1
|
Ghasemi M, Mehranfard N. Neuroprotective actions of norepinephrine in neurological diseases. Pflugers Arch 2024; 476:1703-1725. [PMID: 39136758 DOI: 10.1007/s00424-024-02999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/24/2024] [Indexed: 10/09/2024]
Abstract
Precise control of norepinephrine (NE) levels and NE-receptor interaction is crucial for proper function of the brain. Much evidence for this view comes from experimental studies that indicate an important role for NE in the pathophysiology and treatment of various conditions, including cognitive dysfunction, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and sleep disorders. NE provides neuroprotection against several types of insults in multiple ways. It abrogates oxidative stress, attenuates neuroinflammatory responses in neurons and glial cells, reduces neuronal and glial cell activity, promotes autophagy, and ameliorates apoptotic responses to a variety of insults. It is beneficial for the treatment of neurodegenerative diseases because it improves the generation of neurotrophic factors, promotes neuronal survival, and plays an important role in the regulation of adult neurogenesis. This review aims to present the evidence supporting a principal role for NE in neuroprotection, and molecular mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Nanokadeh Darooee Samen Private Joint Stock Company, Shafa Street, Urmia, 5715793731, Iran.
| |
Collapse
|
2
|
Yan Z, Rein B. Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological implications. Mol Psychiatry 2022; 27:445-465. [PMID: 33875802 PMCID: PMC8523584 DOI: 10.1038/s41380-021-01092-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/13/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
The prefrontal cortex (PFC) serves as the chief executive officer of the brain, controlling the highest level cognitive and emotional processes. Its local circuits among glutamatergic principal neurons and GABAergic interneurons, as well as its long-range connections with other brain regions, have been functionally linked to specific behaviors, ranging from working memory to reward seeking. The efficacy of synaptic signaling in the PFC network is profundedly influenced by monoaminergic inputs via the activation of dopamine, adrenergic, or serotonin receptors. Stress hormones and neuropeptides also exert complex effects on the synaptic structure and function of PFC neurons. Dysregulation of PFC synaptic transmission is strongly linked to social deficits, affective disturbance, and memory loss in brain disorders, including autism, schizophrenia, depression, and Alzheimer's disease. Critical neural circuits, biological pathways, and molecular players that go awry in these mental illnesses have been revealed by integrated electrophysiological, optogenetic, biochemical, and transcriptomic studies of PFC. Novel epigenetic mechanism-based strategies are proposed as potential avenues of therapeutic intervention for PFC-involved diseases. This review provides an overview of PFC network organization and synaptic modulation, as well as the mechanisms linking PFC dysfunction to the pathophysiology of neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. Insights from the preclinical studies offer the potential for discovering new medical treatments for human patients with these brain disorders.
Collapse
Affiliation(s)
- Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | | |
Collapse
|
3
|
Seamans JK, Floresco SB. Event-based control of autonomic and emotional states by the anterior cingulate cortex. Neurosci Biobehav Rev 2021; 133:104503. [PMID: 34922986 DOI: 10.1016/j.neubiorev.2021.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/25/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022]
Abstract
Despite being an intensive area of research, the function of the anterior cingulate cortex (ACC) remains somewhat of a mystery. Human imaging studies implicate the ACC in various cognitive functions, yet surgical ACC lesions used to treat emotional disorders have minimal lasting effects on cognition. An alternative view is that ACC regulates autonomic states, consistent with its interconnectivity with autonomic control regions and that stimulation evokes changes in autonomic/emotional states. At the cellular level, ACC neurons are highly multi-modal and promiscuous, and can represent a staggering array of task events. These neurons nevertheless combine to produce highly event-specific ensemble patterns that likely alter activity in downstream regions controlling emotional and autonomic tone. Since neuromodulators regulate the strength of the ensemble activity patterns, they would regulate the impact these patterns have on downstream targets. Through these mechanisms, the ACC may determine how strongly to react to the very events its ensembles represent. Pathologies arise when specific event-related representations gain excessive control over autonomic/emotional states.
Collapse
Affiliation(s)
- Jeremy K Seamans
- Depts. of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6B2T5, Canada.
| | - Stan B Floresco
- Depts. of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6B2T5, Canada
| |
Collapse
|
4
|
Seamans JK. The anterior cingulate cortex and event-based modulation of autonomic states. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 158:135-169. [PMID: 33785144 DOI: 10.1016/bs.irn.2020.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In spite of being an intensive area of research focus, the anterior cingulate cortex (ACC) remains somewhat of an enigma. Many theories have focused on its role in various aspects of cognition yet surgically precise lesions of the ACC, used to treat severe emotional disorders in human patients, typically have no lasting effects on cognition. An alternative view is that the ACC has a prominent role in regulating autonomic states. This view is consistent with anatomical data showing that a main target of the ACC are regions involved in autonomic control and with the observation that stimulation of the ACC evokes changes in autonomic states in both animals and humans. From an electrophysiological perspective, ACC neurons appear able to represent virtually any event or internal state, even though there is not always a strong link between these representations and behavior. Ensembles of neurons form robust contextual representations that strongly influence how specific events are encoded. The activity patterns associated with these contextually-based event representations presumably impact activity in downstream regions that control autonomic state. As a result, the ACC may regulate the autonomic and perhaps emotional reactions to events it is representing. This event-based control of autonomic tone by the ACC would likely arise during all types of cognitive and affective processes, without necessarily being critical for any of them.
Collapse
Affiliation(s)
- Jeremy K Seamans
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Martínez-Cué C, Rueda N. Signalling Pathways Implicated in Alzheimer's Disease Neurodegeneration in Individuals with and without Down Syndrome. Int J Mol Sci 2020; 21:E6906. [PMID: 32962300 PMCID: PMC7555886 DOI: 10.3390/ijms21186906] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Down syndrome (DS), the most common cause of intellectual disability of genetic origin, is characterized by alterations in central nervous system morphology and function that appear from early prenatal stages. However, by the fourth decade of life, all individuals with DS develop neuropathology identical to that found in sporadic Alzheimer's disease (AD), including the development of amyloid plaques and neurofibrillary tangles due to hyperphosphorylation of tau protein, loss of neurons and synapses, reduced neurogenesis, enhanced oxidative stress, and mitochondrial dysfunction and neuroinflammation. It has been proposed that DS could be a useful model for studying the etiopathology of AD and to search for therapeutic targets. There is increasing evidence that the neuropathological events associated with AD are interrelated and that many of them not only are implicated in the onset of this pathology but are also a consequence of other alterations. Thus, a feedback mechanism exists between them. In this review, we summarize the signalling pathways implicated in each of the main neuropathological aspects of AD in individuals with and without DS as well as the interrelation of these pathways.
Collapse
Affiliation(s)
- Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain;
| | | |
Collapse
|
6
|
Germann UA, Alam JJ. P38α MAPK Signaling-A Robust Therapeutic Target for Rab5-Mediated Neurodegenerative Disease. Int J Mol Sci 2020; 21:E5485. [PMID: 32751991 PMCID: PMC7432772 DOI: 10.3390/ijms21155485] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Multifactorial pathologies, involving one or more aggregated protein(s) and neuroinflammation are common in major neurodegenerative diseases, such as Alzheimer's disease and dementia with Lewy bodies. This complexity of multiple pathogenic drivers is one potential explanation for the lack of success or, at best, the partial therapeutic effects, respectively, with approaches that have targeted one specific driver, e.g., amyloid-beta, in Alzheimer's disease. Since the endosome-associated protein Rab5 appears to be a convergence point for many, if not all the most prominent pathogenic drivers, it has emerged as a major therapeutic target for neurodegenerative disease. Further, since the alpha isoform of p38 mitogen-activated protein kinase (p38α) is a major regulator of Rab5 activity and its effectors, a biology that is distinct from the classical nuclear targets of p38 signaling, brain-penetrant selective p38α kinase inhibitors provide the opportunity for significant therapeutic advances in neurogenerative disease through normalizing dysregulated Rab5 activity. In this review, we provide a brief summary of the role of Rab5 in the cell and its association with neurodegenerative disease pathogenesis. We then discuss the connection between Rab5 and p38α and summarize the evidence that through modulating Rab5 activity there are therapeutic opportunities in neurodegenerative diseases for p38α kinase inhibitors.
Collapse
|
7
|
Sugiyama E, Guerrini MM, Honda K, Hattori Y, Abe M, Källback P, Andrén PE, Tanaka KF, Setou M, Fagarasan S, Suematsu M, Sugiura Y. Detection of a High-Turnover Serotonin Circuit in the Mouse Brain Using Mass Spectrometry Imaging. iScience 2019; 20:359-372. [PMID: 31614319 PMCID: PMC6818351 DOI: 10.1016/j.isci.2019.09.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/12/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
Monoamine neurotransmitters are released by specialized neurons regulating behavioral, motor, and cognitive functions. Although the localization of monoaminergic neurons in the brain is well known, the distribution and kinetics of monoamines remain unclear. Here, we generated a murine brain atlas of serotonin (5-HT), dopamine (DA), and norepinephrine (NE) levels using mass spectrometry imaging (MSI). We found several nuclei rich in both 5-HT and a catecholamine (DA or NE) and identified the paraventricular nucleus of the thalamus (PVT), where 5-HT and NE are co-localized. The analysis of 5-HT fluctuations in response to acute tryptophan depletion and infusion of isotope-labeled tryptophan in vivo revealed a close kinetic association between the raphe nuclei, PVT, and amygdala but not the other nuclei. Our findings imply the existence of a highly dynamic 5-HT-mediated raphe to PVT pathway that likely plays a role in the brain monoamine system. A murine brain atlas of monoamine (5-HT, DA, NE) levels was generated via MS imaging We identified several nuclei rich in both 5-HT and a catecholamine (DA or NE) The paraventricular nucleus of the thalamus (PVT) had high levels of 5-HT and NE The level of 5-HT in raphe to PVT pathway changed dynamically in response to blood Trp level
Collapse
Affiliation(s)
- Eiji Sugiyama
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Matteo M Guerrini
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Tsurumi Ward, Suehirocho, 1 Chome-7-22, Yokohama, Kanagawa Prefecture 230-0045, Japan
| | - Kurara Honda
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yuko Hattori
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8585, Japan
| | - Patrik Källback
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, 75124 Uppsala, Sweden; Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Box 591 BMC, 75124 Uppsala, Sweden
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, 75124 Uppsala, Sweden; Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Box 591 BMC, 75124 Uppsala, Sweden
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Sidonia Fagarasan
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Tsurumi Ward, Suehirocho, 1 Chome-7-22, Yokohama, Kanagawa Prefecture 230-0045, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| |
Collapse
|
8
|
Zhao J, Zhang Y, Liu W, Chen Y, Chang D, Zhang X, Chang T, Wang Q, Liu T, Gao L. Molecular mechanisms of the sedation and analgesia induced by xylazine on Wistar rats and PC12 cell. Exp Anim 2019; 68:351-360. [PMID: 30956255 PMCID: PMC6699970 DOI: 10.1538/expanim.18-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In veterinary clinics, xylazine is commonly used as a sedative, analgesic agent that produces muscle relaxation. In this study, we aimed to explore the mechanism of action of xylazine both in vivo and in vitro. After determing the optimal dose of xylazine, 35 male Wistar rats were divided into seven groups (n=5 per group), including a control group (saline) and xylazine administration groups. Then, at six time points after xylazine administration indicators were evaluated for changes. Moreover, PC12 cells were co-cultured with xylazine, and extracellular regulated protein kinase (ERK) siRNA and protein kinase A (PKA) siRNA were transfected into cells to identify changes of relevant indicators. Our data showed that xylazine influenced the level of adenosine triphosphate (ATP) ase and cyclic adenosine monophosphate (cAMP), and regulated the expression of GluR1, ERK, PKA, cAMP-response element binding protein (CREB), and brain derived neurotrophic factor (BDNF) in the nervous system. However, xylazine did not significantly affect the expression of GluR2 and protein kinase C (PKC). Together, these results indicated that xylazine might exert sedation and analgesia by regulating the PKA/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Jinghua Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, No. 600 Chang Jiang Road, Xiangfang District, Harbin 150030, China
| | - Yiming Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, No. 600 Chang Jiang Road, Xiangfang District, Harbin 150030, China
| | - Wenhan Liu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, No. 600 Chang Jiang Road, Xiangfang District, Harbin 150030, China
| | - Yu Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, No. 600 Chang Jiang Road, Xiangfang District, Harbin 150030, China
| | - Daiyue Chang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, No. 600 Chang Jiang Road, Xiangfang District, Harbin 150030, China
| | - Xintong Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, No. 600 Chang Jiang Road, Xiangfang District, Harbin 150030, China
| | - Tian Chang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, No. 600 Chang Jiang Road, Xiangfang District, Harbin 150030, China
| | - Qi Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, No. 600 Chang Jiang Road, Xiangfang District, Harbin 150030, China
| | - Tao Liu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, No. 600 Chang Jiang Road, Xiangfang District, Harbin 150030, China
| | - Li Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, No. 600 Chang Jiang Road, Xiangfang District, Harbin 150030, China
| |
Collapse
|
9
|
Arbones ML, Thomazeau A, Nakano-Kobayashi A, Hagiwara M, Delabar JM. DYRK1A and cognition: A lifelong relationship. Pharmacol Ther 2019; 194:199-221. [PMID: 30268771 DOI: 10.1016/j.pharmthera.2018.09.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dosage of the serine threonine kinase DYRK1A is critical in the central nervous system (CNS) during development and aging. This review analyzes the functions of this kinase by considering its interacting partners and pathways. The role of DYRK1A in controlling the differentiation of prenatal newly formed neurons is presented separately from its role at the pre- and post-synaptic levels in the adult CNS; its effects on synaptic plasticity are also discussed. Because this kinase is positioned at the crossroads of many important processes, genetic dosage errors in this protein produce devastating effects arising from DYRK1A deficiency, such as in MRD7, an autism spectrum disorder, or from DYRK1A excess, such as in Down syndrome. Effects of these errors have been shown in various animal models including Drosophila, zebrafish, and mice. Dysregulation of DYRK1A levels also occurs in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Finally, this review describes inhibitors that have been assessed in vivo. Accurate targeting of DYRK1A levels in the brain, with either inhibitors or activators, is a future research challenge.
Collapse
Affiliation(s)
- Maria L Arbones
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain.
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jean M Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
10
|
Farrar MJ, Kolkman KE, Fetcho JR. Features of the structure, development, and activity of the zebrafish noradrenergic system explored in new CRISPR transgenic lines. J Comp Neurol 2018; 526:2493-2508. [PMID: 30070695 DOI: 10.1002/cne.24508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 11/11/2022]
Abstract
The noradrenergic (NA) system of vertebrates is implicated in learning, memory, arousal, and neuroinflammatory responses, but is difficult to access experimentally. Small and optically transparent, larval zebrafish offer the prospect of exploration of NA structure and function in an intact animal. We made multiple transgenic zebrafish lines using the CRISPR/Cas9 system to insert fluorescent reporters upstream of slc6a2, the norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony, supporting the potential for targeted LC neuromodulation. Our observations and new transgenic lines set the stage for a deeper understanding of the NA system.
Collapse
Affiliation(s)
- Matthew J Farrar
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York.,Department of Math, Physics and Statistics, Messiah College, Mechanicsburg, Pennsylvania
| | - Kristine E Kolkman
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Joseph R Fetcho
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| |
Collapse
|
11
|
Su H, Zuo C, Zhang H, Jiao F, Zhang B, Tang W, Geng D, Guan Y, Shi S. Regional cerebral metabolism alterations affect resting-state functional connectivity in major depressive disorder. Quant Imaging Med Surg 2018; 8:910-924. [PMID: 30505720 DOI: 10.21037/qims.2018.10.05] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background 18F-FDG positron emission tomography (PET) is a reliable technique to quantify regional neural glucose metabolism even with major depressive disorder (MDD) heterogeneous features. Previous study proposed that in the resting-state (RS), pairs of brain regions whose regional glucose metabolic rates were significantly correlated were functionally associated. This synchronicity indicates a neuronal metabolic and functional interaction in high energy efficient brain regions. In this study, a multimode method was used to identify the RS-FC patterns based on regional metabolism changes, and to observe its relationship with the severity of depressive symptoms in MDD patients. Methods The study enrolled 11 medication-naive MDD patients and 14 healthy subjects. All participants received a static 18F-FDG PET brain scan and a resting-state functional magnetic resonance imaging (RS-fMRI) scan. SPM5 software was used to compare brain metabolism in MDD patients with that in healthy controls, and designated regions with a change in metabolism as regions of interest (ROIs). The glucose metabolism-based regional RS-FC Z values were compared between groups. Then group independent component analysis (ICA) was used to identify the abnormal connectivity nodes in the intrinsic function networks. Finally, the correlation between abnormal RS-FC Z values and the severity of depressive symptoms was evaluated. Results Patients with MDD had reduced glucose metabolism in the putamen, claustrum, insular, inferior frontal gyrus, and supramarginal gyrus. The metabolic reduction regions impaired functional connectivity (FC) to key hubs, such as the Inferior frontal gyrus (pars triangular), angular gyrus, calcarine sulcus, middle frontal gyrus (MFG), located in dorsolateral prefrontal cortex (DLPFC)/parietal lobe, salience network (SN), primary visual cortex (V1), and language network respectively. There was no correlation between aberrant connectivity and the severity of clinical symptoms. Conclusions This research puts forward a possibility that focal neural activity alteration may share RS-FC dysfunction and be susceptible to hubs in the functional network in MDD. In particular, the metabolism and function profiles of the Inferior frontal gyrus (pars triangularis) should be emphasized in future MDD studies.
Collapse
Affiliation(s)
- Hui Su
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai 200030, China.,Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Huiwei Zhang
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Fangyang Jiao
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Bin Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai 200030, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Daoyin Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Shenxun Shi
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
12
|
London J, Rouch C, Bui LC, Assayag E, Souchet B, Daubigney F, Medjaoui H, Luquet S, Magnan C, Delabar JM, Dairou J, Janel N. Overexpression of the DYRK1A Gene (Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A) Induces Alterations of the Serotoninergic and Dopaminergic Processing in Murine Brain Tissues. Mol Neurobiol 2018; 55:3822-3831. [PMID: 28540658 DOI: 10.1007/s12035-017-0591-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/28/2017] [Indexed: 12/12/2022]
Abstract
Trisomy 21 (T21) or Down syndrome (DS) is the most common genetic disorder associated with intellectual disability and affects around 5 million persons worldwide. Neuroanatomical phenotypes associated with T21 include slight reduction of brain size and weight, abnormalities in several brain areas including spines dysgenesis, dendritic morphogenesis, and early neuroanatomical characteristics of Alzheimer's disease. Monoamine neurotransmitters are involved in dendrites development, functioning of synapses, memory consolidation, and their levels measured in the cerebrospinal fluid, blood, or brain areas that are modified in individuals with T21. DYRK1A is one of the recognized key genes that could explain some of the deficits present in individuals with T21. We investigated by high-performance liquid chromatography with electrochemical detection the contents and processing of monoamines neurotransmitters in four brain areas of female and male transgenic mice for the Dyrk1a gene (mBactgDyrk1a). DYRK1A overexpression induced dramatic deficits in the serotonin contents of the four brain areas tested and major deficits in dopamine and adrenaline contents especially in the hypothalamus. These results suggest that DYRK1A overexpression might be associated with the modification of monoamines content found in individuals with T21 and reinforce the interest to target the level of DYRK1A expression as a therapeutic approach for persons with T21.
Collapse
Affiliation(s)
- Jacqueline London
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France.
| | - Claude Rouch
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
| | - Linh Chi Bui
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
| | - Elodie Assayag
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
| | - Benoit Souchet
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
| | - Fabrice Daubigney
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
| | - Hind Medjaoui
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
| | - Serge Luquet
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
| | - Christophe Magnan
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
| | - Jean Maurice Delabar
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
- UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Julien Dairou
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
- UMR 8601 CNRS, Université Paris Descartes, Paris Sorbonne Cité, 75270, Paris, France
| | - Nathalie Janel
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, F-75205, Paris, France
| |
Collapse
|
13
|
Grzelka K, Kurowski P, Gawlak M, Szulczyk P. Noradrenaline Modulates the Membrane Potential and Holding Current of Medial Prefrontal Cortex Pyramidal Neurons via β 1-Adrenergic Receptors and HCN Channels. Front Cell Neurosci 2017; 11:341. [PMID: 29209170 PMCID: PMC5701640 DOI: 10.3389/fncel.2017.00341] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022] Open
Abstract
The medial prefrontal cortex (mPFC) receives dense noradrenergic projections from the locus coeruleus. Adrenergic innervation of mPFC pyramidal neurons plays an essential role in both physiology (control of memory formation, attention, working memory, and cognitive behavior) and pathophysiology (attention deficit hyperactivity disorder, posttraumatic stress disorder, cognitive deterioration after traumatic brain injury, behavioral changes related to addiction, Alzheimer's disease and depression). The aim of this study was to elucidate the mechanism responsible for adrenergic receptor-mediated control of the resting membrane potential in layer V mPFC pyramidal neurons. The membrane potential or holding current of synaptically isolated layer V mPFC pyramidal neurons was recorded in perforated-patch and classical whole-cell configurations in slices from young rats. Application of noradrenaline (NA), a neurotransmitter with affinity for all types of adrenergic receptors, evoked depolarization or inward current in the tested neurons irrespective of whether the recordings were performed in the perforated-patch or classical whole-cell configuration. The effect of noradrenaline depended on β1- and not α1- or α2-adrenergic receptor stimulation. Activation of β1-adrenergic receptors led to an increase in inward Na+ current through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which carry a mixed Na+/K+ current. The protein kinase A- and C-, glycogen synthase kinase-3β- and tyrosine kinase-linked signaling pathways were not involved in the signal transduction between β1-adrenergic receptors and HCN channels. The transduction system operated in a membrane-delimited fashion and involved the βγ subunit of G-protein. Thus, noradrenaline controls the resting membrane potential and holding current in mPFC pyramidal neurons through β1-adrenergic receptors, which in turn activate HCN channels via a signaling pathway involving the βγ subunit.
Collapse
Affiliation(s)
- Katarzyna Grzelka
- Laboratory of Physiology and Pathophysiology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Paweł Szulczyk
- Laboratory of Physiology and Pathophysiology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
Atzori M, Cuevas-Olguin R, Esquivel-Rendon E, Garcia-Oscos F, Salgado-Delgado RC, Saderi N, Miranda-Morales M, Treviño M, Pineda JC, Salgado H. Locus Ceruleus Norepinephrine Release: A Central Regulator of CNS Spatio-Temporal Activation? Front Synaptic Neurosci 2016; 8:25. [PMID: 27616990 PMCID: PMC4999448 DOI: 10.3389/fnsyn.2016.00025] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022] Open
Abstract
Norepinephrine (NE) is synthesized in the Locus Coeruleus (LC) of the brainstem, from where it is released by axonal varicosities throughout the brain via volume transmission. A wealth of data from clinics and from animal models indicates that this catecholamine coordinates the activity of the central nervous system (CNS) and of the whole organism by modulating cell function in a vast number of brain areas in a coordinated manner. The ubiquity of NE receptors, the daunting number of cerebral areas regulated by the catecholamine, as well as the variety of cellular effects and of their timescales have contributed so far to defeat the attempts to integrate central adrenergic function into a unitary and coherent framework. Since three main families of NE receptors are represented-in order of decreasing affinity for the catecholamine-by: α2 adrenoceptors (α2Rs, high affinity), α1 adrenoceptors (α1Rs, intermediate affinity), and β adrenoceptors (βRs, low affinity), on a pharmacological basis, and on the ground of recent studies on cellular and systemic central noradrenergic effects, we propose that an increase in LC tonic activity promotes the emergence of four global states covering the whole spectrum of brain activation: (1) sleep: virtual absence of NE, (2) quiet wake: activation of α2Rs, (3) active wake/physiological stress: activation of α2- and α1-Rs, (4) distress: activation of α2-, α1-, and β-Rs. We postulate that excess intensity and/or duration of states (3) and (4) may lead to maladaptive plasticity, causing-in turn-a variety of neuropsychiatric illnesses including depression, schizophrenic psychoses, anxiety disorders, and attention deficit. The interplay between tonic and phasic LC activity identified in the LC in relationship with behavioral response is of critical importance in defining the short- and long-term biological mechanisms associated with the basic states postulated for the CNS. While the model has the potential to explain a large number of experimental and clinical findings, a major challenge will be to adapt this hypothesis to integrate the role of other neurotransmitters released during stress in a centralized fashion, like serotonin, acetylcholine, and histamine, as well as those released in a non-centralized fashion, like purines and cytokines.
Collapse
Affiliation(s)
- Marco Atzori
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis PotosíSan Luis Potosí, Mexico; School for Behavior and Brain Sciences, University of Texas at DallasRichardson, TX, USA
| | - Roberto Cuevas-Olguin
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Eric Esquivel-Rendon
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | | | - Roberto C Salgado-Delgado
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Nadia Saderi
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Marcela Miranda-Morales
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Mario Treviño
- Laboratory of Cortical Plasticity and Learning, Universidad de Guadalajara Guadalajara, Mexico
| | - Juan C Pineda
- Electrophysiology Laboratory, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán Mérida, Mexico
| | - Humberto Salgado
- Electrophysiology Laboratory, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán Mérida, Mexico
| |
Collapse
|
15
|
Salgado H, Treviño M, Atzori M. Layer- and area-specific actions of norepinephrine on cortical synaptic transmission. Brain Res 2016; 1641:163-76. [PMID: 26820639 DOI: 10.1016/j.brainres.2016.01.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 01/08/2016] [Accepted: 01/20/2016] [Indexed: 12/20/2022]
Abstract
The cerebral cortex is a critical target of the central noradrenergic system. The importance of norepinephrine (NE) in the regulation of cortical activity is underscored by clinical findings that involve this catecholamine and its receptor subtypes in the regulation of a large number of emotional and cognitive functions and illnesses. In this review, we highlight diverse effects of the LC/NE system in the mammalian cortex. Indeed, electrophysiological, pharmacological, and behavioral studies in the last few decades reveal that NE elicits a mixed repertoire of excitatory, inhibitory, and biphasic effects on the firing activity and transmitter release of cortical neurons. At the intrinsic cellular level, NE can produce a series of effects similar to those elicited by other monoamines or acetylcholine, associated with systemic arousal. At the synaptic level, NE induces numerous acute changes in synaptic function, and ׳gates' the induction of long-term plasticity of glutamatergic synapses, consisting in an enhancement of engaged and relevant cortical synapses and/or depression of unengaged synapses. Equally important in shaping cortical function, in many cortical areas NE promotes a characteristic, most often reversible, increase in the gain of local inhibitory synapses, whose extent and temporal properties vary between different areas and sometimes even between cortical layers of the same area. While we are still a long way from a comprehensive theory of the function of the LC/NE system, its cellular, synaptic, and plastic effects are consistent with the hypothesis that noradrenergic modulation is critical in coordinating the activity of cortical and subcortical circuits for the integration of sensory activity and working memory. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
| | | | - Marco Atzori
- Universidad Autónoma de San Luis Potosí, México.
| |
Collapse
|
16
|
Andreou D, Söderman E, Axelsson T, Sedvall GC, Terenius L, Agartz I, Jönsson EG. Cerebrospinal fluid monoamine metabolite concentrations as intermediate phenotypes between glutamate-related genes and psychosis. Psychiatry Res 2015; 229:497-504. [PMID: 26142836 DOI: 10.1016/j.psychres.2015.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 05/10/2015] [Accepted: 06/05/2015] [Indexed: 01/03/2023]
Abstract
Glutamate-related genes have been associated with schizophrenia, but the results have been ambiguous and difficult to replicate. Homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG) are the major degradation products of the monoamines dopamine, serotonin and noradrenaline, respectively, and their concentrations in the cerebrospinal fluid (CSF), mainly HVA, have been associated with schizophrenia. In the present study, we hypothesized that CSF HVA, 5-HIAA and MHPG concentrations represent intermediate phenotypes in the association between glutamate-related genes and psychosis. To test this hypothesis, we searched for association between 238 single nucleotide polymorphisms (SNPs) in ten genes shown to be directly or indirectly implicated in glutamate transmission and CSF HVA, 5-HIAA and MHPG concentrations in 74 patients with psychotic disease. Thirty-eight nominally significant associations were found. Further analyses in 111 healthy controls showed that 87% of the nominal associations were restricted to the patients with psychosis. Some of the psychosis-only-associated SNPs found in the d-amino acid oxidase activator (DAOA) and the kynurenine 3-monooxygenase (KMO) genes have previously been reported to be associated with schizophrenia. The present results suggest that CSF monoamine metabolite concentrations may represent intermediate phenotypes in the association between glutamate-related genes and psychosis.
Collapse
Affiliation(s)
- Dimitrios Andreou
- Department of Clinical Neuroscience, Psychiatry Section, HUBIN Project, Karolinska Institutet and Hospital, Stockholm, Sweden.
| | - Erik Söderman
- Department of Clinical Neuroscience, Psychiatry Section, HUBIN Project, Karolinska Institutet and Hospital, Stockholm, Sweden
| | - Tomas Axelsson
- Department of Medical Sciences, Molecular Medicine, Uppsala University, Uppsala, Sweden
| | - Göran C Sedvall
- Department of Clinical Neuroscience, Psychiatry Section, HUBIN Project, Karolinska Institutet and Hospital, Stockholm, Sweden
| | - Lars Terenius
- Department of Clinical Neuroscience, Psychiatry Section, HUBIN Project, Karolinska Institutet and Hospital, Stockholm, Sweden
| | - Ingrid Agartz
- Department of Clinical Neuroscience, Psychiatry Section, HUBIN Project, Karolinska Institutet and Hospital, Stockholm, Sweden; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Erik G Jönsson
- Department of Clinical Neuroscience, Psychiatry Section, HUBIN Project, Karolinska Institutet and Hospital, Stockholm, Sweden; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|