1
|
Wu Y, Li Y, Zhang H, Ye J, Li M, Zhou J, Xie X, Yin H, Chen M, Yang G, Fan S, Shi B, Jiang H, Shi Q, Ma H. S100PBP interacts with nucleoporin TPR and facilitates XY crossover formation in mice. EMBO Rep 2025; 26:2280-2299. [PMID: 40204913 PMCID: PMC12069632 DOI: 10.1038/s44319-025-00391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/26/2024] [Accepted: 01/28/2025] [Indexed: 04/11/2025] Open
Abstract
During meiosis, at least one crossover is selectively generated per pair of homologous chromosomes through homologous recombination to ensure their faithful segregation. The molecular mechanisms controlling meiotic recombination, particularly in XY chromosomes that share a tiny region of homology (i.e., the pseudoautosomal region, PAR), remain poorly understood. Here, we identify S100PBP as a key modulator of both XY and autosomal recombination in mice. S100pbp-knockout mice exhibit male infertility and spermatogenesis arrest at meiotic metaphase I, resulting from a drastic reduction in XY crossovers. This failure in XY crossover formation is due to a reduction in TEX11/M1AP-bound recombination intermediates at the PAR. By contrast, disruption of S100PBP significantly increases the number of recombination intermediates and crossovers on autosomes. Co-immunoprecipitation mass spectrometry revealed that S100PBP interacts with the nucleoporin TPR. Furthermore, S100PBP is localized specifically to the nuclear pores of meiocytes, likely in a TPR-dependent manner. These findings demonstrate that S100PBP promotes XY crossover formation while limiting excess autosomal crossovers and shed light on the potential role of nuclear pores in regulating meiotic recombination.
Collapse
Affiliation(s)
- Yufan Wu
- Centre for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Centre, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yang Li
- Centre for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Centre, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Huan Zhang
- Centre for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Centre, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jingwei Ye
- Centre for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Centre, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ming Li
- Centre for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Centre, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jianteng Zhou
- Centre for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Centre, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xuefeng Xie
- Centre for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Centre, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hao Yin
- Centre for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Centre, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02114, USA
| | - Min Chen
- Centre for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Centre, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Gang Yang
- Centre for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Centre, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Suixing Fan
- Centre for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Centre, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Baolu Shi
- Centre for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Centre, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hanwei Jiang
- Centre for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Centre, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Qinghua Shi
- Centre for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Centre, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Hui Ma
- Centre for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Centre, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
2
|
Xiong X, Feng S, Ma X, Liu K, Gui Y, Chen B, Fan X, Wang F, Wang X, Yuan S. hnRNPC Functions with HuR to Regulate Alternative Splicing in an m6A-Dependent Manner and is Essential for Meiosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412196. [PMID: 39921484 PMCID: PMC11967818 DOI: 10.1002/advs.202412196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/07/2025] [Indexed: 02/10/2025]
Abstract
N6-methyladenosine (m6A) and its reader proteins are involved in pre-mRNA processing and play a variety of roles in numerous biological processes. However, much remains to be understood about the regulation of m6A and the function of its specific readers during meiotic processes. Here, this study shows that the potential m6A reader protein hnRNPC is essential for both male and female meiosis in mice. Germ cell-specific knockout of Hnrnpc causes meiotic arrest at pachynema in male mice. Specifically, hnRNPC-deficient males show abnormal meiosis initiation and defective meiotic progression, ultimately leading to meiotic arrest at the pachytene stage. Interestingly, hnRNPC-null females show similar meiotic defects to males. Mechanistically, this study discovers that in male germ cells, hnRNPC works with HuR to directly bind and modulate alternative splicing of meiotic-related genes (e.g., Sycp1, Brca1, and Smc5) in an m6A-dependent manner during spermatogenesis. Collectively, these findings reveal hnRNPC as a critical factor for meiosis and contribute to a mechanistic understanding of the hnRNPC-HuR interaction in alternative splicing of mRNAs during germ cell development.
Collapse
Affiliation(s)
- Xinxin Xiong
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Laboratory Animal CenterHuazhong University of Science and TechnologyWuhan430030China
| | - Xixiang Ma
- Laboratory Animal CenterHuazhong University of Science and TechnologyWuhan430030China
| | - Kuan Liu
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Bei Chen
- Reproductive Medicine CenterRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Xu Fan
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Laboratory Animal CenterHuazhong University of Science and TechnologyWuhan430030China
- Shenzhen Huazhong University of Science and Technology Research InstituteShenzhen518057China
| |
Collapse
|
3
|
Yin H, Zhou Z, Fu C. Fance deficiency impaired DNA damage repair of prospermatogonia and altered the repair dynamics of spermatocytes. Reprod Biol Endocrinol 2024; 22:113. [PMID: 39210375 PMCID: PMC11360510 DOI: 10.1186/s12958-024-01284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Non-obstructive azoospermia (NOA) is the most severe form of male infertility and affects approximately 1% of men worldwide. Fanconi anemia (FA) genes were known for their essential role in DNA repair and growing evidence showed the crucial role of FA pathway in NOA. However, the underlying mechanisms for Fance deficiency lead to a serious deficit and delayed maturation of male germ cells remain unclear. METHODS We used Fance deficiency mouse model for experiments, and collected testes or epididymides from mice at 8 weeks (8W), 17.5 days post coitum (dpc), and postnatal 11 (P11) to P23. The mice referred to three genotypes: wildtype (Fance +/+), heterozygous (Fance +/-), and homozygous (Fance -/-). Hematoxylin and eosin staining, immunofluorescence staining, and surface spread of spermatocytes were performed to explore the mechanisms for NOA of Fance -/- mice. Each experiment was conducted with a minimum of three biological replicates and Kruskal-Wallis with Dunn's correction was used for statistical analysis. RESULTS In the present study, we found that the adult male Fance -/- mice exhibited massive germ cell loss in seminiferous tubules and dramatically decreased sperms in epididymides. During the embryonic period, the number of Fance -/- prospermatogonia decreased significantly, without impacts on the proliferation (Ki-67, PCNA) and apoptosis (cleaved PARP, cleaved Caspase 3) status. The DNA double-strand breaks (γH2AX) increased at the cellular level of Fance -/- prospermatogonia, potentially associated with the increased nonhomologous end joining (53BP1) and decreased homologous recombination (RAD51) activity. Besides, Fance deficiency impeded the progression of meiotic prophase I of spermatocytes. The mechanisms entailed the reduced recruitment of the DNA end resection protein RPA2 at leptotene and recombinases RAD51 and DMC1 at zygotene. It also involved impaired removal of RPA2 at zygotene and FANCD2 foci at pachytene. And the accelerated initial formation of crossover at early pachytene, which is indicated by MLH1. CONCLUSIONS Fance deficiency caused massive male germ cell loss involved in the imbalance of DNA damage repair in prospermatogonia and altered dynamics of proteins in homologous recombination, DNA end resection, and crossover, providing new insights into the etiology and molecular basis of NOA.
Collapse
Affiliation(s)
- Huan Yin
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Gynecological Disease in Hunan Province, Hunan Province, Changsha, China
| | - Zhixian Zhou
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Gynecological Disease in Hunan Province, Hunan Province, Changsha, China
| | - Chun Fu
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, China.
- Clinical Research Center for Gynecological Disease in Hunan Province, Hunan Province, Changsha, China.
| |
Collapse
|
4
|
Xu H, Zhang Y, Wang C, Fu Z, Lv J, Yang Y, Zhang Z, Qi Y, Meng K, Yuan J, Wang X. Research progress on the fanconi anemia signaling pathway in non-obstructive azoospermia. Front Endocrinol (Lausanne) 2024; 15:1393111. [PMID: 38846492 PMCID: PMC11153779 DOI: 10.3389/fendo.2024.1393111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.
Collapse
Affiliation(s)
- Haohui Xu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zhuoyan Fu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Jing Lv
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yufang Yang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Mental Health, Jining Medical University, Jining, China
| | - Zihan Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yuanmin Qi
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Jinxiang Yuan
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| |
Collapse
|
5
|
Bai L, Li P, Xiang Y, Jiao X, Chen J, Song L, Liang Z, Liu Y, Zhu Y, Lu LY. BRCA1 safeguards genome integrity by activating chromosome asynapsis checkpoint to eliminate recombination-defective oocytes. Proc Natl Acad Sci U S A 2024; 121:e2401386121. [PMID: 38696471 PMCID: PMC11087798 DOI: 10.1073/pnas.2401386121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 05/04/2024] Open
Abstract
In the meiotic prophase, programmed DNA double-strand breaks are repaired by meiotic recombination. Recombination-defective meiocytes are eliminated to preserve genome integrity in gametes. BRCA1 is a critical protein in somatic homologous recombination, but studies have suggested that BRCA1 is dispensable for meiotic recombination. Here we show that BRCA1 is essential for meiotic recombination. Interestingly, BRCA1 also has a function in eliminating recombination-defective oocytes. Brca1 knockout (KO) rescues the survival of Dmc1 KO oocytes far more efficiently than removing CHK2, a vital component of the DNA damage checkpoint in oocytes. Mechanistically, BRCA1 activates chromosome asynapsis checkpoint by promoting ATR activity at unsynapsed chromosome axes in Dmc1 KO oocytes. Moreover, Brca1 KO also rescues the survival of asynaptic Spo11 KO oocytes. Collectively, our study not only unveils an unappreciated role of chromosome asynapsis in eliminating recombination-defective oocytes but also reveals the dual functions of BRCA1 in safeguarding oocyte genome integrity.
Collapse
Affiliation(s)
- Long Bai
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Peng Li
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Yu Xiang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Xiaofei Jiao
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Jiyuan Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Licun Song
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Zhongyang Liang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Yidan Liu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Yimin Zhu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
- Zhejiang University Cancer Center, Hangzhou310029, China
| |
Collapse
|
6
|
Afonso J, Lima AO, de Sousa MAP, de Athayde FRF, Fortes MRS. Transcription factors and miRNA act as contrary regulators of gene expression in the testis and epididymis of Bos indicus animals. Gene 2024; 899:148133. [PMID: 38181930 DOI: 10.1016/j.gene.2024.148133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Spermatogenesis is highly conserved among mammalians, but its gene expression and regulatory profile are not entirely known. As transcription factors (TFs) and miRNAs are crucial for gene expression regulation, identifying genes negatively regulated by miRNAs and positively regulated by TFs in the testis and epididymis can provide a deeper understanding of gene expression and regulatory patterns. To do this, we used expression data coming from RNA-Seq and miRNA-Seq experiments made with biopsies from testicular parenchyma, head of the epididymis, and tail of the epididymis of four Brahman bulls. We identified miRNA differentially expressed (DE) by comparing the three distinct tissues. A co-expression analysis combined with a regulatory impact factor approach identified miRNAs and TFs with regulatory impact over gene expression regulation in the Bos indicus tissues studied. We identified 116 DE miRNAs, 206 miRNAs and 237 TFs with a significant regulatory impact on mRNA patterns in the tissues' comparisons. bta-miR-196b was the only DE miRNA for all tissue comparisons and it may be a regulator of spermatogenesis through its links with adipogenesis and insulin biosynthesis. DE genes and TFs involved in contrary regulations between the epididymis head and testis parenchyma were associated with spermatogenesis, sexual reproduction, and sperm motility. Our results provide possible mechanisms, governed by the contrary effect of miRNA and TF, leading to the differential expression between the studied tissues. We have demonstrated that our predictions of miRNAs and TFs co-regulations over target DE genes can retrieve known regulatory mechanisms and predict new ones that merit further validation.
Collapse
Affiliation(s)
- Juliana Afonso
- Embrapa Pecuária Sudeste, São Carlos, São Paulo, Brazil; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Andressa Oliveira Lima
- Division of Medical Genetics, Department of Genome Sciences, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Marco Antonio Perpétuo de Sousa
- Departamento de Produção e Saúde Animal, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Medicina Veterinária, Araçatuba, Brazil
| | - Flávia Regina Florêncio de Athayde
- Departamento de Produção e Saúde Animal, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Medicina Veterinária, Araçatuba, Brazil
| | | |
Collapse
|
7
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
8
|
Dias Nunes J, Demeestere I, Devos M. BRCA Mutations and Fertility Preservation. Int J Mol Sci 2023; 25:204. [PMID: 38203374 PMCID: PMC10778779 DOI: 10.3390/ijms25010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Hereditary cancers mostly affect the adolescent and young adult population (AYA) at reproductive age. Mutations in BReast CAncer (BRCA) genes are responsible for the majority of cases of hereditary breast and ovarian cancer. BRCA1 and BRCA2 act as tumor suppressor genes as they are key regulators of DNA repair through homologous recombination. Evidence of the accumulation of DNA double-strand break has been reported in aging oocytes, while BRCA expression decreases, leading to the hypothesis that BRCA mutation may impact fertility. Moreover, patients exposed to anticancer treatments are at higher risk of fertility-related issues, and BRCA mutations could exacerbate the treatment-induced depletion of the ovarian reserve. In this review, we summarized the functions of both genes and reported the current knowledge on the impact of BRCA mutations on ovarian ageing, premature ovarian insufficiency, female fertility preservation strategies and insights about male infertility. Altogether, this review provides relevant up-to-date information on the impact of BRCA1/2 mutations on fertility. Notably, BRCA-mutated patients should be adequately counselled for fertility preservation strategies, considering their higher sensitivity to chemotherapy gonadotoxic effects.
Collapse
Affiliation(s)
- Joana Dias Nunes
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.D.N.); (M.D.)
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.D.N.); (M.D.)
- Fertility Clinic, HUB-Erasme Hospital, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Melody Devos
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.D.N.); (M.D.)
| |
Collapse
|
9
|
Zhu H, Cheng Y, Wang X, Yang X, Liu M, Liu J, Liu S, Wang H, Zhang A, Li R, Ye C, Zhang J, Gao J, Fu X, Wu B. Gss deficiency causes age-related fertility impairment via ROS-triggered ferroptosis in the testes of mice. Cell Death Dis 2023; 14:845. [PMID: 38114454 PMCID: PMC10730895 DOI: 10.1038/s41419-023-06359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Glutathione synthetase (GSS) catalyzes the final step in the synthesis of glutathione (GSH), a well-established antioxidant. Research on the specific roles of the Gss gene during spermatogenesis remains limited due to the intricate structure of testis. In this study, we identified pachytene spermatocytes as the primary site of GSS expression and generated a mouse model with postnatal deletion of Gss using Stra8-Cre (S8) to investigate the role of GSS in germ cells. The impact of Gss knockout on reducing male fertility is age-dependent and caused by ferroptosis in the testis. The 2-month-old S8/Gss-/- male mice exhibited normal fertility, due to a compensatory increase in GPX4, which prevented the accumulation of ROS. With aging, there was a decline in GPX4 and an increase in ALOX15 levels observed in 8-month-old S8/Gss-/- mice, resulting in the accumulation of ROS, lipid peroxidation, and ultimately testicular ferroptosis. We found that testicular ferroptosis did not affect spermatogonia, but caused meiosis disruption and acrosome heterotopia. Then the resulting aberrant sperm showed lower concentration and abnormal morphology, leading to reduced fertility. Furthermore, these injuries could be functionally rescued by inhibiting ferroptosis through intraperitoneal injection of GSH or Fer-1. In summary, Gss in germ cells play a crucial role in the resistance to oxidative stress injury in aged mice. Our findings deepen the understanding of ferroptosis during spermatogenesis and suggest that inhibiting ferroptosis may be a potential strategy for the treatment of male infertility.
Collapse
Affiliation(s)
- Haixia Zhu
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Yin Cheng
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Xianmei Wang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Xing Yang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Min Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Jun Liu
- Shandong Aimeng Biological Technology Co., Ltd, Jinan, 250023, China
| | - Shuqiao Liu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Hongxiang Wang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Runze Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Chao Ye
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Jian Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China.
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China.
| | - Xiaolong Fu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China.
| | - Bin Wu
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China.
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
10
|
Durfee C, Temiz NA, Levin-Klein R, Argyris PP, Alsøe L, Carracedo S, Alonso de la Vega A, Proehl J, Holzhauer AM, Seeman ZJ, Liu X, Lin YHT, Vogel RI, Sotillo R, Nilsen H, Harris RS. Human APOBEC3B promotes tumor development in vivo including signature mutations and metastases. Cell Rep Med 2023; 4:101211. [PMID: 37797615 PMCID: PMC10591044 DOI: 10.1016/j.xcrm.2023.101211] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/14/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
The antiviral DNA cytosine deaminase APOBEC3B has been implicated as a source of mutation in many cancers. However, despite years of work, a causal relationship has yet to be established in vivo. Here, we report a murine model that expresses tumor-like levels of human APOBEC3B. Animals expressing full-body APOBEC3B appear to develop normally. However, adult males manifest infertility, and older animals of both sexes show accelerated rates of carcinogenesis, visual and molecular tumor heterogeneity, and metastasis. Both primary and metastatic tumors exhibit increased frequencies of C-to-T mutations in TC dinucleotide motifs consistent with the established biochemical activity of APOBEC3B. Enrichment for APOBEC3B-attributable single base substitution mutations also associates with elevated levels of insertion-deletion mutations and structural variations. APOBEC3B catalytic activity is required for all of these phenotypes. Together, these studies provide a cause-and-effect demonstration that human APOBEC3B is capable of driving both tumor initiation and evolution in vivo.
Collapse
Affiliation(s)
- Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rena Levin-Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Prokopios P Argyris
- Division of Oral and Maxillofacial Pathology, College of Dentistry, Ohio State University, Columbus, OH 43210, USA
| | - Lene Alsøe
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Sergio Carracedo
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Alicia Alonso de la Vega
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Joshua Proehl
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Anna M Holzhauer
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary J Seeman
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xingyu Liu
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yu-Hsiu T Lin
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Hilde Nilsen
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
11
|
Tsui V, Lyu R, Novakovic S, Stringer JM, Dunleavy JE, Granger E, Semple T, Leichter A, Martelotto LG, Merriner DJ, Liu R, McNeill L, Zerafa N, Hoffmann ER, O’Bryan MK, Hutt K, Deans AJ, Heierhorst J, McCarthy DJ, Crismani W. Fancm has dual roles in the limiting of meiotic crossovers and germ cell maintenance in mammals. CELL GENOMICS 2023; 3:100349. [PMID: 37601968 PMCID: PMC10435384 DOI: 10.1016/j.xgen.2023.100349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/30/2023] [Accepted: 06/02/2023] [Indexed: 08/22/2023]
Abstract
Meiotic crossovers are required for accurate chromosome segregation and producing new allelic combinations. Meiotic crossover numbers are tightly regulated within a narrow range, despite an excess of initiating DNA double-strand breaks. Here, we reveal the tumor suppressor FANCM as a meiotic anti-crossover factor in mammals. We use unique large-scale crossover analyses with both single-gamete sequencing and pedigree-based bulk-sequencing datasets to identify a genome-wide increase in crossover frequencies in Fancm-deficient mice. Gametogenesis is heavily perturbed in Fancm loss-of-function mice, which is consistent with the reproductive defects reported in humans with biallelic FANCM mutations. A portion of the gametogenesis defects can be attributed to the cGAS-STING pathway after birth. Despite the gametogenesis phenotypes in Fancm mutants, both sexes are capable of producing offspring. We propose that the anti-crossover function and role in gametogenesis of Fancm are separable and will inform diagnostic pathways for human genomic instability disorders.
Collapse
Affiliation(s)
- Vanessa Tsui
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| | - Ruqian Lyu
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Stevan Novakovic
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jessica M. Stringer
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Jessica E.M. Dunleavy
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Elissah Granger
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Tim Semple
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - Anna Leichter
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - Luciano G. Martelotto
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - D. Jo Merriner
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Ruijie Liu
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Lucy McNeill
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Nadeen Zerafa
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Eva R. Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Moira K. O’Bryan
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Karla Hutt
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Andrew J. Deans
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
- Genome Stability Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jörg Heierhorst
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
- Molecular Genetics Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Davis J. McCarthy
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Wayne Crismani
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Durfee C, Temiz NA, Levin-Klein R, Argyris PP, Alsøe L, Carracedo S, de la Vega AA, Proehl J, Holzhauer AM, Seeman ZJ, Lin YHT, Vogel RI, Sotillo R, Nilsen H, Harris RS. Human APOBEC3B promotes tumor heterogeneity in vivo including signature mutations and metastases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529970. [PMID: 36865194 PMCID: PMC9980288 DOI: 10.1101/2023.02.24.529970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
The antiviral DNA cytosine deaminase APOBEC3B has been implicated as a source of mutation in many different cancers. Despite over 10 years of work, a causal relationship has yet to be established between APOBEC3B and any stage of carcinogenesis. Here we report a murine model that expresses tumor-like levels of human APOBEC3B after Cre-mediated recombination. Animals appear to develop normally with full-body expression of APOBEC3B. However, adult males manifest infertility and older animals of both sexes show accelerated rates of tumorigenesis (mostly lymphomas or hepatocellular carcinomas). Interestingly, primary tumors also show overt heterogeneity, and a subset spreads to secondary sites. Both primary and metastatic tumors exhibit increased frequencies of C-to-T mutations in TC dinucleotide motifs consistent with the established biochemical activity of APOBEC3B. Elevated levels of structural variation and insertion-deletion mutations also accumulate in these tumors. Together, these studies provide the first cause-and-effect demonstration that human APOBEC3B is an oncoprotein capable of causing a wide range of genetic changes and driving tumor formation in vivo .
Collapse
Affiliation(s)
- Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Rena Levin-Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Prokopios P Argyris
- Division of Oral and Maxillofacial Pathology, College of Dentistry, Ohio State University, Columbus, Ohio, USA, 43210
| | - Lene Alsøe
- Department of Clinical Molecular Biology, University of Oslo, 0318, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, N-0424 Oslo, Norway
| | - Sergio Carracedo
- Department of Clinical Molecular Biology, University of Oslo, 0318, Oslo, Norway
| | - Alicia Alonso de la Vega
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL)
| | - Joshua Proehl
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Anna M Holzhauer
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Zachary J Seeman
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Yu-Hsiu T Lin
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL)
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo, 0318, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, N-0424 Oslo, Norway
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| |
Collapse
|
13
|
Biswas K, Mohammed A, Sharan SK, Shoemaker RH. Genetically engineered mouse models for hereditary cancer syndromes. Cancer Sci 2023; 114:1800-1815. [PMID: 36715493 PMCID: PMC10154891 DOI: 10.1111/cas.15737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Advances in molecular diagnostics have led to improved diagnosis and molecular understanding of hereditary cancers in the clinic. Improving the management, treatment, and potential prevention of cancers in carriers of predisposing mutations requires preclinical experimental models that reflect the key pathogenic features of the specific syndrome associated with the mutations. Numerous genetically engineered mouse (GEM) models of hereditary cancer have been developed. In this review, we describe the models of Lynch syndrome and hereditary breast and ovarian cancer syndrome, the two most common hereditary cancer predisposition syndromes. We focus on Lynch syndrome models as illustrative of the potential for using mouse models to devise improved approaches to prevention of cancer in a high-risk population. GEM models are an invaluable tool for hereditary cancer models. Here, we review GEM models for some hereditary cancers and their potential use in cancer prevention studies.
Collapse
Affiliation(s)
- Kajal Biswas
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| | - Altaf Mohammed
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
14
|
DNA repair protein FANCD2 has both ubiquitination-dependent and ubiquitination-independent functions during germ cell development. J Biol Chem 2023; 299:102905. [PMID: 36642183 PMCID: PMC9971320 DOI: 10.1016/j.jbc.2023.102905] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
When DNA interstrand crosslink lesions occur, a core complex of Fanconi anemia proteins promotes the ubiquitination of FANCD2 and FANCI, which recruit downstream factors to repair the lesion. However, FANCD2 maintains genome stability not only through its ubiquitination-dependent but also its ubiquitination-independent functions in various DNA damage response pathways. Increasing evidence suggests that FANCD2 is essential for fertility, but its ubiquitination-dependent and ubiquitination-independent roles during germ cell development are not well characterized. In this study, we analyzed germ cell development in Fancd2 KO and ubiquitination-deficient mutant (Fancd2K559R/K559R) mice. We showed that in the embryonic stage, both the ubiquitination-dependent and ubiquitination-independent functions of FANCD2 were required for the expansion of primordial germ cells and establishment of the reproductive reserve by reducing transcription-replication conflicts and thus maintaining genome stability in primordial germ cells. Furthermore, we found that during meiosis in spermatogenesis, FANCD2 promoted chromosome synapsis and regulated crossover formation independently of its ubiquitination, but that both ubiquitinated and nonubiquitinated FANCD2 functioned in programmed double strand break repair. Finally, we revealed that on meiotic XY chromosomes, H3K4me2 accumulation required ubiquitination-independent functionality of FANCD2, while the regulation of H3K9me2 and H3K9me3 depended on FANCD2 ubiquitination. Taken together, our findings suggest that FANCD2 has distinct functions that are both dependent on and independent of its ubiquitination during germ cell development.
Collapse
|
15
|
Ma H, Kang Z, Foo TK, Shen Z, Xia B. Disrupted BRCA1-PALB2 interaction induces tumor immunosuppression and T-lymphocyte infiltration in HCC through cGAS-STING pathway. Hepatology 2023; 77:33-47. [PMID: 35006619 PMCID: PMC9271123 DOI: 10.1002/hep.32335] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS BRCA1 (BRCA1 DNA repair associated) and PALB2 (partner and localizer of BRCA2) interact with each other to promote homologous recombination and DNA double-strand breaks repair. The disruption of this interaction has been reported to play a role in tumorigenesis. However, its precise function in HCC remains poorly understood. APPROACH AND RESULTS We demonstrated that mice with disrupted BRCA1-PALB2 interaction were more susceptible to HCC than wild-type mice. HCC tumors arising from these mice showed plenty of T-lymphocyte infiltration and a better response to programmed cell death 1 (PD-1) antibody treatment. Mechanistically, disruption of the BRCA1-PALB2 interaction causes persistent high level of DNA damage in HCC cells, leading to activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in both malignant hepatocytes and M1 macrophages in the tumor microenvironment. The activated cGAS-STING pathway induces programmed cell death 1 ligand 1 expression via the STING-interferon regulatory factor 3 (IRF3)-signal transducer and activator of transcription 1 pathway, causing immunosuppression to facilitate tumorigenesis and tumor progression. Meanwhile, M1 macrophages with an activated cGAS-STING pathway could recruit T lymphocytes through the STING-IRF3 pathway, leading to T-lymphocyte infiltration in tumors. After normalizing immune responses by PD-1 antibody treatment, the infiltrating T lymphocytes attack tumor cells rapidly and effectively. CONCLUSIONS This study reveals that persistent DNA damage caused by a defective BRCA pathway induces tumor immunosuppression and T-lymphocyte infiltration in HCC through the cGAS-STING pathway, providing insight into tumor immune microenvironment remodeling that may help improve HCC response to PD-1 antibody treatment.
Collapse
Affiliation(s)
- Hui Ma
- Liver Cancer Institute , Zhongshan Hospital , Fudan University , Shanghai , China
- Rutgers Cancer Institute of New Jersey , New Brunswick , New Jersey , USA
- Department of Radiation Oncology , Rutgers Robert Wood Johnson Medical School , New Brunswick , New Jersey , USA
| | - Zhihua Kang
- Rutgers Cancer Institute of New Jersey , New Brunswick , New Jersey , USA
- Department of Radiation Oncology , Rutgers Robert Wood Johnson Medical School , New Brunswick , New Jersey , USA
| | - Tzeh Keong Foo
- Rutgers Cancer Institute of New Jersey , New Brunswick , New Jersey , USA
- Department of Radiation Oncology , Rutgers Robert Wood Johnson Medical School , New Brunswick , New Jersey , USA
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey , New Brunswick , New Jersey , USA
- Department of Radiation Oncology , Rutgers Robert Wood Johnson Medical School , New Brunswick , New Jersey , USA
| | - Bing Xia
- Rutgers Cancer Institute of New Jersey , New Brunswick , New Jersey , USA
- Department of Radiation Oncology , Rutgers Robert Wood Johnson Medical School , New Brunswick , New Jersey , USA
| |
Collapse
|
16
|
A novel homozygous variant in homologous recombination repair gene ZSWIM7 causes azoospermia in males and primary ovarian insufficiency in females. Eur J Med Genet 2022; 65:104629. [DOI: 10.1016/j.ejmg.2022.104629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 11/18/2022]
|
17
|
Foo TK, Xia B. BRCA1-Dependent and Independent Recruitment of PALB2-BRCA2-RAD51 in the DNA Damage Response and Cancer. Cancer Res 2022; 82:3191-3197. [PMID: 35819255 PMCID: PMC9481714 DOI: 10.1158/0008-5472.can-22-1535] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
The BRCA1-PALB2-BRCA2 axis plays essential roles in the cellular response to DNA double-strand breaks (DSB), maintenance of genome integrity, and suppression of cancer development. Upon DNA damage, BRCA1 is recruited to DSBs, where it facilitates end resection and recruits PALB2 and its associated BRCA2 to load the central recombination enzyme RAD51 to initiate homologous recombination (HR) repair. In recent years, several BRCA1-independent mechanisms of PALB2 recruitment have also been reported. Collectively, these available data illustrate a series of hierarchical, context-dependent, and cooperating mechanisms of PALB2 recruitment that is critical for HR and therapy response either in the presence or absence of BRCA1. Here, we review these BRCA1-dependent and independent mechanisms and their importance in DSB repair, cancer development, and therapy. As BRCA1-mutant cancer cells regain HR function, for which PALB2 is generally required, and become resistant to targeted therapies, such as PARP inhibitors, targeting BRCA1-independent mechanisms of PALB2 recruitment represents a potential new avenue to improve treatment of BRCA1-mutant tumors.
Collapse
Affiliation(s)
- Tzeh Keong Foo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
18
|
Sahota JS, Sharma B, Guleria K, Sambyal V. Candidate genes for infertility: an in-silico study based on cytogenetic analysis. BMC Med Genomics 2022; 15:170. [PMID: 35918717 PMCID: PMC9347124 DOI: 10.1186/s12920-022-01320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background The cause of infertility remains unclear in a significant proportion of reproductive-age couples who fail to conceive naturally. Chromosomal aberrations have been identified as one of the main genetic causes of male and female infertility. Structural chromosomal aberrations may disrupt the functioning of various genes, some of which may be important for fertility. The present study aims to identify candidate genes and putative functional interaction networks involved in male and female infertility using cytogenetic data from cultured peripheral blood lymphocytes of infertile patients. Methods Karyotypic analyses was done in 201 infertile patients (100 males and 101 females) and 201 age and gender matched healthy controls (100 males and 101 females) after 72 h peripheral lymphocyte culturing and GTG banding, followed by bioinformatic analysis using Cytoscape v3.8.2 and Metascape. Results Several chromosomal regions with a significantly higher frequency of structural aberrations were identified in the infertile males (5q2, 10q2, and 17q2) and females (6q2, 16q2, and Xq2). Segregation of the patients based on type of infertility (primary v/s secondary infertility) led to the identification of chromosomal regions with a significantly higher frequency of structural aberrations exclusively within the infertile males (5q2, 17q2) and females (16q2) with primary infertility. Cytoscape identified two networks specific to these regions: a male specific network with 99 genes and a female specific network with 109 genes. The top enriched GO terms within the male and female infertility networks were “skeletal system morphogenesis” and “mRNA transport” respectively. PSME3, PSMD3, and CDC27 were the top 3 hub genes identified within the male infertility network. Similarly, UPF3B, IRF8, and PSMB1 were the top 3 hub genes identified with the female infertility network. Among the hub genes identified in the male- and female-specific networks, PSMB1, PSMD3, and PSME3 are functional components of the proteasome complex. These hub genes have a limited number of reports related to their respective roles in maintenance of fertility in mice model and humans and require validation in further studies. Conclusion The candidate genes predicted in the present study can serve as targets for future research on infertility. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01320-x.
Collapse
Affiliation(s)
- Jatinder Singh Sahota
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Bhavna Sharma
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Kamlesh Guleria
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Vasudha Sambyal
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India.
| |
Collapse
|
19
|
Functional assessment of missense variants of uncertain significance in the cancer susceptibility gene PALB2. NPJ Breast Cancer 2022; 8:86. [PMID: 35853885 PMCID: PMC9296472 DOI: 10.1038/s41523-022-00454-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Germline PALB2 pathogenic variants are associated with an increased lifetime risk for breast, pancreatic, and ovarian cancer. However, the interpretation of the pathogenicity of numerous PALB2 missense variants of uncertain significance (VUSs) identified in germline genetic testing remains a challenge. Here we selected ten potentially pathogenic PALB2 VUSs identified in 2279 Chinese patients with breast cancer and evaluated their impacts on PALB2 function by systematic functional assays. We showed that three PALB2 VUSs p.K16M [c.47 A > T], p.L24F [c.72 G > C], and p.L35F [c.103 C > T] in the coiled-coil domain impaired PALB2-mediated homologous recombination. The p.L24F and p.L35F variants partially disrupted BRCA1-PALB2 interactions, reduced RAD51 foci formation in response to DNA damage, abrogated ionizing radiation-induced G2/M checkpoint maintenance, and conferred increased sensitivity to olaparib and cisplatin. The p.K16M variant presented mild effects on BRCA1-PALB2 interactions and RAD51 foci formation. Altogether, we identify two novel PALB2 VUSs, p.L24F and p.L35F, that compromise PALB2 function and may increase cancer risk. These two variants display marked olaparib and cisplatin sensitivity and may help predict response to targeted therapy in the clinical treatment of patients with these variants.
Collapse
|
20
|
Huo Y, Sawant A, Tan Y, Mahdi AH, Li T, Ma H, Bhatt V, Yan R, Coleman J, Dreyfus CF, Guo JY, Mouradian MM, White E, Xia B. Tumor suppressor PALB2 maintains redox and mitochondrial homeostasis in the brain and cooperates with ATG7/autophagy to suppress neurodegeneration. PLoS Genet 2022; 18:e1010138. [PMID: 35404932 PMCID: PMC9022806 DOI: 10.1371/journal.pgen.1010138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/21/2022] [Accepted: 03/09/2022] [Indexed: 01/22/2023] Open
Abstract
The PALB2 tumor suppressor plays key roles in DNA repair and has been implicated in redox homeostasis. Autophagy maintains mitochondrial quality, mitigates oxidative stress and suppresses neurodegeneration. Here we show that Palb2 deletion in the mouse brain leads to mild motor deficits and that co-deletion of Palb2 with the essential autophagy gene Atg7 accelerates and exacerbates neurodegeneration induced by ATG7 loss. Palb2 deletion leads to elevated DNA damage, oxidative stress and mitochondrial markers, especially in Purkinje cells, and co-deletion of Palb2 and Atg7 results in accelerated Purkinje cell loss. Further analyses suggest that the accelerated Purkinje cell loss and severe neurodegeneration in the double deletion mice are due to excessive oxidative stress and mitochondrial dysfunction, rather than DNA damage, and partially dependent on p53 activity. Our studies uncover a role of PALB2 in mitochondrial homeostasis and a cooperation between PALB2 and ATG7/autophagy in maintaining redox and mitochondrial homeostasis essential for neuronal survival.
Collapse
Affiliation(s)
- Yanying Huo
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Akshada Sawant
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Yongmei Tan
- Stomatological Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Amar H Mahdi
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Tao Li
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Hui Ma
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Vrushank Bhatt
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Run Yan
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
- RWJMS Institute for Neurological Therapeutics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Jake Coleman
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Cheryl F Dreyfus
- Rutgers School of Environmental and Biological Sciences, New Brunswick, New Jersey, United States of America
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, New Jersey, United States of America
| | - M. Maral Mouradian
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
- RWJMS Institute for Neurological Therapeutics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Bing Xia
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| |
Collapse
|
21
|
Vanni VS, Campo G, Cioffi R, Papaleo E, Salonia A, Viganò P, Lambertini M, Candiani M, Meirow D, Orvieto R. The neglected members of the family: non-BRCA mutations in the Fanconi anemia/BRCA pathway and reproduction. Hum Reprod Update 2022; 28:296-311. [PMID: 35043201 DOI: 10.1093/humupd/dmab045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND BReast CAncer (BRCA) genes are extensively studied in the context of fertility and reproductive aging. BRCA proteins are part of the DNA repair Fanconi anemia (FA)/BRCA pathway, in which more than 20 proteins are implicated. According to which gene is mutated and which interactions are lost owing to the mutation, carriers and patients with monoallelic or biallelic FA/BRCA mutations exhibit very different phenotypes, from overt FA to cancer predisposition or no pathological implications. The effect of the so far neglected non-BRCA FA mutations on fertility also deserves consideration. OBJECTIVE AND RATIONALE As improved treatments allow a longer life expectancy in patients with biallelic FA mutations and overt FA, infertility is emerging as a predominant feature. We thus reviewed the mechanisms for such a manifestation, as well as whether they also occur in monoallelic carriers of FA non-BRCA mutations. SEARCH METHODS Electronic databases PUBMED, EMBASE and CENTRAL were searched using the following term: 'fanconi' OR 'FANC' OR 'AND' 'fertility' OR 'pregnancy' OR 'ovarian reserve' OR 'spermatogenesis' OR 'hypogonadism'. All pertinent reports in the English-language literature were retrieved until May 2021 and the reference lists were systematically searched in order to identify any potential additional studies. OUTCOMES Biallelic FA mutations causing overt FA disease are associated with premature ovarian insufficiency (POI) occurring in the fourth decade in women and with primary non-obstructive azoospermia (NOA) in men. Hypogonadism in FA patients seems mainly associated with a defect in primordial germ cell proliferation in fetal life. In recent small, exploratory whole-exome sequencing studies, biallelic clinically occult mutations in the FA complementation group A (Fanca) and M (Fancm) genes were found in otherwise healthy patients with isolated NOA or POI, and also monoallelic carrier status for a loss-of-function mutation in Fanca has been implicated as a possible cause for POI. In those patients with known monoallelic FA mutations undergoing pre-implantation genetic testing, poor assisted reproduction outcomes are reported. However, the mechanisms underlying the repeated failures and the high miscarriage rates observed are not fully known. WIDER IMPLICATIONS The so far 'neglected' members of the FA/BRCA family will likely emerge as a relevant focus of investigation in the genetics of reproduction. Several (rather than a single) non-BRCA genes might be implicated. State-of-the-art methods, such as whole-genome/exome sequencing, and further exploratory studies are required to understand the prevalence and mechanisms for occult FA mutations in infertility and recurrent miscarriage.
Collapse
Affiliation(s)
- Valeria Stella Vanni
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Raffaella Cioffi
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Enrico Papaleo
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Salonia
- Università Vita-Salute San Raffaele, Milan, Italy.,Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Viganò
- Reproductive Sciences Laboratory, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Lambertini
- Department of Medical Oncology, U.O.C Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Massimo Candiani
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dror Meirow
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Raoul Orvieto
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
22
|
Ma H, Li T, Xie X, Jiang L, Ye J, Gong C, Jiang H, Fan S, Zhang H, Shi B, Zhang B, Jiang X, Li Y, Zhou J, Xu J, Zhang X, Hou X, Yin H, Zhang Y, Shi Q. RAD51AP2 is required for efficient meiotic recombination between X and Y chromosomes. SCIENCE ADVANCES 2022; 8:eabk1789. [PMID: 35020426 PMCID: PMC8754306 DOI: 10.1126/sciadv.abk1789] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Faithful segregation of X and Y chromosomes requires meiotic recombination to form a crossover between them in the pseudoautosomal region (PAR). Unlike autosomes that have approximately 10-fold more double-strand breaks (DSBs) than crossovers, one crossover must be formed from the one or two DSBs in PARs, implying the existence of a sex chromosome–specific recombination mechanism. Here, we found that RAD51AP2, a meiosis-specific partner of RAD51, is specifically required for the crossover formation on the XY chromosomes, but not autosomes. The decreased crossover formation between X and Y chromosomes in Rad51ap2 mutant mice results from compromised DSB repair in PARs due to destabilization of recombination intermediates rather than defects in DSB generation or synapsis. Our findings provide direct experimental evidence that XY recombination may use a PAR-specific DSB repair mechanism mediated by factors that are not essential for recombination on autosomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Hao Yin
- Corresponding author. (Q.S.); (Y.Z.); (H.Y.)
| | | | - Qinghua Shi
- Corresponding author. (Q.S.); (Y.Z.); (H.Y.)
| |
Collapse
|
23
|
Mishra AP, Sahu S, Sharan SK. Coiled-Coil Domain: Uncoiling Tumor Suppression by BRCA1. Cancer Res 2021; 81:6080-6082. [PMID: 34911781 DOI: 10.1158/0008-5472.can-21-3480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022]
Abstract
The coiled-coil domain of BRCA1 is essential for its interaction with partner and localizer of BRCA2 (PALB2). In mice, loss of this interaction is known to result in Fanconi anemia-associated phenotypes. In a study published in this issue of Cancer Research, Pulver and colleagues from the Jonkers lab have generated a mouse model with a leucine to proline change in codon 1363 in the coiled-coil domain of BRCA1 (Brca1LP ), which disrupts its binding with PALB2. Unlike the previously reported viable coiled-coil defective mice, homozygous Brca1LP/LP mutant mice die during embryogenesis. The authors examined the role of the BRCA1/PALB2 interaction on mammary tumorigenesis and reported increased incidence of mammary tumors that are carcinosarcomas or sarcomatoids, unlike the adenocarcinomas that are characteristic mammary tumor types associated with loss of Brca1 and Trp53 in mice. The findings reveal the relevance of the coiled-coil domain in mammary tumor suppression by BRCA1.See related article by Pulver et al., p. 6171.
Collapse
Affiliation(s)
- Arun P Mishra
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, NIH, Frederick, Maryland
| | - Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, NIH, Frederick, Maryland
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, NIH, Frederick, Maryland.
| |
Collapse
|
24
|
Pulver EM, Mukherjee C, van de Kamp G, Roobol SJ, Rother MB, van der Gulden H, de Bruijn R, Lattanzio MV, van der Burg E, Drenth AP, Verkaik NS, Hahn K, Klarenbeek S, de Korte-Grimmerink R, van de Ven M, Pritchard CEJ, Huijbers IJ, Xia B, van Gent DC, Essers J, van Attikum H, Ray Chaudhuri A, Bouwman P, Jonkers J. A BRCA1 coiled-coil domain variant disrupting PALB2 interaction promotes the development of mammary tumors and confers a targetable defect in homologous recombination repair. Cancer Res 2021; 81:6171-6182. [PMID: 34548335 PMCID: PMC7612117 DOI: 10.1158/0008-5472.can-21-1415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/21/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
The BRCA1 tumor suppressor gene encodes a multi-domain protein for which several functions have been described. These include a key role in homologous recombination repair (HRR) of DNA double-strand breaks (DSB), which is shared with two other high-risk hereditary breast cancer suppressors, BRCA2 and PALB2. Although both BRCA1 and BRCA2 interact with PALB2, BRCA1 missense variants affecting its PALB2-interacting coiled-coil domain are considered variants of uncertain clinical significance (VUS). Using genetically engineered mice, we show here that a BRCA1 coiled-coil domain VUS, Brca1 p.L1363P, disrupts the interaction with PALB2 and leads to embryonic lethality. Brca1 p.L1363P led to a similar acceleration in the development of Trp53-deficient mammary tumors as Brca1 loss, but the tumors showed distinct histopathological features, with more stable DNA copy number profiles in Brca1 p.L1363P tumors. Nevertheless, Brca1 p.L1363P mammary tumors were HRR-incompetent and responsive to cisplatin and PARP inhibition. Overall, these results provide the first direct evidence that a BRCA1 missense variant outside of the RING and BRCT domains increases the risk of breast cancer.
Collapse
Affiliation(s)
- Emilia M Pulver
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute
| | | | | | - Stefan J Roobol
- Molecular Genetics, Radiology and Nuclear Medicine, Erasmus MC
| | | | - Hanneke van der Gulden
- Division of Molecular Pathology and Cancer Genomics Centre, The Netherlands Cancer Institute
| | - Roebi de Bruijn
- Division of Molecular Pathology, The Netherlands Cancer Institute
| | | | | | | | | | - Kerstin Hahn
- Molecular Pathology, Oncode Institute-Netherlands Cancer Institute
| | | | - Renske de Korte-Grimmerink
- Mouse Clinic for Cancer and Aging (MCCA) Preclinical Intervention Unit, The Netherlands Cancer Institute
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging (MCCA) Preclinical Intervention Unit, The Netherlands Cancer Institute
| | | | - Ivo J Huijbers
- Transgenic core facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute
| | - Bing Xia
- Radiation Oncology, Rutgers Cancer Institute of New Jersey
| | - Dik C van Gent
- Molecular Genetics, Erasmus MC University Medical Center Rotterdam and Oncode Institute, The Netherlands
| | | | | | | | - Peter Bouwman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute
| |
Collapse
|
25
|
Buonomo B, Massarotti C, Dellino M, Anserini P, Ferrari A, Campanella M, Magnotti M, De Stefano C, Peccatori FA, Lambertini M. Reproductive issues in carriers of germline pathogenic variants in the BRCA1/2 genes: an expert meeting. BMC Med 2021; 19:205. [PMID: 34503502 PMCID: PMC8431919 DOI: 10.1186/s12916-021-02081-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Healthy individuals and patients with cancer who are carriers of germline pathogenic variants in the BRCA1/2 genes face multiple reproductive challenges that require appropriate counseling and specific expertise. MAIN BODY On December 5th-7th, 2019, patient advocates and physicians with expertise in the field of reproductive medicine, fertility preservation, and oncology were invited to "San Giuseppe Moscati" Hospital in Avellino (Italy) for a workshop on reproductive management of women with germline pathogenic variants in the BRCA1/2 genes. From the discussion regarding the current evidence and future prospective in the field, eight main research questions were formulated and eight recommendations were developed regarding fertility, fertility preservation, preimplantation genetic testing, and pregnancy in healthy carriers and patients with cancer. CONCLUSION Several misconceptions about the topic persist among health care providers and patients often resulting in a discontinuous and suboptimal management. With the aim to offer patient-tailored counseling about reproductive issues, both awareness of current evidences and research should be promoted.
Collapse
Affiliation(s)
- Barbara Buonomo
- Fertility and Procreation Unit, Gynecologic Oncology Program, European Institute of Oncology IRCCS, Milan, Italy
| | - Claudia Massarotti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), School of Medicine, University of Genova, Genova, Italy.,Academic Unit of Obstetrics and Gynaecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Miriam Dellino
- Gynecologic Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Paola Anserini
- Physiopathology of Human Reproduction Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Alberta Ferrari
- Department of Surgical Sciences, General Surgery III-Breast Surgery, Fondazione IRCCS Policlinico San Matteo, and Department of Clinical Surgical Sciences, University of Pavia, Pavia, Italy
| | - Maria Campanella
- aBRCAdabra, National Patient Advocacy Association for carriers of BRCA genes mutation, Palermo, Italy
| | - Mirosa Magnotti
- ACTO Campania, Alleanza Contro il Tumore Ovarico, Avellino, Italy
| | - Cristofaro De Stefano
- Department of Women's and Children's Health, "San Giuseppe Moscati" Hospital, Avellino, Italy
| | - Fedro Alessandro Peccatori
- Fertility and Procreation Unit, Gynecologic Oncology Program, European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy. .,Department of Medical Oncology, UOC Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
26
|
Le HP, Heyer WD, Liu J. Guardians of the Genome: BRCA2 and Its Partners. Genes (Basel) 2021; 12:genes12081229. [PMID: 34440403 PMCID: PMC8394001 DOI: 10.3390/genes12081229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The tumor suppressor BRCA2 functions as a central caretaker of genome stability, and individuals who carry BRCA2 mutations are predisposed to breast, ovarian, and other cancers. Recent research advanced our mechanistic understanding of BRCA2 and its various interaction partners in DNA repair, DNA replication support, and DNA double-strand break repair pathway choice. In this review, we discuss the biochemical and structural properties of BRCA2 and examine how these fundamental properties contribute to DNA repair and replication fork stabilization in living cells. We highlight selected BRCA2 binding partners and discuss their role in BRCA2-mediated homologous recombination and fork protection. Improved mechanistic understanding of how BRCA2 functions in genome stability maintenance can enable experimental evidence-based evaluation of pathogenic BRCA2 mutations and BRCA2 pseudo-revertants to support targeted therapy.
Collapse
Affiliation(s)
- Hang Phuong Le
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Correspondence: ; Tel.: +1-530-752-3016
| |
Collapse
|
27
|
Foo TK, Vincelli G, Huselid E, Her J, Zheng H, Simhadri S, Wang M, Huo Y, Li T, Yu X, Li H, Zhao W, Bunting SF, Xia B. ATR/ATM-mediated phosphorylation of BRCA1 T1394 promotes homologous recombinational repair and G2/M checkpoint maintenance. Cancer Res 2021; 81:4676-4684. [PMID: 34301763 PMCID: PMC8448966 DOI: 10.1158/0008-5472.can-20-2723] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 06/22/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
BRCA1 maintains genome integrity and suppresses tumorigenesis by promoting homologous recombination (HR)-mediated repair of DNA double strand breaks (DSB) and DNA damage-induced cell cycle checkpoints. Phosphorylation of BRCA1 by ATM, ATR, CHK2, CDK, and PLK1 kinases has been reported to regulate its functions. Here we show that ATR and ATM-mediated phosphorylation of BRCA1 on T1394, a highly conserved but functionally uncharacterized site, is a key modification for its function in the DNA damage response. Following DNA damage, T1394 phosphorylation ensured faithful repair of DSBs by promoting HR and preventing single strand annealing, a deletion-generating repair process. BRCA1 T1394 phosphorylation further safeguarded chromosomal integrity by maintaining the G2/M checkpoint. Moreover, multiple patient-derived BRCA1 variants of unknown significance were shown to affect T1394 phosphorylation. These results establish an important regulatory mechanism of BRCA1 function in the DNA damage response and may have implications in the development or prognosis of BRCA1-associated cancers.
Collapse
Affiliation(s)
- Tzeh K Foo
- Radiation Oncology, Rutgers Cancer Institute of New Jersey
| | | | - Eric Huselid
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey
| | - Joonyoung Her
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey
| | | | | | - Meiling Wang
- The University of Texas Health Science Center at San Antonio
| | - Yanying Huo
- Radiation Oncology, Rutgers Cancer Institute of New Jersey
| | - Tao Li
- Department of Medicine/Population Sciences, Rutgers Cancer Institute of New Jersey
| | | | - Hong Li
- Center for advanced proteomics, Rutgers, The State University of New Jersey
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio
| | - Samuel F Bunting
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey
| | - Bing Xia
- Radiation Oncology, Rutgers Cancer Institute of New Jersey
| |
Collapse
|
28
|
Choudhuri S, Kaur T, Jain S, Sharma C, Asthana S. A review on genotoxicity in connection to infertility and cancer. Chem Biol Interact 2021; 345:109531. [PMID: 34058178 DOI: 10.1016/j.cbi.2021.109531] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Genotoxicity has been identified as the main cause of infertility and a variety of cancers. The mechanisms affect the structure, quality of the information or the segregation of DNA and are not inherently correlated with mutagenicity. The concept of genotoxicity, the chemical classes that cause genetic damage and the associated mechanisms of action are discussed here. Hazardous effects of pharmaceuticals, cosmetics, agrochemicals, industrial compounds, food additives, natural toxins and nanomaterials are, in large part, identified by genotoxicity and mutagenicity tests. These are critical and early steps in industrial and regulatory health assessment. Though several in vitro experiments are commonly used and approval by regulatory agencies for commercial licensing of drugs, their accuracy in human predictions for genotoxic and mutagenic effects is frequently questioned. Treatment of real and functional genetic toxicity problems depends in detail on the knowledge of mechanisms of DNA damage in the molecular, subcellular, cellular and tissue or organ system levels. Current strategies for risk assessment of human health need revisions to achieve robust and reliable results for optimizing their effectiveness. Additionally, computerized methods, neo-biomarkers leveraging '-omics' approaches, all of which can provide a convincing genotoxicity evaluation to reduce infertility and cancer risk.
Collapse
Affiliation(s)
- Sharmistha Choudhuri
- Department of Biochemistry, R. G. Kar Medical College and Hospital, Kolkata, West Bengal, India
| | - Taruneet Kaur
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Sapna Jain
- Multidisciplinary Clinical Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Chandresh Sharma
- Multidisciplinary Clinical Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana, India.
| | - Shailendra Asthana
- Non-Communicable Disease, Translational Health Science and Technology Institute, Faridabad, Haryana, India.
| |
Collapse
|
29
|
Mouse Models for Deciphering the Impact of Homologous Recombination on Tumorigenesis. Cancers (Basel) 2021; 13:cancers13092083. [PMID: 33923105 PMCID: PMC8123484 DOI: 10.3390/cancers13092083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Homologous recombination (HR) is a fundamental evolutionarily conserved process that plays prime role(s) in genome stability maintenance through DNA repair and through the protection and resumption of arrested replication forks. Many HR genes are deregulated in cancer cells. Notably, the breast cancer genes BRCA1 and BRCA2, two important HR players, are the most frequently mutated genes in familial breast and ovarian cancer. Transgenic mice constitute powerful tools to unravel the intricate mechanisms controlling tumorigenesis in vivo. However, the genes central to HR are essential in mammals, and their knockout leads to early embryonic lethality in mice. Elaborated strategies have been developed to overcome this difficulty, enabling one to analyze the consequences of HR disruption in vivo. In this review, we first briefly present the molecular mechanisms of HR in mammalian cells to introduce each factor in the HR process. Then, we present the different mouse models of HR invalidation and the consequences of HR inactivation on tumorigenesis. Finally, we discuss the use of mouse models for the development of targeted cancer therapies as well as perspectives on the future potential for understanding the mechanisms of HR inactivation-driven tumorigenesis in vivo.
Collapse
|
30
|
Li Q, Engebrecht J. BRCA1 and BRCA2 Tumor Suppressor Function in Meiosis. Front Cell Dev Biol 2021; 9:668309. [PMID: 33996823 PMCID: PMC8121103 DOI: 10.3389/fcell.2021.668309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Meiosis is a specialized cell cycle that results in the production of haploid gametes for sexual reproduction. During meiosis, homologous chromosomes are connected by chiasmata, the physical manifestation of crossovers. Crossovers are formed by the repair of intentionally induced double strand breaks by homologous recombination and facilitate chromosome alignment on the meiotic spindle and proper chromosome segregation. While it is well established that the tumor suppressors BRCA1 and BRCA2 function in DNA repair and homologous recombination in somatic cells, the functions of BRCA1 and BRCA2 in meiosis have received less attention. Recent studies in both mice and the nematode Caenorhabditis elegans have provided insight into the roles of these tumor suppressors in a number of meiotic processes, revealing both conserved and organism-specific functions. BRCA1 forms an E3 ubiquitin ligase as a heterodimer with BARD1 and appears to have regulatory roles in a number of key meiotic processes. BRCA2 is a very large protein that plays an intimate role in homologous recombination. As women with no indication of cancer but carrying BRCA mutations show decreased ovarian reserve and accumulated oocyte DNA damage, studies in these systems may provide insight into why BRCA mutations impact reproductive success in addition to their established roles in cancer.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| |
Collapse
|
31
|
Animal models of Fanconi anemia: A developmental and therapeutic perspective on a multifaceted disease. Semin Cell Dev Biol 2021; 113:113-131. [PMID: 33558144 DOI: 10.1016/j.semcdb.2020.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/17/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022]
Abstract
Fanconi anemia (FA) is a genetic disorder characterized by developmental abnormalities, progressive bone marrow failure, and increased susceptibility to cancer. FA animal models have been useful to understand the pathogenesis of the disease. Herein, we review FA developmental models that have been developed to simulate human FA, focusing on zebrafish and mouse models. We summarize the recapitulated phenotypes observed in these in vivo models including bone, gametogenesis and sterility defects, as well as marrow failure. We also discuss the relevance of aldehydes in pathogenesis of FA, emphasizing on hematopoietic defects. In addition, we provide a summary of potential therapeutic agents, such as aldehyde scavengers, TGFβ inhibitors, and gene therapy for FA. The diversity of FA animal models makes them useful for understanding FA etiology and allows the discovery of new therapies.
Collapse
|
32
|
García-de-Teresa B, Rodríguez A, Frias S. Chromosome Instability in Fanconi Anemia: From Breaks to Phenotypic Consequences. Genes (Basel) 2020; 11:E1528. [PMID: 33371494 PMCID: PMC7767525 DOI: 10.3390/genes11121528] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Fanconi anemia (FA), a chromosomal instability syndrome, is caused by inherited pathogenic variants in any of 22 FANC genes, which cooperate in the FA/BRCA pathway. This pathway regulates the repair of DNA interstrand crosslinks (ICLs) through homologous recombination. In FA proper repair of ICLs is impaired and accumulation of toxic DNA double strand breaks occurs. To repair this type of DNA damage, FA cells activate alternative error-prone DNA repair pathways, which may lead to the formation of gross structural chromosome aberrations of which radial figures are the hallmark of FA, and their segregation during cell division are the origin of subsequent aberrations such as translocations, dicentrics and acentric fragments. The deficiency in DNA repair has pleiotropic consequences in the phenotype of patients with FA, including developmental alterations, bone marrow failure and an extreme risk to develop cancer. The mechanisms leading to the physical abnormalities during embryonic development have not been clearly elucidated, however FA has features of premature aging with chronic inflammation mediated by pro-inflammatory cytokines, which results in tissue attrition, selection of malignant clones and cancer onset. Moreover, chromosomal instability and cell death are not exclusive of the somatic compartment, they also affect germinal cells, as evidenced by the infertility observed in patients with FA.
Collapse
Affiliation(s)
- Benilde García-de-Teresa
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alfredo Rodríguez
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sara Frias
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
33
|
Abstract
Male factor infertility is a common problem. Evidence is emerging regarding the spectrum of systemic disease and illness harbored by infertile men who otherwise appear healthy. In this review, we present evidence that infertile men have poor overall health and increased morbidity and mortality, increased rates of both genitourinary and non-genitourinary malignancy, and greater risks of systemic disease. The review also highlights numerous genetic conditions associated with male infertility as well as emerging translational evidence of genitourinary birth defects and their impact on male infertility. Finally, parallels to the overall health of infertile women are presented. This review highlights the importance of a comprehensive health evaluation of men who present for an infertility assessment.
Collapse
Affiliation(s)
- Nahid Punjani
- James Buchanan Brady Foundation Institute of Urology, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Dolores J Lamb
- James Buchanan Brady Foundation Institute of Urology, Weill Cornell Medical College, New York, NY 10065, USA;
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY 10021, USA
- Center for Reproductive Genomics, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
34
|
Her J, Bunting SF. BRCA1 and PALB2 in a Messy Breakup. Cancer Res 2020; 80:4044-4045. [PMID: 33008804 DOI: 10.1158/0008-5472.can-20-2731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022]
Abstract
Mutations in the BRCA1 gene cause an extremely high lifetime risk of breast and ovarian cancer, but the exact mechanism by which the BRCA1 protein acts to prevent cancer onset remains unclear. In this edition of Cancer Research, Park and colleagues describe a new mouse model featuring a single amino acid substitution in the coiled-coil motif of BRCA1. This change prevents BRCA1 from interacting with PALB2 (partner and localizer of BRCA2), causing rapid cancer onset and a loss of blood cells similar to Fanconi anemia.See related article by Park et al., p. 4172.
Collapse
Affiliation(s)
- Joonyoung Her
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Samuel F Bunting
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|
35
|
Mahdi AH, Huo Y, Chen Y, Selenica P, Sharma A, Merritt E, Barnard N, Chan C, Ganesan S, Reis-Filho JS, Weigelt B, De S, Xia B. Loss of the BRCA1-PALB2 interaction accelerates p53-associated tumor development in mice. Genes Dis 2020; 9:807-813. [PMID: 35782971 PMCID: PMC9243321 DOI: 10.1016/j.gendis.2020.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/18/2022] Open
Abstract
The BRCA1-PALB2-BRCA2 axis, or the BRCA pathway, plays key roles in genome stability maintenance and suppression of breast and several other cancers. Due to frequent p53 mutations in human BRCA1 breast cancers and mouse mammary tumors from Brca1, Brca2 and Palb2 conditional knockout models, it is often thought that p53 inactivation accelerates BRCA1/2 and PALB2-associated tumorigenesis. Here, we studied tumor development in mice with a mutation in Palb2 that disengages the PALB2-BRCA1 interaction in different Trp53 backgrounds. Rather than mammary tumors, Palb2 and Trp53 compound mutant mice developed, with greatly reduced latencies, lymphomas and sarcomas that are typically associated with germline Trp53 inactivation. Whole exome sequencing failed to identify any significant differences in genomic features between the same tumor types of Trp53 single mutant and Palb2;Trp53 compound mutant mice. These results suggest that loss of the BRCA pathway accelerates p53-associated tumor development, possibly without altering the fundamental tumorigenic processes.
Collapse
Affiliation(s)
- Amar H. Mahdi
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Yanying Huo
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Ying Chen
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anchal Sharma
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Elise Merritt
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Nicola Barnard
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Chang Chan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Jorge S. Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Subhajyoti De
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Bing Xia
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
- Corresponding author. Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
36
|
Brandsma I, Sato K, van Rossum-Fikkert SE, van Vliet N, Sleddens E, Reuter M, Odijk H, van den Tempel N, Dekkers DHW, Bezstarosti K, Demmers JAA, Maas A, Lebbink J, Wyman C, Essers J, van Gent DC, Baarends WM, Knipscheer P, Kanaar R, Zelensky AN. HSF2BP Interacts with a Conserved Domain of BRCA2 and Is Required for Mouse Spermatogenesis. Cell Rep 2020; 27:3790-3798.e7. [PMID: 31242413 DOI: 10.1016/j.celrep.2019.05.096] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 05/01/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor BRCA2 is essential for homologous recombination (HR), replication fork stability, and DNA interstrand crosslink repair in vertebrates. We identify HSF2BP, a protein previously described as testis specific and not characterized functionally, as an interactor of BRCA2 in mouse embryonic stem cells, where the 2 proteins form a constitutive complex. HSF2BP is transcribed in all cultured human cancer cell lines tested and elevated in some tumor samples. Inactivation of the mouse Hsf2bp gene results in male infertility due to a severe HR defect during spermatogenesis. The BRCA2-HSF2BP interaction is highly evolutionarily conserved and maps to armadillo repeats in HSF2BP and a 68-amino acid region between the BRC repeats and the DNA binding domain of human BRCA2 (Gly2270-Thr2337) encoded by exons 12 and 13. This region of BRCA2 does not harbor known cancer-associated missense mutations and may be involved in the reproductive rather than the tumor-suppressing function of BRCA2.
Collapse
Affiliation(s)
- Inger Brandsma
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Sari E van Rossum-Fikkert
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Nicole van Vliet
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Esther Sleddens
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Marcel Reuter
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Hanny Odijk
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Nathalie van den Tempel
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Dick H W Dekkers
- Proteomics Center, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Alex Maas
- Department of Cell Biology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Joyce Lebbink
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Claire Wyman
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Dik C van Gent
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands.
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands.
| | - Alex N Zelensky
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
37
|
Charaka V, Tiwari A, Pandita RK, Hunt CR, Pandita TK. Role of HP1β during spermatogenesis and DNA replication. Chromosoma 2020; 129:215-226. [PMID: 32651609 DOI: 10.1007/s00412-020-00739-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 11/25/2022]
Abstract
Heterochromatin protein 1β (HP1β), encoded by the Cbx1 gene, has been functionally linked to chromatin condensation, transcriptional regulation, and DNA damage repair. Here we report that testis-specific Cbx1 conditional knockout (Cbx1 cKO) impairs male germ cell development in mice. Depletion of HP1β negatively affected sperm maturation and increased seminiferous tubule degeneration in Cbx1 cKO mice. In addition, the spermatogonia have elevated γ-H2AX foci levels as do Cbx1 deficient mouse embryonic fibroblasts (MEFs) as compared to wild-type (WT) control MEFs. The increase in γ-H2AX foci in proliferating Cbx1 cKO cells indicates defective replication-dependent DNA damage repair. Depletion or loss of HP1β from human cells and MEFs increased DNA replication fork stalling and firing of new origins of replication, indicating defective DNA synthesis. Taken together, these results suggest that loss of HP1β in proliferating cells leads to DNA replication defects with associated DNA damage that impact spermatogenesis.
Collapse
Affiliation(s)
- Vijay Charaka
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Anjana Tiwari
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Raj K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Clayton R Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
38
|
Nacson J, Di Marcantonio D, Wang Y, Bernhardy AJ, Clausen E, Hua X, Cai KQ, Martinez E, Feng W, Callén E, Wu W, Gupta GP, Testa JR, Nussenzweig A, Sykes SM, Johnson N. BRCA1 Mutational Complementation Induces Synthetic Viability. Mol Cell 2020; 78:951-959.e6. [PMID: 32359443 PMCID: PMC7418109 DOI: 10.1016/j.molcel.2020.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 11/17/2022]
Abstract
BRCA1 promotes the DNA end resection and RAD51 loading steps of homologous recombination (HR). Whether these functions can be uncoupled, and whether mutant proteins retaining partial activity can complement one another, is unclear and could affect the severity of BRCA1-associated Fanconi anemia (FA). Here we generated a Brca1CC mouse with a coiled-coil (CC) domain deletion. Brca1CC/CC mice are born at low frequencies, and post-natal mice have FA-like abnormalities, including bone marrow failure. Intercrossing with Brca1Δ11, which is homozygous lethal, generated Brca1CC/Δ11 mice at Mendelian frequencies that were indistinguishable from Brca1+/+ mice. Brca1CC and Brca1Δ11 proteins were individually responsible for counteracting 53BP1-RIF1-Shieldin activity and promoting RAD51 loading, respectively. Thus, Brca1CC and Brca1Δ11 alleles represent separation-of-function mutations that combine to provide a level of HR sufficient for normal development and hematopoiesis. Because BRCA1 activities can be genetically separated, compound heterozygosity for functional complementary mutations may protect individuals from FA.
Collapse
Affiliation(s)
- Joseph Nacson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daniela Di Marcantonio
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Yifan Wang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Andrea J Bernhardy
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Emma Clausen
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Xiang Hua
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Esteban Martinez
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Wanjuan Feng
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elsa Callén
- Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Wei Wu
- Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Gaorav P Gupta
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph R Testa
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Stephen M Sykes
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
39
|
Habas K, Brinkworth MH, Anderson D. A male germ cell assay and supporting somatic cells: its application for the detection of phase specificity of genotoxins in vitro. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:91-106. [PMID: 32046612 DOI: 10.1080/10937404.2020.1724577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Male germ stem cells are responsible for transmission of genetic information to the next generation. Some chemicals exert a negative impact on male germ cells, either directly, or indirectly affecting them through their action on somatic cells. Ultimately, these effects might inhibit fertility, and may exhibit negative consequences on future offspring. Genotoxic anticancer agents may interact with DNA in germ cells potentially leading to a heritable germline mutation. Experimental information in support of this theory has not always been reproducible and suitable in vivo studies remain limited. Thus, alternative male germ cell tests, which are now able to detect phase specificity of such agents, might be used by regulatory agencies to help evaluate the potential risk of mutation. However, there is an urgent need for such approaches for identification of male reproductive genotoxins since this area has until recently been dependent on in vivo studies. Many factors drive alternative approaches, including the (1) commitment to the principles of the 3R's (Replacement, Reduction, and Refinement), (2) time-consuming nature and high cost of animal experiments, and (3) new opportunities presented by new molecular analytical assays. There is as yet currently no apparent appropriate model of full mammalian spermatogenesis in vitro, under the REACH initiative, where new tests introduced to assess genotoxicity and mutagenicity need to avoid unnecessary testing on animals. Accordingly, a battery of tests used in conjunction with the high throughput STAPUT gravity sedimentation was recently developed for purification of male germ cells to investigate genotoxicity for phase specificity in germ cells. This system might be valuable for the examination of phases previously only available in mammals with large-scale studies of germ cell genotoxicity in vivo. The aim of this review was to focus on this alternative approach and its applications as well as on chemicals of known in vivo phase specificities used during this test system development.
Collapse
Affiliation(s)
- Khaled Habas
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | | | - Diana Anderson
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
40
|
Boonen RACM, Rodrigue A, Stoepker C, Wiegant WW, Vroling B, Sharma M, Rother MB, Celosse N, Vreeswijk MPG, Couch F, Simard J, Devilee P, Masson JY, van Attikum H. Functional analysis of genetic variants in the high-risk breast cancer susceptibility gene PALB2. Nat Commun 2019; 10:5296. [PMID: 31757951 PMCID: PMC6876638 DOI: 10.1038/s41467-019-13194-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Heterozygous carriers of germ-line loss-of-function variants in the DNA repair gene PALB2 are at a highly increased lifetime risk for developing breast cancer. While truncating variants in PALB2 are known to increase cancer risk, the interpretation of missense variants of uncertain significance (VUS) is in its infancy. Here we describe the development of a relatively fast and easy cDNA-based system for the semi high-throughput functional analysis of 48 VUS in human PALB2. By assessing the ability of PALB2 VUS to rescue the DNA repair and checkpoint defects in Palb2 knockout mouse embryonic stem (mES) cells, we identify various VUS in PALB2 that impair its function. Three VUS in the coiled-coil domain of PALB2 abrogate the interaction with BRCA1, whereas several VUS in the WD40 domain dramatically reduce protein stability. Thus, our functional assays identify damaging VUS in PALB2 that may increase cancer risk. PALB2 is an established breast cancer risk gene but the pathogenicity of many variants remains uncharacterised. Here, the authors present a cDNA-based system for the functional analysis of PALB2 variants of unknown significance.
Collapse
Affiliation(s)
- Rick A C M Boonen
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Amélie Rodrigue
- CHU de Québec-Université Laval Research Center, Oncology Division, Québec City, QC, G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Chantal Stoepker
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Wouter W Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Bas Vroling
- Bio-Prodict, Nijmegen, 6511 AA, The Netherlands
| | - Milan Sharma
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Nandi Celosse
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Fergus Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jacques Simard
- CHU de Québec-Université Laval Research Center, Oncology Division, Québec City, QC, G1R 3S3, Canada.,CHU de Québec Research Center, Endocrinology and Nephrology Division, Québec City, QC, G1V 4G2, Canada
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Jean-Yves Masson
- CHU de Québec-Université Laval Research Center, Oncology Division, Québec City, QC, G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands.
| |
Collapse
|
41
|
Palmer N, Talib SZA, Ratnacaram CK, Low D, Bisteau X, Lee JHS, Pfeiffenberger E, Wollmann H, Tan JHL, Wee S, Sobota R, Gunaratne J, Messerschmidt DM, Guccione E, Kaldis P. CDK2 regulates the NRF1/ Ehmt1 axis during meiotic prophase I. J Cell Biol 2019; 218:2896-2918. [PMID: 31350280 PMCID: PMC6719441 DOI: 10.1083/jcb.201903125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022] Open
Abstract
Palmer et al. identify NRF1 as a novel CDK2 interactor and substrate. This interaction was found to be important for the DNA-binding activity of NRF1. Their findings demonstrate that the loss of CDK2 expression impairs the regulation of NRF1 transcriptional activity, leading to inappropriate transcription during meiotic division. Meiosis generates four genetically distinct haploid gametes over the course of two reductional cell divisions. Meiotic divisions are characterized by the coordinated deposition and removal of various epigenetic marks. Here we propose that nuclear respiratory factor 1 (NRF1) regulates transcription of euchromatic histone methyltransferase 1 (EHMT1) to ensure normal patterns of H3K9 methylation during meiotic prophase I. We demonstrate that cyclin-dependent kinase (CDK2) can bind to the promoters of a number of genes in male germ cells including that of Ehmt1 through interaction with the NRF1 transcription factor. Our data indicate that CDK2-mediated phosphorylation of NRF1 can occur at two distinct serine residues and negatively regulates NRF1 DNA binding activity in vitro. Furthermore, induced deletion of Cdk2 in spermatocytes results in increased expression of many NRF1 target genes including Ehmt1. We hypothesize that the regulation of NRF1 transcriptional activity by CDK2 may allow the modulation of Ehmt1 expression, therefore controlling the dynamic methylation of H3K9 during meiotic prophase.
Collapse
Affiliation(s)
- Nathan Palmer
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.,Department of Biochemistry, National University of Singapore, Singapore
| | - S Zakiah A Talib
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | | | - Diana Low
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Xavier Bisteau
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Joanna Hui Si Lee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | | | - Heike Wollmann
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Joel Heng Loong Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.,Department of Biochemistry, National University of Singapore, Singapore
| | - Sheena Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Radoslaw Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Daniel M Messerschmidt
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore .,Department of Biochemistry, National University of Singapore, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore .,Department of Biochemistry, National University of Singapore, Singapore
| |
Collapse
|
42
|
Kabartan E, Gunes S, Arslan MA, Asci R. Investigating the relationship between
BRCA1
and
BRCA2
genes methylation profile and sperm DNA fragmentation in infertile men. Andrologia 2019; 51:e13308. [DOI: 10.1111/and.13308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/30/2019] [Accepted: 04/13/2019] [Indexed: 12/24/2022] Open
Affiliation(s)
- Emel Kabartan
- Department of Medical Biology, Faculty of Medicine Ondokuz Mayis University Samsun Turkey
- Scientific Research Projects Office Ordu University Ordu Turkey
| | - Sezgin Gunes
- Department of Medical Biology, Faculty of Medicine Ondokuz Mayis University Samsun Turkey
- Department of Multidisciplinary Molecular Medicine Health Sciences Institute, Ondokuz Mayis University Samsun Turkey
| | - Mehmet Alper Arslan
- Department of Medical Biology, Faculty of Medicine Ondokuz Mayis University Samsun Turkey
- Department of Multidisciplinary Molecular Medicine Health Sciences Institute, Ondokuz Mayis University Samsun Turkey
| | - Ramazan Asci
- Department of Multidisciplinary Molecular Medicine Health Sciences Institute, Ondokuz Mayis University Samsun Turkey
- Department of Urology, Faculty of Medicine Ondokuz Mayis University Samsun Turkey
| |
Collapse
|
43
|
Zong D, Adam S, Wang Y, Sasanuma H, Callén E, Murga M, Day A, Kruhlak MJ, Wong N, Munro M, Chaudhuri AR, Karim B, Xia B, Takeda S, Johnson N, Durocher D, Nussenzweig A. BRCA1 Haploinsufficiency Is Masked by RNF168-Mediated Chromatin Ubiquitylation. Mol Cell 2019; 73:1267-1281.e7. [PMID: 30704900 PMCID: PMC6430682 DOI: 10.1016/j.molcel.2018.12.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/22/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
Abstract
BRCA1 functions at two distinct steps during homologous recombination (HR). Initially, it promotes DNA end resection, and subsequently it recruits the PALB2 and BRCA2 mediator complex, which stabilizes RAD51-DNA nucleoprotein filaments. Loss of 53BP1 rescues the HR defect in BRCA1-deficient cells by increasing resection, suggesting that BRCA1's downstream role in RAD51 loading is dispensable when 53BP1 is absent. Here we show that the E3 ubiquitin ligase RNF168, in addition to its canonical role in inhibiting end resection, acts in a redundant manner with BRCA1 to load PALB2 onto damaged DNA. Loss of RNF168 negates the synthetic rescue of BRCA1 deficiency by 53BP1 deletion, and it predisposes BRCA1 heterozygous mice to cancer. BRCA1+/-RNF168-/- cells lack RAD51 foci and are hypersensitive to PARP inhibitor, whereas forced targeting of PALB2 to DNA breaks in mutant cells circumvents BRCA1 haploinsufficiency. Inhibiting the chromatin ubiquitin pathway may, therefore, be a synthetic lethality strategy for BRCA1-deficient cancers.
Collapse
Affiliation(s)
- Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Salomé Adam
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yifan Wang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Elsa Callén
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Matilde Murga
- Genomic Instability Group, Spanish National Cancer Research Center, CNIO, Madrid, Spain
| | - Amanda Day
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael J. Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Meagan Munro
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Arnab Ray Chaudhuri
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.,Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Baktiar Karim
- Pathology/Histotechnology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bing Xia
- Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel Durocher
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
44
|
Grive KJ, Hu Y, Shu E, Grimson A, Elemento O, Grenier JK, Cohen PE. Dynamic transcriptome profiles within spermatogonial and spermatocyte populations during postnatal testis maturation revealed by single-cell sequencing. PLoS Genet 2019; 15:e1007810. [PMID: 30893341 PMCID: PMC6443194 DOI: 10.1371/journal.pgen.1007810] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/01/2019] [Accepted: 02/18/2019] [Indexed: 12/22/2022] Open
Abstract
Spermatogenesis is the process by which male gametes are formed from a self-renewing population of spermatogonial stem cells (SSCs) residing in the testis. SSCs represent less than 1% of the total testicular cell population in adults, but must achieve a stable balance between self-renewal and differentiation. Once differentiation has occurred, the newly formed and highly proliferative spermatogonia must then enter the meiotic program in which DNA content is doubled, then halved twice to create haploid gametes. While much is known about the critical cellular processes that take place during the specialized cell division that is meiosis, much less is known about how the spermatocytes in the "first-wave" in juveniles compare to those that contribute to long-term, "steady-state" spermatogenesis in adults. Given the strictly-defined developmental process of spermatogenesis, this study explored the transcriptional profiles of developmental cell stages during testis maturation. Using a combination of comprehensive germ cell sampling with high-resolution, single-cell-mRNA-sequencing, we have generated a reference dataset of germ cell gene expression. We show that discrete developmental stages of spermatogenesis possess significant differences in the transcriptional profiles from neonates compared to juveniles and adults. Importantly, these gene expression dynamics are also reflected at the protein level in their respective cell types. We also show differential utilization of many biological pathways with age in both spermatogonia and spermatocytes, demonstrating significantly different underlying gene regulatory programs in these cell types over the course of testis development and spermatogenic waves. This dataset represents the first unbiased sampling of spermatogonia and spermatocytes during testis maturation, at high-resolution, single-cell depth. Not only does this analysis reveal previously unknown transcriptional dynamics of a highly transitional cell population, it has also begun to reveal critical differences in biological pathway utilization in developing spermatogonia and spermatocytes, including response to DNA damage and double-strand breaks.
Collapse
Affiliation(s)
- Kathryn J. Grive
- Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Yang Hu
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States of America
| | - Eileen Shu
- Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Andrew Grimson
- Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States of America
| | - Jennifer K. Grenier
- Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Paula E. Cohen
- Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
45
|
The Fanconi Anemia Pathway and Fertility. Trends Genet 2019; 35:199-214. [DOI: 10.1016/j.tig.2018.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
|
46
|
Ducy M, Sesma-Sanz L, Guitton-Sert L, Lashgari A, Gao Y, Brahiti N, Rodrigue A, Margaillan G, Caron MC, Côté J, Simard J, Masson JY. The Tumor Suppressor PALB2: Inside Out. Trends Biochem Sci 2019; 44:226-240. [PMID: 30638972 DOI: 10.1016/j.tibs.2018.10.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 12/26/2022]
Abstract
Partner and Localizer of BRCA2 (PALB2) has emerged as an important and versatile player in genome integrity maintenance. Biallelic mutations in PALB2 cause Fanconi anemia (FA) subtype FA-N, whereas monoallelic mutations predispose to breast, and pancreatic familial cancers. Herein, we review recent developments in our understanding of the mechanisms of regulation of the tumor suppressor PALB2 and its functional domains. Regulation of PALB2 functions in DNA damage response and repair occurs on multiple levels, including homodimerization, phosphorylation, and ubiquitylation. With a molecular emphasis, we present PALB2-associated cancer mutations and their detailed analysis by functional assays.
Collapse
Affiliation(s)
- Mandy Ducy
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Laura Sesma-Sanz
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Laure Guitton-Sert
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Anahita Lashgari
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Yuandi Gao
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Nadine Brahiti
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Guillaume Margaillan
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada
| | - Marie-Christine Caron
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Jacques Côté
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Jacques Simard
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada.
| |
Collapse
|
47
|
Song F, Li M, Liu G, Swapna G, Daigham NS, Xia B, Montelionep GT, Bunting SF. Antiparallel Coiled-Coil Interactions Mediate the Homodimerization of the DNA Damage-Repair Protein PALB2. Biochemistry 2018; 57:6581-6591. [PMID: 30289697 PMCID: PMC6652205 DOI: 10.1021/acs.biochem.8b00789] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Deficits in DNA damage-repair pathways are the root cause of several human cancers. In mammalian cells, DNA double-strand break repair is carried out by multiple mechanisms, including homologous recombination (HR). The partner and localizer of BRCA2 (PALB2), which is an essential factor for HR, binds to the breast cancer susceptibility 1 (BRCA1) protein at DNA double-strand breaks. At the break site, PALB2 also associates with the breast cancer susceptibility 2 (BRCA2) protein to form a multiprotein complex that facilitates HR. The BRCA1-PALB2 interaction is mediated by association of predicted helical coiled-coil regions in both proteins. PALB2 can also homodimerize through the formation of a coiled coil by the self-association of helical elements at the N-terminus of the PALB2 protein, and this homodimerization has been proposed to regulate the efficiency of HR. We have produced a segment of PALB2, designated PALB2cc (PALB2 coiled coil segment) that forms α-helical structures, which assemble into stable homodimers. PALB2cc also forms heterodimers with a helical segment of BRCA1, called BRCA1cc (BRCA1 coiled coil segment). The three-dimensional structure of the homodimer formed by PALB2cc was determined by solution NMR spectroscopy. This PALB2cc homodimer is a classical antiparallel coiled-coil leucine zipper. NMR chemical-shift perturbation studies were used to study dimer formation for both the PALB2cc homodimer and the PALB2cc/BRCA1cc heterodimer. The mutation of residue Leu24 of PALB2cc significantly reduces its homodimer stability, but has a more modest effect on the stability of the heterodimer formed between PALB2cc and BRCA1cc. We show that mutation of Leu24 leads to genomic instability and reduced cell viability after treatment with agents that induce DNA double-strand breaks. These studies may allow the identification of distinct mutations of PALB2cc that selectively disrupt homodimeric versus heterodimeric interactions, and reveal the specific role of PALB2cc homodimerization in HR.
Collapse
Affiliation(s)
- Fei Song
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Minxing Li
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Gaohua Liu
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - G.V.T. Swapna
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Nourhan S. Daigham
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Gaetano T. Montelionep
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Samuel F. Bunting
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
48
|
Simhadri S, Vincelli G, Huo Y, Misenko S, Foo TK, Ahlskog J, Sørensen CS, Oakley GG, Ganesan S, Bunting SF, Xia B. PALB2 connects BRCA1 and BRCA2 in the G2/M checkpoint response. Oncogene 2018; 38:1585-1596. [PMID: 30337689 PMCID: PMC6408219 DOI: 10.1038/s41388-018-0535-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/13/2018] [Accepted: 09/21/2018] [Indexed: 01/07/2023]
Abstract
The G2/M checkpoint inhibits mitotic entry upon DNA damage thereby preventing segregation of broken chromosomes and preserving genome stability. The tumor suppressor proteins BRCA1, PALB2 and BRCA2 constitute a BRCA1-PALB2-BRCA2 axis that is essential for homologous recombination (HR)-based DNA double strand break repair. Besides HR, BRCA1 has been implicated in both the initial activation and the maintenance of the G2/M checkpoint, while BRCA2 and PALB2 have been shown to be critical for its maintenance. Here we show that all 3 proteins can play a significant role in both checkpoint activation and checkpoint maintenance, depending on cell type and context, and that PALB2 links BRCA1 and BRCA2 in checkpoint response. The BRCA1-PALB2 interaction can be important for checkpoint activation, whereas the PALB2-BRCA2 complex formation appears to be more critical for checkpoint maintenance. Interestingly, the function of PALB2 in checkpoint response appears to be independent of CHK1 and CHK2 phosphorylation. Following ionizing radiation, cells with disengaged BRCA1-PALB2 interaction show greatly increased chromosomal abnormalities due apparently to combined defects in HR and checkpoint control. These findings provide new insights into DNA damage checkpoint control and further underscore the critical importance of the proper cooperation of the BRCA and PALB2 proteins in genome maintenance.
Collapse
Affiliation(s)
- Srilatha Simhadri
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Gabriele Vincelli
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Yanying Huo
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Sarah Misenko
- Department of Molecular Biology and Biochemistry, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Tzeh Keong Foo
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Johanna Ahlskog
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Claus S Sørensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Gregory G Oakley
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE, 68583, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Samuel F Bunting
- Department of Molecular Biology and Biochemistry, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Bing Xia
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA. .,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
49
|
Mahdi AH, Huo Y, Tan Y, Simhadri S, Vincelli G, Gao J, Ganesan S, Xia B. Evidence of Intertissue Differences in the DNA Damage Response and the Pro-oncogenic Role of NF-κB in Mice with Disengaged BRCA1-PALB2 Interaction. Cancer Res 2018; 78:3969-3981. [PMID: 29739757 DOI: 10.1158/0008-5472.can-18-0388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/10/2018] [Accepted: 05/04/2018] [Indexed: 12/14/2022]
Abstract
The BRCA1-PALB2-BRCA2 axis plays an essential role in DNA homologous recombination repair, defect in which drives genome instability and cancer development. How cells with defects in this pathway respond to DNA damage in vivo and how tumors develop from these cells remain poorly defined. Here, we analyzed several aspects of the DNA damage response in multiple tissues of Palb2-mutant mice in which the interaction between PALB2 and BRCA1 is disengaged. Without any challenge, the mutant mice showed increased endogenous DNA damage. Following ionizing radiation, the mutant mice displayed higher levels of DNA breaks and stronger induction of p53 and p21, but continued DNA synthesis, reduced apoptosis, and accelerated tumor development. The differences in p21 induction, DNA synthesis, and apoptosis between wild-type and mutant mice were substantially more pronounced in the mammary gland than in the intestine, suggesting a potential contributing factor to the increased risk and the tissue specificity of BRCA/PALB2-associated tumor development. Moreover, the mutant mice showed higher levels of reactive oxygen species and constitutive activation of NF-κB, an antiapoptotic transcription factor inducible by both DNA damage and oxidative stress. Treatment of the mutant mice with an inhibitor of NF-κB reactivated apoptosis and delayed tumor development following radiation. Thus, our results also suggest a prosurvival and pro-oncogenic role of NF-κB in PALB2-mutant cells.Significance: This study explores novel tumor suppression mechanisms of the BRCA1-PALB2 DNA damage response pathway and implicates NF-κB activation as a protumorogenic event and possible therapeutic target. Cancer Res; 78(14); 3969-81. ©2018 AACR.
Collapse
Affiliation(s)
- Amar Hekmat Mahdi
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Yanying Huo
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Yongmei Tan
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey.,Stomatological Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Srilatha Simhadri
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Gabriele Vincelli
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Jie Gao
- Stomatological Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Bing Xia
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey. .,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
50
|
Zhao X, Wei C, Li J, Xing P, Li J, Zheng S, Chen X. Cell cycle-dependent control of homologous recombination. Acta Biochim Biophys Sin (Shanghai) 2017; 49:655-668. [PMID: 28541389 DOI: 10.1093/abbs/gmx055] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Indexed: 01/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are among the most deleterious type of DNA lesions threatening genome integrity. Homologous recombination (HR) and non-homologous end joining (NHEJ) are two major pathways to repair DSBs. HR requires a homologous template to direct DNA repair, and is generally recognized as a high-fidelity pathway. In contrast, NHEJ directly seals broken ends, but the repair product is often accompanied by sequence alterations. The choice of repair pathways is strictly controlled by the cell cycle. The occurrence of HR is restricted to late S to G2 phases while NHEJ operates predominantly in G1 phase, although it can act throughout most of the cell cycle. Deregulation of repair pathway choice can result in genotoxic consequences associated with cancers. How the cell cycle regulates the choice of HR and NHEJ has been extensively studied in the past decade. In this review, we will focus on the current progresses on how HR is controlled by the cell cycle in both Saccharomyces cerevisiae and mammals. Particular attention will be given to how cyclin-dependent kinases modulate DSB end resection, DNA damage checkpoint signaling, repair and processing of recombination intermediates. In addition, we will discuss recent findings on how HR is repressed in G1 and M phases by the cell cycle.
Collapse
Affiliation(s)
- Xin Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Chengwen Wei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jingjing Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Poyuan Xing
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jingyao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Sihao Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|