growing cells in medium containing Arg and ascorbate. Effects were monitored by immunofluorescence microscopy and slot immunoblotting using antibodies/antisera recognizing Aβ, GPC1, HS released from GPC1, total Tau, and Tau phosphorylated at Thr-181, 217 or 231. The latter have been used as blood biomarkers for AD. RESULTS Suppression of GPC1 expression resulted in increased phosphorylation at Thr 181 and Thr 217. When GPC1 was overexpressed, phosphorylation at Thr 217 decreased. Stimulation of HS release from GPC1 diminished tau phosphorylation at all of the three Thr positions, while expression of GPC1 was unaffected. Simultaneous stimulation of HS release and APP processing by the cytokine TNF-α also suppressed tau phosphorylation. CONCLUSION The increased release of GPC1-derived HS may interfere with Aβ formation and/or Aβ interaction with tau.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| | - Lars-Åke Fransson
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| | - Katrin Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden.
| |
Collapse
|
2
|
Chen J, Tang F, Li H, Wu X, Yang Y, Liu Z, Huang X, Wang J, Zheng R, Wang L, Liu H, Xu J, Wang P, Liu F. Mycobacterium tuberculosis suppresses APLP2 expression to enhance its survival in macrophage. Int Immunopharmacol 2023; 124:111058. [PMID: 37844466 DOI: 10.1016/j.intimp.2023.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Mycobacterium tuberculosis (M.tb), the most successful pathogen responsible for approximately 1.6 million deaths in 2021, employs various strategies to evade host antibacterial defenses, including mechanisms to counteract nitric oxide (NO) and certain cytokines. While Amyloid β (A4) precursor-like protein 2 (Aplp2) has been implicated in various physiological and pathological processes, its role in tuberculosis (TB) pathogenesis remains largely uncharted. This study unveils a significant reduction in Aplp2 levels in TB patients, M.tb-infected macrophages, and mice. Intriguingly, Aplp2 mutation or knockdown results in diminished macrophage-mediated killing of M.tb, accompanied by decreased inducible nitric oxide synthase (iNOS) expression and reduced cytokine production, notably interleukin-1β (Il-1β). Notably, Aplp2 mutant mice exhibit heightened susceptibility to mycobacterial infection, evident through aggravated histopathological damage and increased lung bacterial loads, in contrast to Mycobacterium bovis BCG-infected wild-type (WT) mice. Mechanistically, the cleaved product of APLP2, AICD2, generated by γ-secretase, translocates to the nucleus, where it interacts with p65, culminating in enhanced the nuclear factor κB (NF-κB) transcriptional activity. This interaction triggers the upregulation of Il-1β and iNOS expression. Collectively, our findings illuminate Aplp2's pivotal role in safeguarding against mycobacterial infections by promoting M.tb clearance through NO- or IL-1β-mediated bactericidal effects. Therefore, we unveil a novel immune evasion strategy employed by M.tb, which could potentially serve as a target for innovative TB interventions.
Collapse
Affiliation(s)
- Jianxia Chen
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Fen Tang
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Haohao Li
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xiangyang Wu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yong Yang
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zhonghua Liu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xiaochen Huang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jie Wang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Ruijuan Zheng
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Lin Wang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Haipeng Liu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Junfang Xu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Peng Wang
- Department of TB, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Feng Liu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to JiaoTong University Medical School, Shanghai 200233, China.
| |
Collapse
|
3
|
Wilson LFL, Dendooven T, Hardwick SW, Echevarría-Poza A, Tryfona T, Krogh KBRM, Chirgadze DY, Luisi BF, Logan DT, Mani K, Dupree P. The structure of EXTL3 helps to explain the different roles of bi-domain exostosins in heparan sulfate synthesis. Nat Commun 2022; 13:3314. [PMID: 35676258 PMCID: PMC9178029 DOI: 10.1038/s41467-022-31048-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Heparan sulfate is a highly modified O-linked glycan that performs diverse physiological roles in animal tissues. Though quickly modified, it is initially synthesised as a polysaccharide of alternating β-D-glucuronosyl and N-acetyl-α-D-glucosaminyl residues by exostosins. These enzymes generally possess two glycosyltransferase domains (GT47 and GT64)-each thought to add one type of monosaccharide unit to the backbone. Although previous structures of murine exostosin-like 2 (EXTL2) provide insight into the GT64 domain, the rest of the bi-domain architecture is yet to be characterised; hence, how the two domains co-operate is unknown. Here, we report the structure of human exostosin-like 3 (EXTL3) in apo and UDP-bound forms. We explain the ineffectiveness of EXTL3's GT47 domain to transfer β-D-glucuronosyl units, and we observe that, in general, the bi-domain architecture would preclude a processive mechanism of backbone extension. We therefore propose that heparan sulfate backbone polymerisation occurs by a simple dissociative mechanism.
Collapse
Affiliation(s)
- L F L Wilson
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA
| | - T Dendooven
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - S W Hardwick
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - A Echevarría-Poza
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - T Tryfona
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - K B R M Krogh
- Department of Protein Biochemistry and Stability, Novozymes A/S, Krogshøjvej 36, 2880, Bagsværd, Denmark
| | - D Y Chirgadze
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - B F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - D T Logan
- Biochemistry and Structural Biology, Centre for Molecular Protein Science, Department of Chemistry, Lund University, SE-221 00, Lund, Sweden
| | - K Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, SE-221 00, Lund, Sweden.
| | - P Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
4
|
Lee KY, Seah C, Li C, Chen YF, Chen CY, Wu CI, Liao PC, Shyu YC, Olafson HR, McKee KK, Wang ET, Yeh CH, Wang CH. Mice lacking MBNL1 and MBNL2 exhibit sudden cardiac death and molecular signatures recapitulating myotonic dystrophy. Hum Mol Genet 2022; 31:3144-3160. [PMID: 35567413 PMCID: PMC9476621 DOI: 10.1093/hmg/ddac108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Myotonic dystrophy (DM) is caused by expansions of C(C)TG repeats in the non-coding regions of the DMPK and CNBP genes, and DM patients often suffer from sudden cardiac death due to lethal conduction block or arrhythmia. Specific molecular changes that underlie DM cardiac pathology have been linked to repeat-associated depletion of Muscleblind-like (MBNL) 1 and 2 proteins and upregulation of CUGBP, Elav-like family member 1 (CELF1). Hypothesis solely targeting MBNL1 or CELF1 pathways that could address all the consequences of repeat expansion in heart remained inconclusive, particularly when the direct cause of mortality and results of transcriptome analyses remained undetermined in Mbnl compound knockout (KO) mice with cardiac phenotypes. Here, we develop Myh6-Cre double KO (DKO) (Mbnl1−/−; Mbnl2cond/cond; Myh6-Cre+/−) mice to eliminate Mbnl1/2 in cardiomyocytes and observe spontaneous lethal cardiac events under no anesthesia. RNA sequencing recapitulates DM heart spliceopathy and shows gene expression changes that were previously undescribed in DM heart studies. Notably, immunoblotting reveals a nearly 6-fold increase of Calsequestrin 1 and 50% reduction of epidermal growth factor proteins. Our findings demonstrate that complete ablation of MBNL1/2 in cardiomyocytes is essential for generating sudden death due to lethal cardiac rhythms and reveal potential mechanisms for DM heart pathogenesis.
Collapse
Affiliation(s)
- Kuang-Yung Lee
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan.,Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Carol Seah
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Ching Li
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Yu-Fu Chen
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Chwen-Yu Chen
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Ching-I Wu
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Po-Cheng Liao
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Hailey R Olafson
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL. 32610, USA
| | - Kendra K McKee
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL. 32610, USA
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL. 32610, USA
| | - Chi-Hsiao Yeh
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Linko Branch, Taoyuan, Taiwan.,Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Chao-Hung Wang
- Division of Cardiology, Department of Internal Medicine, Heart Failure Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan.,Chang Gung University, College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
5
|
Mani K. Isolation and Characterization of Heparan Sulfate Containing Amyloid Precursor Protein Degradation Products. Methods Mol Biol 2022; 2303:279-288. [PMID: 34626386 DOI: 10.1007/978-1-0716-1398-6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Numerous studies indicate that heparan sulfate proteoglycans (HSPGs) participate in a network of complex molecular events involving amyloid precursor protein (APP) processing and formation, oligomerization, intracellular targeting, clearance, and propagation of amyloid β in Alzheimer's disease (AD). A mutual functional interplay between recycling glypican-1 and APP processing has been demonstrated where the HS released from glypican-1 by a Cu/NO-ascorbate-dependent reaction forms a conjugate with APP degradation products and undergoes an endosome-nucleus-autophagosome co-trafficking. HS has been shown to display contradictory and dual effects in AD involving both prevention and promotion of amyloid β formation. It is therefore important to identify the source, detailed structural features as well as factors that favor formation of the neuroprotective forms of HS. Here, a method for isolation and identification of HS-containing APP degradation products has been described. The method is based on isolation of radiolabeled HS followed by identification of accompanying APP degradation products by SDS-PAGE and Western blotting.
Collapse
Affiliation(s)
- Katrin Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Lund, Sweden.
| |
Collapse
|
6
|
Cheng F, Fransson LÅ, Mani K. Complex modulation of cytokine-induced α-synuclein aggregation by glypican-1-derived heparan sulfate in neural cells. Glycobiology 2021; 32:333-342. [PMID: 34939110 PMCID: PMC8970428 DOI: 10.1093/glycob/cwab126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/03/2022] Open
Abstract
In Parkinson’s disease (PD), there is accumulation of α-synuclein (SYN) aggregates in neurons, which is promoted by neuroinflammation. The cytokines TNF-α, IL-1β and IL-6 induce accumulation of degradation products of the amyloid precursor protein (APP) combined with heparan sulfate (HS) chains released from glypican-1 (Gpc-1) by NO-dependent cleavage. We have investigated the effects of the cytokines and HS on SYN aggregation and secretion in dividing human neuroblastoma (SH-SY5Y) and inducible neural progenitor cells (NPC) by using immunofluorescence microscopy, vesicle isolation and slot blotting with antibodies recognizing SYN monomers and aggregates, Gpc-1, the released HS, endosomes, and autophagosomes. In SH-SY5Y cells, the capacity to release HS was fully utilized, while NPC displayed dormant capacity. TNF-α induced increased formation of SYN aggregates and clustering of HS in SH-SY5Y cells. When the supply of NO was simultaneously increased, SYN and HS accumulation disappeared. When NO formation was inhibited, SYN and HS aggregation also disappeared, but there was now a 4-fold increase in SYN secretion. In NPC, IL-6 induced increased aggregation of SYN and stimulated HS release from Gpc-1. Both SYN and HS co-localized with autophagosome marker. When HS-deficient Gpc-1 was simultaneously generated, by using a cyanobacterial neurotoxin, accumulation diminished and there was massive secretion of SYN. We suggest that the cytokines increase APP processing, which initiates NO-dependent release of HS from Gpc-1. The APP degradation products also trigger SYN aggregation. As HS can inhibit APP processing, HS- or NO-deficiency may result in autophagosomal dysfunction and both APP degradation products and SYN are secreted.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| | - Lars-Åke Fransson
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| | - Katrin Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| |
Collapse
|
7
|
Cheng F, Fransson LÅ, Mani K. Reversal of apolipoprotein E4-dependent or chemical-induced accumulation of APP degradation products by vitamin C-induced release of heparan sulfate from glypican-1. Glycobiology 2021; 31:800-811. [PMID: 33403386 DOI: 10.1093/glycob/cwaa120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
The Apolipoprotein E4 (ApoE4) genotype is the most influential risk factor for sporadic Alzheimer's disease. It appears to be associated with retarded endosome-to-autophagosome trafficking. The amyloid precursor protein (APP) and the heparan sulfate (HS)-containing proteoglycan glypican-1 (Gpc-1) are both processed in endosomes, and mutually regulated by the APP degradation products and the released HS. We have investigated APP and Gpc-1 processing in ApoE3 and ApoE4 expressing human fibroblasts, in human neural stem cells (NSC) exposed to the cholesterol transport inhibitor U18666A and in induced neurons obtained by reprogramming of ApoE fibroblasts (ApoE-iN). We have used immunofluorescence microscopy, flow cytometry, and SDS-PAGE-western blotting with antibodies recognizing the released HS, APP, amyloid ᵝ(Aᵝ), late endosomes (Rab7), autophagosomes (LC3) and neurons (Tuj1). We found that the capacity to release HS was not fully utilized in ApoE4 expressing fibroblasts and that HS-Aᵝ complexes accumulated in the nuclei. In ApoE3 fibroblasts, the ᵝ-cleaved APP C-terminal fragment (ᵝ-CTF) and Aᵝ were primarily present in late endosomes and autophagosomes. When HS release from Gpc-1 was enhanced by ascorbate in ApoE4/4 fibroblasts, there was efficient transfer of Aᵝ and HS from the nuclei to autophagosomes. In U18666A-treated NSC as well as in ApoE4/4-iN we repeatedly found accumulation of APP degradation products (ᵝ-CTF/Aᵝ). This was reversed by subsequent exposure to ascorbate or dehydroascorbic acid.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| | - Lars-Åke Fransson
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| | - Katrin Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| |
Collapse
|
8
|
Jin W, Zhang F, Linhardt RJ. Glycosaminoglycans in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:189-204. [PMID: 34495536 DOI: 10.1007/978-3-030-70115-4_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycosaminoglycans (GAGs) are linear polysaccharides that consist of alternating disaccharides sequences of uronic acids and/or galactose hexamino sugars most of which are sulfated. GAGs are ubiquitously expressed on the cell surface, in the intracellular milieu and in the extracellular matrix of all animal cells. Thus, GAGs exhibit many essential roles in a variety of physiological and pathological processes. The targets of GAGs are GAG-binding proteins and related proteins that are of significant interest to both the academic community and in the pharmaceutical industry. In this review, the structures of GAGs, their binding proteins, and analogs are presented that further the development of GAGs and their analogs for the treatment of neurodegenerative diseases agents.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA. .,Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
9
|
Ma Y, McClatchy DB, Martínez-Bartolomé S, Bamberger C, Yates JR. Temporal Quantitative Profiling of Newly Synthesized Proteins during Aβ Accumulation. J Proteome Res 2020; 20:763-775. [PMID: 33147027 DOI: 10.1021/acs.jproteome.0c00645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accumulation of aggregated amyloid beta (Aβ) in the brain is believed to impair multiple cellular pathways and play a central role in Alzheimer's disease pathology. However, how this process is regulated remains unclear. In theory, measuring protein synthesis is the most direct way to evaluate a cell's response to stimuli, but to date, there have been few reliable methods to do this. To identify the protein regulatory network during the development of Aβ deposition in AD, we applied a new proteomic technique to quantitate newly synthesized protein (NSP) changes in the cerebral cortex and hippocampus of 2-, 5-, and 9-month-old APP/PS1 AD transgenic mice. This bio-orthogonal noncanonical amino acid tagging analysis combined PALM (pulse azidohomoalanine labeling in mammals) and HILAQ (heavy isotope labeled AHA quantitation) to reveal a comprehensive dataset of NSPs prior to and post Aβ deposition, including the identification of proteins not previously associated with AD, and demonstrated that the pattern of differentially expressed NSPs is age-dependent. We also found dysregulated vesicle transportation networks including endosomal subunits, coat protein complex I (COPI), and mitochondrial respiratory chain throughout all time points and two brain regions. These results point to a pathological dysregulation of vesicle transportation which occurs prior to Aβ accumulation and the onset of AD symptoms, which may progressively impact the entire protein network and thereby drive neurodegeneration. This study illustrates key pathway regulation responses to the development of AD pathogenesis by directly measuring the changes in protein synthesis and provides unique insights into the mechanisms that underlie AD.
Collapse
Affiliation(s)
- Yuanhui Ma
- Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Daniel B McClatchy
- Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Salvador Martínez-Bartolomé
- Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Casimir Bamberger
- Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - John R Yates
- Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Chew H, Solomon VA, Fonteh AN. Involvement of Lipids in Alzheimer's Disease Pathology and Potential Therapies. Front Physiol 2020; 11:598. [PMID: 32581851 PMCID: PMC7296164 DOI: 10.3389/fphys.2020.00598] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Lipids constitute the bulk of the dry mass of the brain and have been associated with healthy function as well as the most common pathological conditions of the brain. Demographic factors, genetics, and lifestyles are the major factors that influence lipid metabolism and are also the key components of lipid disruption in Alzheimer's disease (AD). Additionally, the most common genetic risk factor of AD, APOE ϵ4 genotype, is involved in lipid transport and metabolism. We propose that lipids are at the center of Alzheimer's disease pathology based on their involvement in the blood-brain barrier function, amyloid precursor protein (APP) processing, myelination, membrane remodeling, receptor signaling, inflammation, oxidation, and energy balance. Under healthy conditions, lipid homeostasis bestows a balanced cellular environment that enables the proper functioning of brain cells. However, under pathological conditions, dyshomeostasis of brain lipid composition can result in disturbed BBB, abnormal processing of APP, dysfunction in endocytosis/exocytosis/autophagocytosis, altered myelination, disturbed signaling, unbalanced energy metabolism, and enhanced inflammation. These lipid disturbances may contribute to abnormalities in brain function that are the hallmark of AD. The wide variance of lipid disturbances associated with brain function suggest that AD pathology may present as a complex interaction between several metabolic pathways that are augmented by risk factors such as age, genetics, and lifestyles. Herewith, we examine factors that influence brain lipid composition, review the association of lipids with all known facets of AD pathology, and offer pointers for potential therapies that target lipid pathways.
Collapse
Affiliation(s)
- Hannah Chew
- Huntington Medical Research Institutes, Pasadena, CA, United States
- University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Alfred N. Fonteh
- Huntington Medical Research Institutes, Pasadena, CA, United States
| |
Collapse
|
11
|
Cheng F, Fransson LÅ, Mani K. Proinflammatory cytokines induce accumulation of glypican-1-derived heparan sulfate and the C-terminal fragment of β-cleaved APP in autophagosomes of dividing neuronal cells. Glycobiology 2020; 30:539-549. [PMID: 32039447 PMCID: PMC7372925 DOI: 10.1093/glycob/cwaa011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/12/2020] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Proinflammatory cytokines stimulate expression of β-secretase, which increases processing of amyloid precursor protein (APP), ultimately leading to the deposition of amyloid beta (Aβ). The N-terminal domain of β-cleaved APP supports Cu/NO-dependent release of heparan sulfate (HS) from the glypican-1 (Gpc-1) proteoglycan. HS is an inhibitor of β-secretase, thereby constituting a regulatory, negative feedback loop. Here, we have investigated the effect of the proinflammatory cytokines TNF-α, IL-1β and IL-6 on the interplay between APP processing and release of HS from Gpc-1 in neuronal cells. We have used deconvolution immunofluorescence microscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and a panel of monoclonal/polyclonal antibodies recognizing the released HS, the N-terminus of Aβ, Aβ, the C-terminus of APP and the autophagosome marker LC3 as well as the chemical lysosome marker LysoTrackerRed (LTR). We repeatedly found that N2a neuroblastoma cells and human neural stem cells grown in the presence of the cytokines developed large cytoplasmic clusters, which stained positive for HS, the N-terminus of Aβ, Aβ, the C-terminus of APP, LC3 and LTR, indicating accumulation of HS and APP/APP degradation products in enlarged autophagosomes/lysosomes. The SDS-PAGE of immunoisolates obtained from TNF-α-treated N2a cells by using anti-C-terminus of APP revealed the presence of SDS-stable complexes between HS and the C-terminal fragment of β-cleaved APP (βCTF) migrating in the range 10-18 kDa. Clustered accumulation of βCTF disappeared when HS release was prevented and slightly enhanced when HS release was increased. Hence, when proinflammatory cytokines induce increased processing of APP, inhibition of β-secretase by HS is insufficient, which may lead to the impaired autophagosomal degradation.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, 221 00 Lund, Sweden
| | - Lars-Åke Fransson
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, 221 00 Lund, Sweden
| | - Katrin Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, 221 00 Lund, Sweden
- To whom correspondence should be addressed: Tel: +46-46-222-4044; e-mail:
| |
Collapse
|
12
|
The cyanobacterial neurotoxin β-N-methylamino-l-alanine prevents addition of heparan sulfate to glypican-1 and increases processing of amyloid precursor protein in dividing neuronal cells. Exp Cell Res 2019; 379:172-181. [DOI: 10.1016/j.yexcr.2019.03.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 12/20/2022]
|
13
|
Hall L, Donovan E, Araya M, Idowa E, Jiminez-Segovia I, Folck A, Wells CD, Kimble-Hill AC. Identification of Specific Lysines and Arginines That Mediate Angiomotin Membrane Association. ACS OMEGA 2019; 4:6726-6736. [PMID: 31179409 PMCID: PMC6547806 DOI: 10.1021/acsomega.9b00165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/28/2019] [Indexed: 05/17/2023]
Abstract
The family of Angiomotin (Amot) proteins regulate several biological pathways associated with cellular differentiation, proliferation, and migration. These adaptor proteins target proteins to the apical membrane, actin fibers, or the nucleus. A major function of the Amot coiled-coil homology (ACCH) domain is to initiate protein interactions with the cellular membrane, particularly those containing phosphatidylinositol lipids. The work presented in this article uses several ACCH domain lysine/arginine mutants to probe the relative importance of individual residues for lipid binding. This identified four lysine and three arginine residues that mediate full lipid binding. Based on these findings, three of these residues were mutated to glutamates in the Angiomotin 80 kDa splice form and were incorporated into human mammary cell lines. Results show that mutating three of these residues in the context of full-length Angiomotin reduced the residence of the protein at the apical membrane. These findings provide new insight into how the ACCH domain mediates lipid binding to enable Amot proteins to control epithelial cell growth.
Collapse
Affiliation(s)
- Le’Celia Hall
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Room MS 4053, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Emily Donovan
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Room MS 4053, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Michael Araya
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Room MS 4053, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Eniola Idowa
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Room MS 4053, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Ilse Jiminez-Segovia
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Room MS 4053, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Anthony Folck
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Room MS 4053, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Clark D. Wells
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Room MS 4053, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Ann C. Kimble-Hill
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Room MS 4053, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| |
Collapse
|
14
|
Roisman LC, Han S, Chuei MJ, Connor AR, Cappai R. The crystal structure of amyloid precursor-like protein 2 E2 domain completes the amyloid precursor protein family. FASEB J 2019; 33:5076-5081. [PMID: 30608876 DOI: 10.1096/fj.201802315r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The amyloid precursor-like protein 2 (APLP2) molecule is a type I transmembrane protein that is crucial for survival, cell-cell adhesion, neuronal development, myelination, cancer metastasis, modulation of metal, and glucose and insulin homeostasis. Moreover, the importance of the amyloid precursor protein (APP) family in biology and disease is very well known because of its central role in Alzheimer disease. In this study, we determined the crystal structure of the independently folded E2 domain of APLP2 and compared that with its paralogues APP and APLP2, demonstrating high overall structural similarities. The crystal structure of APLP2 E2 was solved as an antiparallel dimer, and analysis of the protein interfaces revealed a distinct mode of dimerization that differs from the previously reported dimerization of either APP or APLP1. Analysis of the APLP2 E2 metal binding sites suggested it binds zinc and copper in a similar manner to APP and APLP1. The structure of this key protein might suggest a relationship between the distinct mode of dimerization and its biologic functions.-Roisman, L. C., Han, S., Chuei, M. J., Connor, A. R., Cappai, R. The crystal structure of amyloid precursor-like protein 2 E2 domain completes the amyloid precursor protein family.
Collapse
Affiliation(s)
- Laila C Roisman
- Department of Pathology, The University of Melbourne, Victoria, Australia; and.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Sen Han
- Department of Pathology, The University of Melbourne, Victoria, Australia; and.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Mun Joo Chuei
- Department of Pathology, The University of Melbourne, Victoria, Australia; and.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Andrea R Connor
- Department of Pathology, The University of Melbourne, Victoria, Australia; and.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Roberto Cappai
- Department of Pathology, The University of Melbourne, Victoria, Australia; and.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia
| |
Collapse
|
15
|
LaRivière WB, Schmidt EP. The Pulmonary Endothelial Glycocalyx in ARDS: A Critical Role for Heparan Sulfate. CURRENT TOPICS IN MEMBRANES 2018; 82:33-52. [PMID: 30360782 DOI: 10.1016/bs.ctm.2018.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endothelial glycocalyx is a glycosaminoglycan-enriched endovascular layer that, with the development of novel fixation and in vivo microscopy techniques, has been increasingly recognized as a major contributor to vascular homeostasis. Sepsis-associated degradation of the endothelial glycocalyx mediates the onset of the alveolar microvascular dysfunction characteristic of sepsis-induced lung injury (such as the Acute Respiratory Distress Syndrome, ARDS). Emerging evidence indicates that processes of glycocalyx reconstitution are necessary for endothelial repair and, as such, are promising therapeutic targets to accelerate lung injury recovery. This review discusses what has been learned about the homeostatic and pathophysiologic role of the pulmonary endothelial glycocalyx during lung health and injury, with the goal to identify promising new areas for future mechanistic investigation.
Collapse
Affiliation(s)
- Wells B LaRivière
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Eric P Schmidt
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States.
| |
Collapse
|
16
|
Cheng F, Fransson LÅ, Mani K. Common traffic routes for imported spermine and endosomal glypican-1-derived heparan sulfate in fibroblasts. Exp Cell Res 2018; 364:133-142. [PMID: 29408503 DOI: 10.1016/j.yexcr.2018.01.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 11/26/2022]
Abstract
Import of the polyamine spermine from the extracellular environment depends on the presence of cell surface heparan sulfate proteoglycans, such as glypican-1. This proteoglycan is internalized by endocytosis, releases its heparan sulfate chains in endosomes by a nitric oxide-, copper- and amyloid precursor protein-dependent mechanism, then penetrates the membrane and is transported to the nucleus and then to autophagosomes. This process is spontaneous or induced by ascorbate depending on the growth-state of the cell. Here, we have explored possible connections between the heparan sulfate traffic route and spermine uptake and delivery in wild-type and Tg2576 mouse fibroblasts. Cells were examined by deconvolution immunofluorescence microscopy. The antibodies used were specific for spermine, glypican-1-derived heparan sulfate, Rab7, nucleolin and a marker for autophagosomes. Endogenous immunostainable spermine was primarily associated with autophagosomes. When spermine synthesis was inhibited, imported spermine appeared in Rab7-positive endosomes. When ascorbate was added, heparan sulfate and spermine were transported to the nucleus where they colocalized with nucleolin. Spermine also appeared in autophagosomes. In a pulse-chase experiment, heparan sulfate and spermine were first arrested in late endosomes by actinomycin D treatment. During the chase, when arrest was abolished, heparan sulfate and spermine were both transported to the nucleus and targeted nucleolin. In amyloid precursor protein-/--fibroblasts, ascorbate failed to induce release of heparan sulfate and spermine remained in the endosomes. We propose that cell surface glypican-1 carries spermine to the endosomes and that the released heparan sulfate carries spermine across the membrane into the cytosol and then to the nucleus.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical CenterA13, SE-221 84 Lund, Sweden
| | - Lars-Åke Fransson
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical CenterA13, SE-221 84 Lund, Sweden
| | - Katrin Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical CenterA13, SE-221 84 Lund, Sweden.
| |
Collapse
|
17
|
Cytochrome b561, copper, β-cleaved amyloid precursor protein and niemann-pick C1 protein are involved in ascorbate-induced release and membrane penetration of heparan sulfate from endosomal S-nitrosylated glypican-1. Exp Cell Res 2017; 360:171-179. [DOI: 10.1016/j.yexcr.2017.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 11/21/2022]
|
18
|
Nixon RA. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. FASEB J 2017; 31:2729-2743. [PMID: 28663518 DOI: 10.1096/fj.201700359] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
Abstract
Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and β-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote β-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies β-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-β, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA; .,Department of Psychiatry and Department of Cell Biology, New York University Langone Medical Center, New York, New York, USA
| |
Collapse
|
19
|
Cheng F, Belting M, Fransson LÅ, Mani K. Nucleolin is a nuclear target of heparan sulfate derived from glypican-1. Exp Cell Res 2017; 354:31-39. [PMID: 28300561 DOI: 10.1016/j.yexcr.2017.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022]
Abstract
The recycling, S-nitrosylated heparan sulfate (HS) proteoglycan glypican-1 releases anhydromannose (anMan)-containing HS chains by a nitrosothiol-catalyzed cleavage in endosomes that can be constitutive or induced by ascorbate. The HS-anMan chains are then transported to the nucleus. A specific nuclear target for HS-anMan has not been identified. We have monitored endosome-to-nucleus trafficking of HS-anMan by deconvolution and confocal immunofluorescence microscopy using an anMan-specific monoclonal antibody in non-growing, ascorbate-treated, and growing, untreated, wild-type mouse embryonic fibroblasts and hypoxia-exposed Alzheimer mouse Tg2576 fibroblasts and human U87 glioblastoma cells. In all cells, nuclear HS-anMan targeted a limited number of sites of variable size where it colocalized with DNA and nucleolin, an established marker for nucleoli. HS-anMan also colocalized with ethynyl uridine-tagged nascent RNA and two acetylated forms of histone H3. Acute hypoxia increased the formation of HS-anMan in both Tg2576 and U87 cells. A portion of HS-anMan colocalized with nucleolin at small discrete sites, while most of the nucleolin and nascent RNA was dispersed. In U87 cells, HS-anMan, nucleolin and nascent RNA reassembled after prolonged hypoxia. Nucleolar HS may modulate synthesis and/or release of rRNA.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences, Section of Oncology and Pathology, Lund University, Lund, Sweden
| | - Lars-Åke Fransson
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| | - Katrin Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden.
| |
Collapse
|
20
|
Ricard-Blum S, Gondelaud F. [Shuttling from the extracellular matrix to the nucleus]. Biol Aujourdhui 2016; 210:37-44. [PMID: 27286579 DOI: 10.1051/jbio/2016007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 01/03/2023]
Abstract
Several enzymes secreted in the extracellular space, such as matrix metalloproteinases and lysyl oxidase, are internalized and translocated to the nucleus, where they may act as proteases and transcription factors to regulate gene expression and enhance apoptosis. Membrane proteoglycan syndecans, glycosaminoglycans and an anti-angiogenic matricryptin of collagen XVIII have also been identified in the nucleus. The nuclear entry of most extracellular proteins is likely mediated by nuclear localizing sequences. The molecular mechanisms of nuclear import, the physiopathological contexts, which induce it, and the biological roles played in vivo by extracellular proteins and proteoglycans are still underexplored.
Collapse
|
21
|
Plummer S, Van den Heuvel C, Thornton E, Corrigan F, Cappai R. The Neuroprotective Properties of the Amyloid Precursor Protein Following Traumatic Brain Injury. Aging Dis 2016; 7:163-79. [PMID: 27114849 PMCID: PMC4809608 DOI: 10.14336/ad.2015.0907] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/07/2015] [Indexed: 01/16/2023] Open
Abstract
Despite the significant health and economic burden that traumatic brain injury (TBI) places on society, the development of successful therapeutic agents have to date not translated into efficacious therapies in human clinical trials. Injury to the brain is ongoing after TBI, through a complex cascade of primary and secondary injury events, providing a valuable window of opportunity to help limit and prevent some of the severe consequences with a timely treatment. Of note, it has been suggested that novel treatments for TBI should be multifactorial in nature, mimicking the body's own endogenous repair response. Whilst research has historically focused on the role of the amyloid precursor protein (APP) in the pathogenesis of Alzheimer's disease, recent advances in trauma research have demonstrated that APP offers considerable neuroprotective properties following TBI, suggesting that APP is an ideal therapeutic candidate. Its acute upregulation following TBI has been shown to serve a beneficial role following trauma and has lead to significant advances in understanding the neuroprotective and neurotrophic functions of APP and its metabolites. Research has focused predominantly on the APP derivative sAPPα, which has consistently demonstrated neuroprotective and neurotrophic functions both in vitro and in vivo following various traumatic insults. Its neuroprotective activity has been narrowed down to a 15 amino acid sequence, and this region is linked to both heparan binding and growth-factor-like properties. It has been proposed that APP binds to heparan sulfate proteoglycans to exert its neuroprotective action. APP presents us with a novel therapeutic compound that could overcome many of the challenges that have stalled development of efficacious TBI treatments previously.
Collapse
Affiliation(s)
- Stephanie Plummer
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Corinna Van den Heuvel
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Emma Thornton
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Frances Corrigan
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Roberto Cappai
- Department of Pathology, the University of Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Cheng F, Bourseau-Guilmain E, Belting M, Fransson LÅ, Mani K. Hypoxia induces NO-dependent release of heparan sulfate in fibroblasts from the Alzheimer mouse Tg2576 by activation of nitrite reduction. Glycobiology 2016; 26:623-34. [DOI: 10.1093/glycob/cww007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022] Open
|
23
|
Suppression of glypican-1 autodegradation by NO-deprivation correlates with nuclear accumulation of amyloid beta in normal fibroblasts. Glycoconj J 2015; 32:675-84. [DOI: 10.1007/s10719-015-9616-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 11/25/2022]
|
24
|
Cheng F, Fransson LÅ, Mani K. Rapid nuclear transit and impaired degradation of amyloid β and glypican-1-derived heparan sulfate in Tg2576 mouse fibroblasts. Glycobiology 2014; 25:548-56. [DOI: 10.1093/glycob/cwu185] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|