1
|
Wang S, Xiao Y, An X, Luo L, Gong K, Yu D. A comprehensive review of the literature on CD10: its function, clinical application, and prospects. Front Pharmacol 2024; 15:1336310. [PMID: 38389922 PMCID: PMC10881666 DOI: 10.3389/fphar.2024.1336310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
CD10, a zinc-dependent metalloprotease found on the cell surface, plays a pivotal role in an array of physiological and pathological processes including cardiovascular regulation, immune function, fetal development, pain response, oncogenesis, and aging. Recognized as a biomarker for hematopoietic and tissue stem cells, CD10 has garnered attention for its prognostic potential in the progression of leukemia and various solid tumors. Recent studies underscore its regulatory significance and therapeutic promise in combating Alzheimer's disease (AD), and it is noted for its protective role in preventing heart failure (HF), obesity, and type-2 diabetes. Furthermore, CD10/substance P interaction has also been shown to contribute to the pain signaling regulation and immunomodulation in diseases such as complex regional pain syndrome (CRPS) and osteoarthritis (OA). The emergence of COVID-19 has sparked interest in CD10's involvement in the disease's pathogenesis. Given its association with multiple disease states, CD10 is a prime therapeutic target; inhibitors targeting CD10 are now being advanced as therapeutic agents. This review compiles recent and earlier literature on CD10, elucidating its physicochemical attributes, tissue-specific expression, and molecular functions. Furthermore, it details the association of CD10 with various diseases and the clinical advancements of its inhibitors, providing a comprehensive overview of its growing significance in medical research.
Collapse
Affiliation(s)
- Shudong Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yinghui Xiao
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Luo
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kejian Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Pourmadadi M, Mahdi Eshaghi M, Ostovar S, Mohammadi Z, K. Sharma R, Paiva-Santos AC, Rahmani E, Rahdar A, Pandey S. Innovative nanomaterials for cancer diagnosis, imaging, and therapy: Drug deliveryapplications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
3
|
Caraway CA, Gaitsch H, Wicks EE, Kalluri A, Kunadi N, Tyler BM. Polymeric Nanoparticles in Brain Cancer Therapy: A Review of Current Approaches. Polymers (Basel) 2022; 14:2963. [PMID: 35890738 PMCID: PMC9322801 DOI: 10.3390/polym14142963] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
Translation of novel therapies for brain cancer into clinical practice is of the utmost importance as primary brain tumors are responsible for more than 200,000 deaths worldwide each year. While many research efforts have been aimed at improving survival rates over the years, prognosis for patients with glioblastoma and other primary brain tumors remains poor. Safely delivering chemotherapeutic drugs and other anti-cancer compounds across the blood-brain barrier and directly to tumor cells is perhaps the greatest challenge in treating brain cancer. Polymeric nanoparticles (NPs) are powerful, highly tunable carrier systems that may be able to overcome those obstacles. Several studies have shown appropriately-constructed polymeric NPs cross the blood-brain barrier, increase drug bioavailability, reduce systemic toxicity, and selectively target central nervous system cancer cells. While no studies relating to their use in treating brain cancer are in clinical trials, there is mounting preclinical evidence that polymeric NPs could be beneficial for brain tumor therapy. This review includes a variety of polymeric NPs and how their associated composition, surface modifications, and method of delivery impact their capacity to improve brain tumor therapy.
Collapse
Affiliation(s)
- Chad A. Caraway
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| | - Hallie Gaitsch
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
- NIH-Oxford-Cambridge Scholars Program, Wellcome—MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Elizabeth E. Wicks
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
- University of Mississippi School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Anita Kalluri
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| | - Navya Kunadi
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| | - Betty M. Tyler
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| |
Collapse
|
4
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Spencer B, Rissman RA, Overk C, Masliah E. Novel Brain-Penetrating Single Chain Antibodies Directed Against 3RTau for the Treatment of Alzheimer's Disease and Related Dementias. Methods Mol Biol 2022; 2383:447-457. [PMID: 34766306 DOI: 10.1007/978-1-0716-1752-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Alzheimer's disease (AD), Pick's disease, fronto-temporal lobar degeneration, cortico-basal degeneration, and primary age related tauopathy are examples of neurodegenerative disorders with tau accumulation and jointly referred as "tauopathies." The mechanisms through which tau leads to neurodegeneration are not fully understood but include conversion into toxic oligomers and protofibrils, cell-to-cell propagation, post-transcriptional modifications and as a mediator of cell death signals among others. Potential therapeutics includes reducing tau synthesis (e.g., anti-sense); targeting selective tau species and aggregates or blocking cell-to-cell transmission (e.g., antibodies) or by promoting clearance of tau (e.g., autophagy activators). Among them, immunotherapy is currently one of the approaches most actively explored including active, passive, and cellular. A potential problem with immunotherapy has been the trafficking of the antibodies into the CNS. In this chapter, we describe a method for the production and testing of viral vector driven, brain-penetrating, single chain antibodies that specifically recognize 3RTau. These single chain antibodies are modified by the addition of a fragment of the apoB protein to facilitate trafficking into the brain, once in the CNS these antibody fragments recognize tau with potential value for the treatment of AD and related dementias.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Cassia Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA.
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Qi J, Yao L. Modulators of neurolysin: promising agents for the treatment of tumor and neurological diseases. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02761-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Terstappen GC, Meyer AH, Bell RD, Zhang W. Strategies for delivering therapeutics across the blood-brain barrier. Nat Rev Drug Discov 2021; 20:362-383. [PMID: 33649582 DOI: 10.1038/s41573-021-00139-y] [Citation(s) in RCA: 559] [Impact Index Per Article: 139.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Achieving sufficient delivery across the blood-brain barrier is a key challenge in the development of drugs to treat central nervous system (CNS) disorders. This is particularly the case for biopharmaceuticals such as monoclonal antibodies and enzyme replacement therapies, which are largely excluded from the brain following systemic administration. In recent years, increasing research efforts by pharmaceutical and biotechnology companies, academic institutions and public-private consortia have resulted in the evaluation of various technologies developed to deliver therapeutics to the CNS, some of which have entered clinical testing. Here we review recent developments and challenges related to selected blood-brain barrier-crossing strategies - with a focus on non-invasive approaches such as receptor-mediated transcytosis and the use of neurotropic viruses, nanoparticles and exosomes - and analyse their potential in the treatment of CNS disorders.
Collapse
Affiliation(s)
| | - Axel H Meyer
- DMPK and Bioanalytical Research, AbbVie Deutschland GmbH & Co KG, Ludwigshafen, Germany
| | - Robert D Bell
- Rare Disease Research Unit, Worldwide Research, Development and Medicine, Pfizer, Cambridge, MA, USA
| | - Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
8
|
You YX, Shahar S, Rajab NF, Haron H, Yahya HM, Mohamad M, Din NC, Maskat MY. Effects of 12 Weeks Cosmos caudatus Supplement among Older Adults with Mild Cognitive Impairment: A Randomized, Double-Blind and Placebo-Controlled Trial. Nutrients 2021; 13:nu13020434. [PMID: 33572715 PMCID: PMC7912368 DOI: 10.3390/nu13020434] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/10/2023] Open
Abstract
Cosmos caudatus (CC) contains high flavonoids and might be beneficial in neuroprotection. It has the potential to prevent neurodegenerative diseases. Therefore, we aimed to investigate the effects of 12 weeks of Cosmos caudatus supplement on cognitive function, mood status, blood biochemical profiles and biomarkers among older adults with mild cognitive impairment (MCI) through a double-blind, placebo-controlled trial. The subjects were randomized into CC supplement (n = 24) and placebo group (n = 24). Each of them consumed one capsule of CC supplement (250 mg of CC/capsule) or placebo (500 mg maltodextrin/capsule) twice daily for 12 weeks. Cognitive function and mood status were assessed at baseline, 6th week, and 12th week using validated neuropsychological tests. Blood biochemical profiles and biomarkers were measured at baseline and 12th week. Two-way mixed analysis of variance (ANOVA) analysis showed significant improvements in mini mental state examination (MMSE) (partial η2 = 0.150, p = 0.049), tension (partial η2 = 0.191, p = 0.018), total mood disturbance (partial η2 = 0.171, p = 0.028) and malondialdehyde (MDA) (partial η2 = 0.097, p = 0.047) following CC supplementation. In conclusion, 12 weeks CC supplementation potentially improved global cognition, tension, total mood disturbance, and oxidative stress among older adults with MCI. Larger sample size and longer period of intervention with incorporation of metabolomic approach should be conducted to further investigate the underlying mechanism of CC supplementation in neuroprotection.
Collapse
Affiliation(s)
- Yee Xing You
- Dietetics Programme and Centre for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Suzana Shahar
- Dietetics Programme and Centre for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
- Correspondence: ; Tel.: +60-3-9289-7651
| | - Nor Fadilah Rajab
- Biomedical Science Programme and Centre for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Hasnah Haron
- Nutritional Sciences Programme and Centre for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.H.); (H.M.Y.)
| | - Hanis Mastura Yahya
- Nutritional Sciences Programme and Centre for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.H.); (H.M.Y.)
| | - Mazlyfarina Mohamad
- Diagnostic Imaging and Radiotherapy Programme and Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Normah Che Din
- Health Psychology Programme, Centre of Rehabilitation and Special Needs, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Mohamad Yusof Maskat
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia;
| |
Collapse
|
9
|
He P, Schulz P, Sierks MR. A conformation-specific antibody against oligomeric β-amyloid restores neuronal integrity in a mouse model of Alzheimer's disease. J Biol Chem 2021; 296:100241. [PMID: 33376140 PMCID: PMC7948963 DOI: 10.1074/jbc.ra120.015327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/03/2020] [Accepted: 12/29/2020] [Indexed: 11/06/2022] Open
Abstract
Conformationally distinct aggregates of the amyloid β (Aβ) peptide accumulate in brains of patients with Alzheimer's disease (AD), but the roles of the different aggregates in disease progression are not clear. We previously isolated two single-chain variable domain antibody fragments (scFvs), C6T and A4, that selectively bind different toxic conformational variants of oligomeric Aβ. Here, we utilize these scFvs to localize the presence of these Aβ variants in human AD brain and to demonstrate their potential as therapeutic agents for treating AD. Both A4 and C6T label oligomeric Aβ in extracellular amyloid plaques, whereas C6T also labels intracellular oligomeric Aβ in human AD brain tissue and in an AD mouse model. For therapeutic studies, the A4 and C6T scFvs were expressed in the AD mice by viral infection of liver cells. The scFvs were administered at 2 months of age, and mice sacrificed at 9 months. The scFvs contained a peptide tag to facilitate transport across the blood brain barrier. While treatment with C6T only slightly decreased Aβ deposits and plaque-associated inflammation, it restored neuronal integrity to WT levels, significantly promoted growth of new neurons, and impressively rescued survival rates to WT levels. Treatment with A4 on the other hand significantly decreased Aβ deposits but did not significantly decrease neuroinflammation or promote neuronal integrity, neurogenesis, or survival rate. These results suggest that the specific Aβ conformation targeted in therapeutic applications greatly affects the outcome, and the location of the targeted Aβ variants may also play a critical factor.
Collapse
Affiliation(s)
- Ping He
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona, USA
| | - Philip Schulz
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona, USA
| | - Michael R Sierks
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
10
|
Ma X, Huang M, Zheng M, Dai C, Song Q, Zhang Q, Li Q, Gu X, Chen H, Jiang G, Yu Y, Liu X, Li S, Wang G, Chen H, Lu L, Gao X. ADSCs-derived extracellular vesicles alleviate neuronal damage, promote neurogenesis and rescue memory loss in mice with Alzheimer's disease. J Control Release 2020; 327:688-702. [PMID: 32931898 DOI: 10.1016/j.jconrel.2020.09.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
Despite the various mechanisms that involved in the pathogenesis of Alzheimer's disease (AD), neuronal damage and synaptic dysfunction are the key events leading to cognition impairment. Therefore, neuroprotection and neurogenesis would provide essential alternatives to the rescue of AD cognitive function. Here we demonstrated that extracellular vesicles secreted from adipose-derived mesenchymal stem cells (ADSCs-derived EVs, abbreviated as EVs) entered the brain quickly and efficiently following intranasal administration, and majorly accumulated in neurons within the central nervous system (CNS). Proteomics analysis showed that EVs contained multiple proteins possessing neuroprotective and neurogenesis activities, and neuronal RNA sequencing showed genes enrichment in neuroprotection and neurogenesis following the treatment with EVs. As a result, EVs exerted powerful neuroprotective effect on Aβ1-42 oligomer or glutamate-induced neuronal toxicity, effectively ameliorated neurologic damage in the whole brain areas, remarkably increased newborn neurons and powerfully rescued memory deficits in APP/PS1 transgenic mice. EVs also reduced Aβ deposition and decreased microglia activation although in a less extent. Collectively, here we provide direct evidence that ADSCs-derived EVs may potentially serve as an alternative for AD therapy through alleviating neuronal damage and promoting neurogenesis.
Collapse
Affiliation(s)
- Xinyi Ma
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Meng Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mengna Zheng
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengxiang Dai
- Cellular Biomedicine Group, Inc., Shanghai 201210, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| | - Xiao Gu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huan Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ye Yu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shan Dong Road, Shanghai 200001, China
| | - Xuesong Liu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shan Dong Road, Shanghai 200001, China
| | - Suke Li
- Cellular Biomedicine Group, Inc., Shanghai 201210, China
| | - Gang Wang
- Department of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shan Dong Road, Shanghai 200001, China.
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
11
|
Spencer B, Trinh I, Rockenstein E, Mante M, Florio J, Adame A, El-Agnaf OMA, Kim C, Masliah E, Rissman RA. Systemic peptide mediated delivery of an siRNA targeting α-syn in the CNS ameliorates the neurodegenerative process in a transgenic model of Lewy body disease. Neurobiol Dis 2019; 127:163-177. [PMID: 30849508 PMCID: PMC6588505 DOI: 10.1016/j.nbd.2019.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative disorders of the aging population are characterized by progressive accumulation of neuronal proteins such as α-synuclein (α-syn) in Parkinson's Disease (PD) and Amyloid ß (Aß) and Tau in Alzheimer's disease (AD) for which no treatments are currently available. The ability to regulate the expression at the gene transcription level would be beneficial for reducing the accumulation of these proteins or regulating expression levels of other genes in the CNS. Short interfering RNA molecules can bind specifically to target RNAs and deliver them for degradation. This approach has shown promise therapeutically in vitro and in vivo in mouse models of PD and AD and other neurological disorders; however, delivery of the siRNA to the CNS in vivo has been achieved primarily through intra-cerebral or intra-thecal injections that may be less amenable for clinical translation; therefore, alternative approaches for delivery of siRNAs to the brain is needed. Recently, we described a small peptide from the envelope protein of the rabies virus (C2-9r) that was utilized to deliver an siRNA targeting α-syn across the blood brain barrier (BBB) following intravenous injection. This approach showed reduced expression of α-syn and neuroprotection in a toxic mouse model of PD. However, since receptor-mediated delivery is potentially saturable, each allowing the delivery of a limited number of molecules, we identified an alternative peptide for the transport of nucleotides across the BBB based on the apolipoprotein B (apoB) protein targeted to the family of low-density lipoprotein receptors (LDL-R). We used an 11-amino acid sequence from the apoB protein (ApoB11) that, when coupled with a 9-amino acid arginine linker, can transport siRNAs across the BBB to neuronal and glial cells. To examine the value of this peptide mediated oligonucleotide delivery system for PD, we delivered an siRNA targeting the α-syn (siα-syn) in a transgenic mouse model of PD. We found that ApoB11 was effective (comparable to C2-9r) at mediating the delivery of siα-syn into the CNS, co-localized to neurons and glial cells and reduced levels of α-syn protein translation and accumulation. Delivery of ApoB11/siα-syn was accompanied by protection from degeneration of selected neuronal populations in the neocortex, limbic system and striato-nigral system and reduced neuro-inflammation. Taken together, these results suggest that systemic delivery of oligonucleotides targeting α-syn using ApoB11 might be an interesting alternative strategy worth considering for the experimental treatment of synucleinopathies.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Ivy Trinh
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Michael Mante
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Jazmin Florio
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Omar M A El-Agnaf
- Neurological Disorders Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Changyoun Kim
- Laboratory of Neurogenetics National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Laboratory of Neurogenetics National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Division of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System San Diego, CA, USA.
| |
Collapse
|
12
|
Bispecific Antibody Fragment Targeting APP and Inducing α-Site Cleavage Restores Neuronal Health in an Alzheimer's Mouse Model. Mol Neurobiol 2019; 56:7420-7432. [PMID: 31041656 DOI: 10.1007/s12035-019-1597-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
The amyloid β (Aβ) peptide, correlated with development of Alzheimer's disease (AD), is produced by sequential proteolytic cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. Alternative proteolytic cleavage of APP by α-secretase prevents formation of Aβ peptide and produces a neuroprotective protein, a soluble fragment of APPα (sAPPα). We previously generated a single-chain variable domain antibody fragment (scFv) that binds APP at the β-secretase cleavage site and blocks cleavage of APP (iBsec1), and a second scFv which has been engineered to have α-secretase-like activity that increases α-secretase cleavage of APP (Asec1a) and showed that a bispecific antibody (Diab) combining both iBsec1 and Asec1a constructs protects mammalian cells from oxidative stress. Here, we show that the diabody is an effective therapeutic agent in a mouse model of AD. An apolipoprotein B (ApoB) binding domain peptide was genetically added to the diabody to facilitate transfer across the blood-brain barrier, and a recombinant human adeno-associated virus 2/8 (rAAV2/8) was used as a vector to express the gene constructs in a APP/PS1 mouse model of AD. The diabody increased levels of sAPPα, decreased Aβ deposits and levels of oligomeric Aβ, increased neuronal health as indicated by MAP2 and synaptophysin staining, increased hippocampal neurogenesis, and most importantly dramatically increased survival rates compared with untreated mice or mice treated only with the β-secretase inhibitor. These results indicate that altering APP processing to inhibit β-site activity while simultaneously promoting α-secretase processing provides substantially increased neuronal benefits compared with inhibition of β-secretase processing alone and represents a promising new therapeutic approach for treating AD.
Collapse
|
13
|
Gleitz HF, Liao AY, Cook JR, Rowlston SF, Forte GM, D'Souza Z, O'Leary C, Holley RJ, Bigger BW. Brain-targeted stem cell gene therapy corrects mucopolysaccharidosis type II via multiple mechanisms. EMBO Mol Med 2019; 10:emmm.201708730. [PMID: 29884617 PMCID: PMC6034129 DOI: 10.15252/emmm.201708730] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The pediatric lysosomal storage disorder mucopolysaccharidosis type II is caused by mutations in IDS, resulting in accumulation of heparan and dermatan sulfate, causing severe neurodegeneration, skeletal disease, and cardiorespiratory disease. Most patients manifest with cognitive symptoms, which cannot be treated with enzyme replacement therapy, as native IDS does not cross the blood-brain barrier. We tested a brain-targeted hematopoietic stem cell gene therapy approach using lentiviral IDS fused to ApoEII (IDS.ApoEII) compared to a lentivirus expressing normal IDS or a normal bone marrow transplant. In mucopolysaccharidosis II mice, all treatments corrected peripheral disease, but only IDS.ApoEII mediated complete normalization of brain pathology and behavior, providing significantly enhanced correction compared to IDS. A normal bone marrow transplant achieved no brain correction. Whilst corrected macrophages traffic to the brain, secreting IDS/IDS.ApoEII enzyme for cross-correction, IDS.ApoEII was additionally more active in plasma and was taken up and transcytosed across brain endothelia significantly better than IDS via both heparan sulfate/ApoE-dependent receptors and mannose-6-phosphate receptors. Brain-targeted hematopoietic stem cell gene therapy provides a promising therapy for MPS II patients.
Collapse
Affiliation(s)
- Hélène Fe Gleitz
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ai Yin Liao
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - James R Cook
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Samuel F Rowlston
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Gabriella Ma Forte
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Zelpha D'Souza
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Claire O'Leary
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rebecca J Holley
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Brian W Bigger
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Kobayashi T, Nagai M, Da Silva JD, Galaburda AM, Rosenberg SH, Hatakeyama W, Kuwajima Y, Kondo H, Ishikawa-Nagai S. Retrograde transport of masseter muscle-derived neprilysin to hippocampus. Neurosci Lett 2019; 698:180-185. [PMID: 30639512 DOI: 10.1016/j.neulet.2019.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/02/2018] [Accepted: 01/10/2019] [Indexed: 11/27/2022]
Abstract
Although the effects of neprilysin (NEP), also called CD10, on the clearance of Alzheimer's disease (AD)-associated amyloid-β (Aβ) have been reported, NEP is not made in the brain, and the mechanism for the transport of NEP to the brain has not been investigated. Our hypothesis is that muscle packages NEP in exosomes in response to a neuromuscular signal and sends it to the brain via retrograde axonal transport. The masseter muscle (MM) and the trigeminal nerve (TGN) are good candidates for this mechanism by virtue of their proximity to the brain. The aim of this study was to trace the NEP protein from the MM, through the TGN, and to the hippocampus (HPC) in muscle contraction models in vitro and in vivo. NEP expression in mouse tissue lysates was analyzed by RT-PCR and Western blot. Four-week-old mice were perfused to remove blood NEP contamination. The MM expressed substantial levels of NEP protein and mRNA. On the other hand, a remarkably high level of NEP protein was measured in the TGN in the absence of mRNA. NEP protein, without the corresponding mRNA, was also detected in the HPC. These results suggested that the MM derived NEP was taken up by the TGN, which in turn permitted NEP access to the central nervous system and within it the HPC. When the MM was induced to contract by electric stimulation in freshly euthanized mice, NEP protein decreased in the MM in a stimulus time-dependent manner, while that in the TGN and the HPC increased sequentially. Furthermore, NIR-labeled exosomes tracked along the same route. Finally, carbachol induced secretion of exosomal NEP in C2C12-derived myotube cells. These results support our hypothesis that MM-derived NEP is transported along the TGN to reach the HPC following electrical or cholinergic stimulation.
Collapse
Affiliation(s)
- Takuya Kobayashi
- Department of Oral Medicine, Infection, and Immunity Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA, United States
| | - Masazumi Nagai
- Department of Oral Medicine, Infection, and Immunity Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA, United States.
| | - John D Da Silva
- Department of Restorative Dentistry and Biomaterials Sciences Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA, United States
| | - Albert M Galaburda
- Department of Neurology Harvard Medical School and Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, United States
| | - Sara H Rosenberg
- Department of Restorative Dentistry University of Illinois at Chicago, Chicago, IL, United States
| | - Wataru Hatakeyama
- Department of Oral Medicine, Infection, and Immunity Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA, United States
| | - Yukinori Kuwajima
- Department of Oral Medicine, Infection, and Immunity Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA, United States
| | - Hisatomo Kondo
- Department of Prosthodontics and Oral Implantology School of Dentistry Iwate Medical University, 1-17 Uchimal, Morioka, Iwate, Japan
| | - Shigemi Ishikawa-Nagai
- Department of Oral Medicine, Infection, and Immunity Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA, United States
| |
Collapse
|
15
|
Pascua-Maestro R, González E, Lillo C, Ganfornina MD, Falcón-Pérez JM, Sanchez D. Extracellular Vesicles Secreted by Astroglial Cells Transport Apolipoprotein D to Neurons and Mediate Neuronal Survival Upon Oxidative Stress. Front Cell Neurosci 2019; 12:526. [PMID: 30687015 PMCID: PMC6335244 DOI: 10.3389/fncel.2018.00526] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicle (EV)-mediated glia-to-neuron communication has been recognized in a growing number of physiological and pathological situations. They transport complex sets of molecules that can be beneficial or detrimental for the receiving cell. As in other areas of biology, their analysis is revolutionizing the field of neuroscience, since fundamental signaling processes are being re-evaluated, and applications for neurodegenerative disease therapies have emerged. Using human astrocytic and differentiated neuronal cell lines, we demonstrate that a classical neuroprotective protein, Apolipoprotein D (ApoD), expressed by glial cells and known to promote functional integrity and survival of neurons, is exclusively transported by EVs from astrocytes to neurons, where it gets internalized. Indeed, we demonstrate that conditioned media derived from ApoD-knock-out (KO) astrocytes exert only a partial autocrine protection from oxidative stress (OS) challenges, and that EVs are required for ApoD-positive astrocytic cell line derived medium to exert full neuroprotection. When subfractionation of EVs is performed, ApoD is revealed as a very specific marker of the exosome-containing fractions. These discoveries help us reframe our understanding of the neuroprotective role of this lipid binding protein and open up new research avenues to explore the use of systemically administered ApoD-loaded exosomes that can cross the blood-brain barrier to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Raquel Pascua-Maestro
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Esperanza González
- Exosomes Group, Metabolomics Unit and Platform, CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Derio, Spain
| | - Concepción Lillo
- Instituto de Neurociencias de Castilla y León, IBSAL, Universidad de Salamanca, Salamanca, Spain
| | - Maria D Ganfornina
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Juan Manuel Falcón-Pérez
- Exosomes Group, Metabolomics Unit and Platform, CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Diego Sanchez
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| |
Collapse
|
16
|
Spencer B, Brüschweiler S, Sealey-Cardona M, Rockenstein E, Adame A, Florio J, Mante M, Trinh I, Rissman RA, Konrat R, Masliah E. Selective targeting of 3 repeat Tau with brain penetrating single chain antibodies for the treatment of neurodegenerative disorders. Acta Neuropathol 2018; 136:69-87. [PMID: 29934874 PMCID: PMC6112111 DOI: 10.1007/s00401-018-1869-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly affecting more than 5 million people in the U.S. AD is characterized by the accumulation of β-amyloid (Aβ) and Tau in the brain, and is manifested by severe impairments in memory and cognition. Therefore, removing tau pathology has become one of the main therapeutic goals for the treatment of AD. Tau (tubulin-associated unit) is a major neuronal cytoskeletal protein found in the CNS encoded by the gene MAPT. Alternative splicing generates two major isoforms of tau containing either 3 or 4 repeat (R) segments. These 3R or 4RTau species are differentially expressed in neurodegenerative diseases. Previous studies have been focused on reducing Tau accumulation with antibodies against total Tau, 4RTau or phosphorylated isoforms. Here, we developed a brain penetrating, single chain antibody that specifically recognizes a pathogenic 3RTau. This single chain antibody was modified by the addition of a fragment of the apoB protein to facilitate trafficking into the brain, once in the CNS these antibody fragments reduced the accumulation of 3RTau and related deficits in a transgenic mouse model of tauopathy. NMR studies showed that the single chain antibody recognized an epitope at aa 40-62 of 3RTau. This single chain antibody reduced 3RTau transmission and facilitated the clearance of Tau via the endosomal-lysosomal pathway. Together, these results suggest that targeting 3RTau with highly specific, brain penetrating, single chain antibodies might be of potential value for the treatment of tauopathies such as Pick's Disease.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Sven Brüschweiler
- Department of Computational and Structural Biology, University of Vienna, Vienna, Austria
| | - Marco Sealey-Cardona
- Department of Computational and Structural Biology, University of Vienna, Vienna, Austria
| | - Edward Rockenstein
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Jazmin Florio
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Michael Mante
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Ivy Trinh
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, USA
| | - Robert Konrat
- Department of Computational and Structural Biology, University of Vienna, Vienna, Austria
| | - Eliezer Masliah
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA.
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA.
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 7201 Wisconsin Ave, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Molino Y, David M, Varini K, Jabès F, Gaudin N, Fortoul A, Bakloul K, Masse M, Bernard A, Drobecq L, Lécorché P, Temsamani J, Jacquot G, Khrestchatisky M. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. FASEB J 2017; 31:1807-1827. [PMID: 28108572 DOI: 10.1096/fj.201600827r] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/03/2017] [Indexed: 01/16/2023]
Abstract
The blood-brain barrier (BBB) prevents the entry of many drugs into the brain and, thus, is a major obstacle in the treatment of CNS diseases. There is some evidence that the LDL receptor (LDLR) is expressed at the BBB and may participate in the transport of endogenous ligands from blood to brain, a process referred to as receptor-mediated transcytosis. We previously described a family of peptide vectors that were developed to target the LDLR. In the present study, in vitro BBB models that were derived from wild-type and LDLR-knockout animals (ldlr-/- ) were used to validate the specific LDLR-dependent transcytosis of LDL via a nondegradative route. We next showed that LDLR-targeting peptide vectors, whether in fusion or chemically conjugated to an Ab Fc fragment, promote binding to apical LDLR and transendothelial transfer of the Fc fragment across BBB monolayers via the same route as LDL. Finally, we demonstrated in vivo that LDLR significantly contributes to the brain uptake of vectorized Fc. We thus provide further evidence that LDLR is a relevant receptor for CNS drug delivery via receptor-mediated transcytosis and that the peptide vectors we developed have the potential to transport drugs, including proteins or Ab based, across the BBB.-Molino, Y., David, M., Varini, K., Jabès, F., Gaudin, N., Fortoul, A., Bakloul, K., Masse, M., Bernard, A., Drobecq, L., Lécorché, P., Temsamani, J., Jacquot, G., Khrestchatisky, M. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier.
Collapse
Affiliation(s)
- Yves Molino
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Marion David
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Karine Varini
- Aix Marseille Université, Centre National de la Recherche Scientifique, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France
| | - Françoise Jabès
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Nicolas Gaudin
- Aix Marseille Université, Centre National de la Recherche Scientifique, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France
| | - Aude Fortoul
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Karima Bakloul
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Maxime Masse
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Anne Bernard
- Aix Marseille Université, Centre National de la Recherche Scientifique, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France
| | - Lucile Drobecq
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | | | - Jamal Temsamani
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | | | - Michel Khrestchatisky
- Aix Marseille Université, Centre National de la Recherche Scientifique, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France
| |
Collapse
|
18
|
Current Strategies for the Delivery of Therapeutic Proteins and Enzymes to Treat Brain Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 137:1-28. [DOI: 10.1016/bs.irn.2017.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Abstract
The amyloid β-protein (Aβ) plays an indispensable role in the pathogenesis of Alzheimer disease (AD). Aβ is subject to proteolytic degradation by a diverse array of peptidases and proteinases, known collectively as Aβ-degrading proteases (AβDPs). A growing number of AβDPs have been identified that impact Aβ powerfully and in a surprising variety of ways. As such, AβDPs hold considerable therapeutic potential for the treatment and/or prevention of AD. Here, we critically review the relative merits of therapeutic strategies targeting AβDPs compared with current Aβ-lowering strategies focused on immunotherapies and pharmacological modulation of Aβ-producing enzymes. Several innovative advances have increased considerably the feasibility of delivering AβDPs to the brain or enhancing their activity in a non-invasive manner. We argue that therapies targeting AβDPs offer numerous potential advantages that should be explored through continued research into this promising field.
Collapse
Affiliation(s)
- Malcolm A Leissring
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Office: 5212 Natural Sciences II, Irvine, CA, 92697-1450, USA.
| |
Collapse
|
20
|
Spencer B, Potkar R, Metcalf J, Thrin I, Adame A, Rockenstein E, Masliah E. Systemic Central Nervous System (CNS)-targeted Delivery of Neuropeptide Y (NPY) Reduces Neurodegeneration and Increases Neural Precursor Cell Proliferation in a Mouse Model of Alzheimer Disease. J Biol Chem 2015; 291:1905-1920. [PMID: 26620558 DOI: 10.1074/jbc.m115.678185] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 01/07/2023] Open
Abstract
Neuropeptide Y (NPY) is one of the most abundant protein transmitters in the central nervous system with roles in a variety of biological functions including: food intake, cardiovascular regulation, cognition, seizure activity, circadian rhythms, and neurogenesis. Reduced NPY and NPY receptor expression is associated with numerous neurodegenerative disorders including Alzheimer disease (AD). To determine whether replacement of NPY could ameliorate some of the neurodegenerative and behavioral pathology associated with AD, we generated a lentiviral vector expressing NPY fused to a brain transport peptide (apoB) for widespread CNS delivery in an APP-transgenic (tg) mouse model of AD. The recombinant NPY-apoB effectively reversed neurodegenerative pathology and behavioral deficits although it had no effect on accumulation of Aβ. The subgranular zone of the hippocampus showed a significant increase in proliferation of neural precursor cells without further differentiation into neurons. The neuroprotective and neurogenic effects of NPY-apoB appeared to involve signaling via ERK and Akt through the NPY R1 and NPY R2 receptors. Thus, widespread CNS-targeted delivery of NPY appears to be effective at reversing the neuronal and glial pathology associated with Aβ accumulation while also increasing NPC proliferation. Overall, increased delivery of NPY to the CNS for AD might be an effective therapy especially if combined with an anti-Aβ therapeutic.
Collapse
Affiliation(s)
| | | | - Jeff Metcalf
- From the Departments of Neuroscience and; Pathology, University of California, San Diego, California 92102
| | - Ivy Thrin
- From the Departments of Neuroscience and
| | | | | | - Eliezer Masliah
- From the Departments of Neuroscience and; Pathology, University of California, San Diego, California 92102.
| |
Collapse
|
21
|
Jha NK, Jha SK, Kumar D, Kejriwal N, Sharma R, Ambasta RK, Kumar P. Impact of Insulin Degrading Enzyme and Neprilysin in Alzheimer’s Disease Biology: Characterization of Putative Cognates for Therapeutic Applications. J Alzheimers Dis 2015; 48:891-917. [DOI: 10.3233/jad-150379] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Niraj Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Saurabh Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Noopur Kejriwal
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Renu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Rashmi K. Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
- Department of Neurology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
22
|
Spencer B, Valera E, Rockenstein E, Trejo-Morales M, Adame A, Masliah E. A brain-targeted, modified neurosin (kallikrein-6) reduces α-synuclein accumulation in a mouse model of multiple system atrophy. Mol Neurodegener 2015; 10:48. [PMID: 26394760 PMCID: PMC4580347 DOI: 10.1186/s13024-015-0043-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022] Open
Abstract
Background Multiple system atrophy (MSA) is a progressive, neurodegenerative disease characterized by parkinsonism, resistance to dopamine therapy, ataxia, autonomic dysfunction, and pathological accumulation of α-synuclein (α-syn) in oligodendrocytes. Neurosin (kallikrein-6) is a serine protease capable of cleaving α-syn in the CNS, and we have previously shown that lentiviral (LV) vector delivery of neurosin into the brain of a mouse model of dementia with Lewy body/ Parkinson’s disease reduces the accumulation of α-syn and improves neuronal synaptic integrity. Results In this study, we investigated the ability of a modified, systemically delivered neurosin to reduce the levels of α-syn in oligodendrocytes and reduce the cell-to-cell spread of α-syn to glial cells in a mouse model of MSA (MBP-α-syn). We engineered a viral vector that expresses a neurosin genetically modified for increased half-life (R80Q mutation) that also contains a brain-targeting sequence (apoB) for delivery into the CNS. Peripheral administration of the LV-neurosin-apoB to the MBP-α-syn tg model resulted in accumulation of neurosin-apoB in the CNS, reduced accumulation of α-syn in oligodendrocytes and astrocytes, improved myelin sheath formation in the corpus callosum and behavioral improvements. Conclusion Thus, the modified, brain-targeted neurosin may warrant further investigation as potential therapy for MSA. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0043-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Elvira Valera
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| | | | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA. .,Department of Pathology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
23
|
New Insights into Epigenetic and Pharmacological Regulation of Amyloid-Degrading Enzymes. Neurochem Res 2015; 41:620-30. [PMID: 26376806 DOI: 10.1007/s11064-015-1703-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Currently, deficit of amyloid β-peptide (Aβ) clearance from the brain is considered as one of the possible causes of amyloid accumulation and neuronal death in the sporadic form of Alzheimer's disease (AD). Aβ clearance can involve either specific proteases present in the brain or Aβ-binding/transport proteins. Among amyloid-degrading enzymes the most intensively studied are neprilysin (NEP) and insulin-degrading enzyme (IDE). Since ageing and development of brain pathologies is often accompanied by a deficit in the levels of expression and activity of these enzymes in the brain, there is an urgent need to understand the mechanisms involved in their regulation. We have recently reported that NEP and also an Aβ-transport protein, transthyretin are epigenetically co-regulated by the APP intracellular domain (AICD) and this regulation depends on the cell type and APP695 isoform expression in a process that can be regulated by the tyrosine kinase inhibitor, Gleevec. We have now extended our work and shown that, unlike NEP, another amyloid-degrading enzyme, IDE, is not related to over-expression of APP695 in neuroblastoma SH-SY5Y cells but is up-regulated by APP751 and APP770 isoforms independently of AICD but correlating with reduced HDAC1 binding to its promoter. Studying the effect of the nuclear retinoid X receptor agonist, bexarotene, on NEP and IDE expression, we have found that both enzymes can be up-regulated by this compound but this mechanism is not APP-isoform specific and does not involve AICD but, on the contrary, affects HDAC1 occupancy on the NEP gene promoter. These new insights into the mechanisms of NEP and IDE regulation suggest possible pharmacological targets in developing AD therapies.
Collapse
|
24
|
Grüninger F. Invited review: Drug development for tauopathies. Neuropathol Appl Neurobiol 2015; 41:81-96. [PMID: 25354646 DOI: 10.1111/nan.12192] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022]
Abstract
Many different approaches to treating tauopathies are currently being explored, with a few compounds already in clinical development (including small molecules such as anti-aggregation compound LMTX and active vaccines AADvac1 and ACI-35). This review aims to summarize the status of the clinical candidates and to highlight the emerging areas of research that hold promise for drug development. Tau is post-translationally modified in several different ways (phosphorylated, acetylated, glycosylated and truncated). The extent of these modifications can be manipulated to influence tau aggregation state and pathogenesis and the enzymes involved provide tractable targets for drug intervention. In addition, modulation of tau expression levels is an attractive therapeutic approach. Finally, the recently described prion-like spreading of tau between cells opens up novel avenues from the tau drug development perspective. The review compares the merits of small-molecule and antibody-based therapies and emphasizes the need for amenable clinical biomarkers for drug development, particularly PET imaging.
Collapse
Affiliation(s)
- F Grüninger
- Pharmaceutical Research and Early Development, NORD Disease & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, CH-4070, Basel, Switzerland
| |
Collapse
|
25
|
Lauzon MA, Daviau A, Marcos B, Faucheux N. Growth factor treatment to overcome Alzheimer's dysfunctional signaling. Cell Signal 2015; 27:1025-38. [PMID: 25744541 DOI: 10.1016/j.cellsig.2015.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
The number of people suffering from Alzheimer's disease (AD) will increase as the world population ages, creating a huge socio-economic burden. The three pathophysiological hallmarks of AD are the cholinergic system dysfunction, the β-amyloid peptide deposition and the Tau protein hyperphosphorylation. Current treatments have only transient effects and each tends to concentrate on a single pathophysiological aspect of AD. This review first provides an overall view of AD in terms of its pathophysiological symptoms and signaling dysfunction. We then examine the therapeutic potential of growth factors (GFs) by showing how they can overcome the dysfunctional cell signaling that occurs in AD. Finally, we discuss new alternatives to GFs that help overcome the problem of brain uptake, such as small peptides, with evidence from some of our unpublished data on human neuronal cell line.
Collapse
Affiliation(s)
- Marc-Antoine Lauzon
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Alex Daviau
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Bernard Marcos
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Nathalie Faucheux
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada.
| |
Collapse
|
26
|
Spencer B, Emadi S, Desplats P, Eleuteri S, Michael S, Kosberg K, Shen J, Rockenstein E, Patrick C, Adame A, Gonzalez T, Sierks M, Masliah E. ESCRT-mediated uptake and degradation of brain-targeted α-synuclein single chain antibody attenuates neuronal degeneration in vivo. Mol Ther 2014; 22:1753-1767. [PMID: 25008355 PMCID: PMC4428402 DOI: 10.1038/mt.2014.129] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/01/2014] [Indexed: 12/22/2022] Open
Abstract
Parkinson's disease and dementia with Lewy bodies are neurodegenerative disorders characterized by accumulation of α-synuclein (α-syn). Recently, single-chain fragment variables (scFVs) have been developed against individual conformational species of α-syn. Unlike more traditional monoclonal antibodies, these scFVs will not activate or be endocytosed by Fc receptors. For this study, we investigated an scFV directed against oligomeric α-syn fused to the LDL receptor-binding domain from apolipoprotein B (apoB). The modified scFV showed enhanced brain penetration and was imported into neuronal cells through the endosomal sorting complex required for transport (ESCRT) pathway, leading to lysosomal degradation of α-syn aggregates. Further analysis showed that the scFV was effective at ameliorating neurodegenerative pathology and behavioral deficits observed in the mouse model of dementia with Lewy bodies/Parkinson's disease. Thus, the apoB modification had the effect of both increasing accumulation of the scFV in the brain and directing scFV/α-syn complexes for degradation through the ESCRT pathway, leading to improved therapeutic potential of immunotherapy.
Collapse
Affiliation(s)
| | - Sharareh Emadi
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona, USA
| | - Paula Desplats
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Simona Eleuteri
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Sarah Michael
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Kori Kosberg
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Jay Shen
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Christina Patrick
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Tania Gonzalez
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Michael Sierks
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA; Department of Pathology, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
27
|
Nalivaeva NN, Belyaev ND, Kerridge C, Turner AJ. Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimer's disease. Front Aging Neurosci 2014; 6:235. [PMID: 25278875 PMCID: PMC4166351 DOI: 10.3389/fnagi.2014.00235] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022] Open
Abstract
Abnormal elevation of amyloid β-peptide (Aβ) levels in the brain is the primary trigger for neuronal cell death specific to Alzheimer’s disease (AD). It is now evident that Aβ levels in the brain are manipulable due to a dynamic equilibrium between its production from the amyloid precursor protein (APP) and removal by amyloid clearance proteins. Clearance can be either enzymic or non-enzymic (binding/transport proteins). Intriguingly several of the main amyloid-degrading enzymes (ADEs) are members of the M13 peptidase family (neprilysin (NEP), NEP2 and the endothelin converting enzymes (ECE-1 and -2)). A distinct metallopeptidase, insulin-degrading enzyme (IDE), also contributes to Aβ degradation in the brain. The ADE family currently embraces more than 20 members, both membrane-bound and soluble, and of differing cellular locations. NEP plays an important role in brain function terminating neuropeptide signals. Its decrease in specific brain areas with age or after hypoxia, ischaemia or stroke contribute significantly to the development of AD pathology. The recently discovered mechanism of epigenetic regulation of NEP (and other genes) by the APP intracellular domain (AICD) and its dependence on the cell type and APP isoform expression suggest possibilities for selective manipulation of NEP gene expression in neuronal cells. We have also observed that another amyloid-clearing protein, namely transthyretin (TTR), is also regulated in the neuronal cell by a mechanism similar to NEP. Dependence of amyloid clearance proteins on histone deacetylases and the ability of HDAC inhibitors to up-regulate their expression in the brain opens new avenues for developing preventive strategies in AD.
Collapse
Affiliation(s)
- Natalia N Nalivaeva
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK ; I.M.Sechenov Institute of Evolutionary Physiology and Biochemistry St. Petersburg, Russia
| | - Nikolai D Belyaev
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK
| | - Caroline Kerridge
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK ; Neurodegeneration DHT, Lilly, Erl Wood Manor Windlesham, Surrey, UK
| | - Anthony J Turner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK
| |
Collapse
|
28
|
Leissring MA. Aβ degradation-the inside story. Front Aging Neurosci 2014; 6:229. [PMID: 25206334 PMCID: PMC4143592 DOI: 10.3389/fnagi.2014.00229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/09/2014] [Indexed: 12/03/2022] Open
Affiliation(s)
- Malcolm A Leissring
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine Irvine, CA, USA
| |
Collapse
|