1
|
Camillo-Andrade AC, Sales LA, Fischer JSG, Duran R, Santos MDM, Carvalho PC. Paired proteomic analysis reveals protein alterations in sun-exposed skin of professional drivers : 1Laboratory for structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Paraná, Brazil. Sci Rep 2025; 15:10955. [PMID: 40164647 PMCID: PMC11958692 DOI: 10.1038/s41598-024-82308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/04/2024] [Indexed: 04/02/2025] Open
Abstract
Professional drivers represent an ideal cohort for investigating the effects of solar radiation on skin due to their unique, asymmetric exposure to sun, a consequence of vehicle window orientations. Consequently, one side of the face is naturally subjected to more solar radiation, resulting in uneven sunlight exposure. This scenario supports a paired experimental design for precise within-individual comparisons, crucial for assessing sun exposure's impact on skin health, including signs of aging. Leveraging this approach, our study reveals sun-induced overexpression of proteins linked to photoaging through paired proteomic analysis, providing novel insights into the skin's adaptive responses to chronic solar exposure. Initially, our research focused on a dataset from ten male professional drivers, identifying a set upregulated proteins in sun-exposed skin compared to the less exposed side of the face. To validate these findings, we extended our investigation to a new cohort of seven female bus drivers. Our motivation in switching genders and utilizing different mass spectrometry equipment and sample preparation techniques was for assessing the robustness of our initial findings, encompassing not just sex differences but also methodological variations, and also for understanding the broader implications of our results for photodermatology. To enable this detailed analysis, we developed specialized software that allows precise paired proteomic analysis, significantly enhancing the robustness and clarity of our findings. Our results shortlisted keratins, S100A14, and F-box proteins-by remaining consistently overexpressed in sun-exposed skin-and hemoglobin subunit beta as downregulated across both cohorts. Our findings underscore the potential of proteomic techniques in advancing our understanding of the molecular dynamics of photoaging and highlight the value of selecting cohorts with specific exposure characteristics.
Collapse
Affiliation(s)
- Amanda C Camillo-Andrade
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Positivo University, Paraná, Brazil
| | - Lucas A Sales
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Juliana S G Fischer
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Rosario Duran
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marlon D M Santos
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil.
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| | - Paulo C Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil.
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
2
|
Molinero E, Pena RN, Estany J, Ros‐Freixedes R. Association between mitochondrial DNA copy number and production traits in pigs. J Anim Breed Genet 2025; 142:170-183. [PMID: 39189093 PMCID: PMC11812088 DOI: 10.1111/jbg.12894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/29/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Mitochondria are essential organelles in the regulation of cellular energetic metabolism. Mitochondrial DNA copy number (mtDNA_CN) can be used as a proxy for mitochondria number, size, and activity. The aims of our study are to evaluate the effect of mtDNA_CN and mitochondrial haploblocks on production traits in pigs, and to identify the genetic background of this cellular phenotype. We collected performance data of 234 pigs and extracted DNA from skeletal muscle. Whole-genome sequencing data was used to determine mtDNA_CN. We found positive correlations of muscle mtDNA_CN with backfat thickness at 207 d (+0.14; p-value = 0.07) and negative correlations with carcase loin thickness (-0.14; p-value = 0.03). Pigs with mtDNA_CN values below the lower quartile had greater loin thickness (+4.1 mm; p-value = 0.01) and lower backfat thickness (-1.1 mm; p-value = 0.08), which resulted in greater carcase lean percentage (+2.4%; p-value = 0.04), than pigs with mtDNA_CN values above the upper quartile. These results support the hypothesis that a reduction of mitochondrial activity is associated with greater feed efficiency. Higher mtDNA_CN was also positively correlated with higher meat ultimate pH (+0.19; p-value <0.01) but we did not observe significant difference for meat ultimate pH between the two groups with extreme mtDNA_CN. We found no association of the most frequent mitochondrial haploblocks with mtDNA_CN or the production traits, but several genomic regions that harbour potential candidate genes with functions related to mitochondrial biogenesis and homeostasis were associated with mtDNA_CN. These regions provide new insights into the genetic background of this cellular phenotype but it is still uncertain if such associations translate into noticeable effects on the production traits.
Collapse
Affiliation(s)
- Eduard Molinero
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| | - Ramona N. Pena
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| | - Joan Estany
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| | - Roger Ros‐Freixedes
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| |
Collapse
|
3
|
Bharathan NK, Mattheyses AL, Kowalczyk AP. The desmosome comes into focus. J Cell Biol 2024; 223:e202404120. [PMID: 39120608 PMCID: PMC11317759 DOI: 10.1083/jcb.202404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The desmosome is a cell-cell adhesive junction that provides integrity and mechanical resistance to tissues through its attachment to the intermediate filament cytoskeleton. Defects in desmosomes cause diseases impacting the heart, epidermis, and other epithelia. In this review, we provide a historical perspective on the discovery of the desmosome and how the evolution of cellular imaging technologies revealed insights into desmosome structure and function. We also discuss recent findings using contemporary imaging approaches that have informed the molecular order, three-dimensional architecture, and associations of desmosomes with organelles such as the endoplasmic reticulum. Finally, we provide an updated model of desmosome molecular organization and speculate upon novel functions of this cell junction as a signaling center for sensing mechanical and other forms of cell stress.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
4
|
Nyström JH, Heikkilä TRH, Thapa K, Pulli I, Törnquist K, Toivola DM. Colonocyte keratins stabilize mitochondria and contribute to mitochondrial energy metabolism. Am J Physiol Gastrointest Liver Physiol 2024; 327:G438-G453. [PMID: 38860856 PMCID: PMC11427106 DOI: 10.1152/ajpgi.00220.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Keratin intermediate filaments form dynamic filamentous networks, which provide mechanical stability, scaffolding, and protection against stress to epithelial cells. Keratins and other intermediate filaments have been increasingly linked to the regulation of mitochondrial function and homeostasis in different tissues and cell types. While deletion of keratin 8 (K8-/-) in mouse colon elicits a colitis-like phenotype, epithelial hyperproliferation, and blunted mitochondrial ketogenesis, the role of K8 in colonocyte mitochondrial function and energy metabolism is unknown. We used two K8 knockout mouse models and CRISPR/Cas9 K8-/- colorectal adenocarcinoma Caco-2 cells to answer this question. The results show that K8-/- colonocyte mitochondria in vivo are smaller and rounder and that mitochondrial motility is increased in K8-/- Caco-2 cells. Furthermore, K8-/- Caco-2 cells displayed diminished mitochondrial respiration and decreased mitochondrial membrane potential compared with controls, whereas glycolysis was not affected. The levels of mitochondrial respiratory chain complex proteins and mitochondrial regulatory proteins mitofusin-2 and prohibitin were decreased both in vitro in K8-/- Caco-2 cells and in vivo in K8-/- mouse colonocytes, and reexpression of K8 into K8-/- Caco-2 cells normalizes the mitofusin-2 levels. Mitochondrial Ca2+ is an important regulator of mitochondrial energy metabolism and homeostasis, and Caco-2 cells lacking K8 displayed decreased levels and altered dynamics of mitochondrial matrix and cytoplasmic Ca2+. In summary, these novel findings attribute an important role for colonocyte K8 in stabilizing mitochondrial shape and movement and maintaining mitochondrial respiration and Ca2+ signaling. Further, how these metabolically compromised colonocytes are capable of hyperproliferating presents an intriguing question for future studies.NEW & NOTEWORTHY In this study, we show that colonocyte intermediate filament protein keratin 8 is important for stabilizing mitochondria and maintaining mitochondrial energy metabolism, as keratin 8-deficient colonocytes display smaller, rounder, and more motile mitochondria, diminished mitochondrial respiration, and altered Ca2+ dynamics. Changes in fusion-regulating proteins are rescued with reexpression of keratin 8. These alterations in colonocyte mitochondrial homeostasis contribute to keratin 8-associated colitis pathophysiology.
Collapse
Affiliation(s)
- Joel H Nyström
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Taina R H Heikkilä
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Keshav Thapa
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ilari Pulli
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Kid Törnquist
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|
5
|
Steen K, Chen D, Wang F, Majumdar R, Chen S, Kumar S, Lombard DB, Weigert R, Zieman AG, Parent CA, Coulombe PA. A role for keratins in supporting mitochondrial organization and function in skin keratinocytes. Mol Biol Cell 2020; 31:1103-1111. [PMID: 32213122 PMCID: PMC7353162 DOI: 10.1091/mbc.e19-10-0565] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondria fulfill essential roles in ATP production, metabolic regulation, calcium signaling, generation of reactive oxygen species (ROS), and additional determinants of cellular health. Recent studies have highlighted a role for mitochondria during cell differentiation, including in skin epidermis. The observation of oxidative stress in keratinocytes from Krt16 null mouse skin, a model for pachyonychia congenita (PC)–associated palmoplantar keratoderma, prompted us to examine the role of Keratin (K) 16 protein and its partner K6 in regulating the structure and function of mitochondria. Electron microscopy revealed major anomalies in mitochondrial ultrastructure in late stage, E18.5, Krt6a/Krt6b null embryonic mouse skin. Follow-up studies utilizing biochemical, metabolic, and live imaging readouts showed that, relative to controls, skin keratinocytes null for Krt6a/Krt6b or Krt16 exhibit elevated ROS, reduced mitochondrial respiration, intracellular distribution differences, and altered movement of mitochondria within the cell. These findings highlight a novel role for K6 and K16 in regulating mitochondrial morphology, dynamics, and function and shed new light on the causes of oxidative stress observed in PC and related keratin-based skin disorders.
Collapse
Affiliation(s)
- Kaylee Steen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Desu Chen
- Laboratory for Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Fengrong Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Ritankar Majumdar
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Song Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Surinder Kumar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| | - Roberto Weigert
- Laboratory for Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Abigail G Zieman
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Carole A Parent
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109.,Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
6
|
Vetter A, Jahn K, Bouameur JE, Kiritsi D, Magin TM. Epidermolysis Bullosa Simplex Keratinocytes Show Disturbed Mitochondrial Positioning and Activity. J Invest Dermatol 2020; 140:1438-1442.e5. [PMID: 31958432 DOI: 10.1016/j.jid.2019.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Alyssa Vetter
- Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, Leipzig, Germany
| | - Kristin Jahn
- Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, Leipzig, Germany
| | - Jamal-Eddine Bouameur
- Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, Leipzig, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Faculty of Medicine, Medical Center- University of Freiburg, Freiburg, Germany
| | - Thomas M Magin
- Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
7
|
Klymkowsky MW. Filaments and phenotypes: cellular roles and orphan effects associated with mutations in cytoplasmic intermediate filament proteins. F1000Res 2019; 8. [PMID: 31602295 PMCID: PMC6774051 DOI: 10.12688/f1000research.19950.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Cytoplasmic intermediate filaments (IFs) surround the nucleus and are often anchored at membrane sites to form effectively transcellular networks. Mutations in IF proteins (IFps) have revealed mechanical roles in epidermis, muscle, liver, and neurons. At the same time, there have been phenotypic surprises, illustrated by the ability to generate viable and fertile mice null for a number of IFp-encoding genes, including vimentin. Yet in humans, the vimentin ( VIM) gene displays a high probability of intolerance to loss-of-function mutations, indicating an essential role. A number of subtle and not so subtle IF-associated phenotypes have been identified, often linked to mechanical or metabolic stresses, some of which have been found to be ameliorated by the over-expression of molecular chaperones, suggesting that such phenotypes arise from what might be termed "orphan" effects as opposed to the absence of the IF network per se, an idea originally suggested by Toivola et al. and Pekny and Lane.
Collapse
Affiliation(s)
- Michael W Klymkowsky
- Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
8
|
Hatzfeld M, Keil R, Magin TM. Desmosomes and Intermediate Filaments: Their Consequences for Tissue Mechanics. Cold Spring Harb Perspect Biol 2017; 9:a029157. [PMID: 28096266 PMCID: PMC5453391 DOI: 10.1101/cshperspect.a029157] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adherens junctions (AJs) and desmosomes connect the actin and keratin filament networks of adjacent cells into a mechanical unit. Whereas AJs function in mechanosensing and in transducing mechanical forces between the plasma membrane and the actomyosin cytoskeleton, desmosomes and intermediate filaments (IFs) provide mechanical stability required to maintain tissue architecture and integrity when the tissues are exposed to mechanical stress. Desmosomes are essential for stable intercellular cohesion, whereas keratins determine cell mechanics but are not involved in generating tension. Here, we summarize the current knowledge of the role of IFs and desmosomes in tissue mechanics and discuss whether the desmosome-keratin scaffold might be actively involved in mechanosensing and in the conversion of chemical signals into mechanical strength.
Collapse
Affiliation(s)
- Mechthild Hatzfeld
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - René Keil
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Thomas M Magin
- Institute of Biology, Division of Cell and Developmental Biology and Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
9
|
|
10
|
Kumar V, Bouameur JE, Bär J, Rice RH, Hornig-Do HT, Roop DR, Schwarz N, Brodesser S, Thiering S, Leube RE, Wiesner RJ, Vijayaraj P, Brazel CB, Heller S, Binder H, Löffler-Wirth H, Seibel P, Magin TM. A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity. J Cell Biol 2016; 211:1057-75. [PMID: 26644517 PMCID: PMC4674273 DOI: 10.1083/jcb.201404147] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epidermal keratin filaments are important components and organizers of the cornified envelope and regulate mitochondrial metabolism by modulating their membrane composition. Keratin intermediate filaments (KIFs) protect the epidermis against mechanical force, support strong adhesion, help barrier formation, and regulate growth. The mechanisms by which type I and II keratins contribute to these functions remain incompletely understood. Here, we report that mice lacking all type I or type II keratins display severe barrier defects and fragile skin, leading to perinatal mortality with full penetrance. Comparative proteomics of cornified envelopes (CEs) from prenatal KtyI−/− and KtyII−/−K8 mice demonstrates that absence of KIF causes dysregulation of many CE constituents, including downregulation of desmoglein 1. Despite persistence of loricrin expression and upregulation of many Nrf2 targets, including CE components Sprr2d and Sprr2h, extensive barrier defects persist, identifying keratins as essential CE scaffolds. Furthermore, we show that KIFs control mitochondrial lipid composition and activity in a cell-intrinsic manner. Therefore, our study explains the complexity of keratinopathies accompanied by barrier disorders by linking keratin scaffolds to mitochondria, adhesion, and CE formation.
Collapse
Affiliation(s)
- Vinod Kumar
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Jamal-Eddine Bouameur
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Janina Bär
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Hue-Tran Hornig-Do
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, 50931 Cologne, Germany
| | - Dennis R Roop
- Department of Dermatology, University of Colorado, Denver, CO 80045 Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Denver, CO 80045
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| | - Susanne Brodesser
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine Cologne, 50931 Cologne, Germany
| | - Sören Thiering
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine Cologne, 50931 Cologne, Germany
| | | | - Christina B Brazel
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Sandra Heller
- Center for Biotechnology and Biomedicine, 04103 Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Henry Löffler-Wirth
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Peter Seibel
- Center for Biotechnology and Biomedicine, 04103 Leipzig, Germany
| | - Thomas M Magin
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
11
|
Abstract
Keratins comprise the type I and type II intermediate filament-forming proteins and occur primarily in epithelial cells. They are encoded by 54 evolutionarily conserved genes (28 type I, 26 type II) and regulated in a pairwise and tissue type-, differentiation-, and context-dependent manner. Keratins serve multiple homeostatic and stress-enhanced mechanical and nonmechanical functions in epithelia, including the maintenance of cellular integrity, regulation of cell growth and migration, and protection from apoptosis. These functions are tightly regulated by posttranslational modifications as well as keratin-associated proteins. Genetically determined alterations in keratin-coding sequences underlie highly penetrant and rare disorders whose pathophysiology reflects cell fragility and/or altered tissue homeostasis. Moreover, keratin mutation or misregulation represents risk factors or genetic modifiers for several acute and chronic diseases. This chapter focuses on keratins that are expressed in skin epithelia, and details a number of basic protocols and assays that have proven useful for analyses being carried out in skin.
Collapse
Affiliation(s)
- Fengrong Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Abigail Zieman
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|