1
|
Filip R, Bélanger É, Chen X, Lefebvre D, Uguccioni SM, Pezacki JP. LYPLAL1 enzyme activity is linked to hepatic glucose metabolism. Biochem Biophys Res Commun 2025; 759:151656. [PMID: 40147354 DOI: 10.1016/j.bbrc.2025.151656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
The serine hydrolase LYPLAL1 is a poorly characterised enzyme with emerging roles in hepatic metabolism. A multitude of association studies have shown links between variants of this gene locus and metabolic conditions such as obesity and insulin resistance. However, the enzyme's function is still largely unknown. Recent biochemical studies have revealed that it may play a role in hepatic glucose metabolism and that its activity is allosterically regulated. Herein, we use a selective activity-based probe to delineate LYPLAL1's involvement in hepatic metabolism. We show that the enzyme's activity is modulated during metabolic stress, specifically pointing to a putative role in negatively regulating gluconeogenesis and upregulating glycolysis. We also determine that knock-out of the enzyme does not affect liver lipid profiles and bring forth evidence for insulin-mediated control of LYPLAL1 in HepG2 cells. Furthermore, LYPLAL1 activity appears to be largely post-translationally regulated as gene expression levels remain largely constant under insulin and glucagon treatments. Taken together these data point to an enzymatic role in regulating glucose metabolism that may be part of a feedback mechanism of signal transduction.
Collapse
Affiliation(s)
- Roxana Filip
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Étienne Bélanger
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Xinhzu Chen
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - David Lefebvre
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Spencer M Uguccioni
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
2
|
Borgonetti V, Vozella V, Ware T, Cruz B, Bullard R, Cravatt BF, Galeotti N, Roberto M. Excessive alcohol intake produces persistent mechanical allodynia and dysregulates the endocannabinoid system in the lumbar dorsal root ganglia of genetically-selected Marchigian Sardinian alcohol-preferring rats. Pharmacol Res 2024; 209:107462. [PMID: 39396766 PMCID: PMC11834946 DOI: 10.1016/j.phrs.2024.107462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024]
Abstract
Epidemiological data indicate a strong association between alcohol use disorder (AUD) and neuropathic pain. Genetically-selected Marchigian Sardinian alcohol-preferring (msP) rats exhibit a high preference for alcohol compared with their background strain (Wistar rats), but their sensitivity to mechanical allodynia after chronic alcohol exposure is unknown. The present study compared the development of mechanical allodynia between "low, non-pathological drinker" Wistar rats and "high drinker" msP rats using the two-bottle choice (2BC) free-access procedure. Several studies reported the involvement of endocannabinoids (eCBs) in modulating mechanical allodynia, but there are no data on their role in alcohol-related allodynia. Thus, the present study assessed eCBs and their related lipid species in lumbar dorsal root ganglia (DRG) and correlated them with mechanical allodynia in our model. We found that male and female msP rats developed persistent mechanical allodynia during protracted abstinence from alcohol, presenting no sign of recovery, as opposed to Wistar rats. This effect directly correlated with their total alcohol intake. Notably, we found a correlation between lower lumbar DRG 2-arachidonoylglycerol (2-AG) levels and the development of higher mechanical allodynia during abstinence in msP rats of both sexes but not in Wistar rats. Moreover, alcohol-exposed and abstinent msP and Wistar females but not males exhibited significant alterations of thromboxane B2 and prostaglandin E2/prostaglandin D2 compared with naive rats. These findings demonstrate that DRG 2-AG metabolism is altered in msP rats during prolonged abstinence and represents a potentially interesting pharmacological target for the treatment of mechanical allodynia during alcohol abstinence.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Tim Ware
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Ryan Bullard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Aleem AM, Mitchener MM, Kingsley PJ, Rouzer CA, Marnett LJ. Temporal dissociation of COX-2-dependent arachidonic acid and 2-arachidonoylglycerol metabolism in RAW264.7 macrophages. J Lipid Res 2024; 65:100615. [PMID: 39098584 PMCID: PMC11401187 DOI: 10.1016/j.jlr.2024.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
Cyclooxygenase-2 converts arachidonic acid to prostaglandins (PGs) and the endocannabinoid, 2-arachidonoylglycerol (2-AG), to PG glyceryl esters (PG-Gs). The physiological function of PG biosynthesis has been extensively studied, but the importance of the more recently discovered PG-G synthetic pathway remains incompletely defined. This disparity is due in part to a lack of knowledge of the physiological conditions under which PG-G biosynthesis occurs. We have discovered that RAW264.7 macrophages stimulated with Kdo2-lipid A (KLA) produce primarily PGs within the first 12 h followed by robust PG-G synthesis between 12 h and 24 h. We suggest that the amount of PG-Gs quantified is less than actually synthesized, because PG-Gs are subject to a significant level of hydrolysis during the time course of synthesis. Inhibition of cytosolic phospholipase A2 by giripladib does not accelerate PG-G synthesis, suggesting the differential time course of PG and PG-G synthesis is not due to the competition between arachidonic acid and 2-AG. The late-phase PG-G formation is accompanied by an increase in the level of 2-AG and a concomitant decrease in 18:0-20:4 diacylglycerol (DAG). Inhibition of DAG lipases by KT-172 decreases the levels of 2-AG and PG-Gs, indicating that the DAG-lipase pathway is involved in delayed 2-AG metabolism/PG-G synthesis. These results demonstrate that physiologically significant levels of PG-Gs are produced by activated RAW264.7 macrophages well after the production of PGs plateaus.
Collapse
Affiliation(s)
- Ansari M Aleem
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michelle M Mitchener
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Philip J Kingsley
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Carol A Rouzer
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lawrence J Marnett
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
4
|
Briand-Mésange F, Gennero I, Salles J, Trudel S, Dahan L, Ausseil J, Payrastre B, Salles JP, Chap H. From Classical to Alternative Pathways of 2-Arachidonoylglycerol Synthesis: AlterAGs at the Crossroad of Endocannabinoid and Lysophospholipid Signaling. Molecules 2024; 29:3694. [PMID: 39125098 PMCID: PMC11314389 DOI: 10.3390/molecules29153694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6-7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders.
Collapse
Affiliation(s)
- Fabienne Briand-Mésange
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
| | - Isabelle Gennero
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Juliette Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Psychiatrie D’urgences, de Crise et de Liaison, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, 31059 Toulouse, France
| | - Stéphanie Trudel
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France;
| | - Jérôme Ausseil
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Bernard Payrastre
- I2MC-Institute of Metabolic and Cardiovascular Diseases, INSERM UMR1297 and University of Toulouse III, 31400 Toulouse, France;
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, 31400 Toulouse, France
| | - Jean-Pierre Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Unité d’Endocrinologie et Maladies Osseuses, Hôpital des Enfants, 31059 Toulouse, France
| | - Hugues Chap
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Académie des Sciences, Inscriptions et Belles Lettres de Toulouse, Hôtel d’Assézat, 31000 Toulouse, France
| |
Collapse
|
5
|
Chakraborty A, Kamat SS. Lysophosphatidylserine: A Signaling Lipid with Implications in Human Diseases. Chem Rev 2024; 124:5470-5504. [PMID: 38607675 DOI: 10.1021/acs.chemrev.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Lysophosphatidylserine (lyso-PS) has emerged as yet another important signaling lysophospholipid in mammals, and deregulation in its metabolism has been directly linked to an array of human autoimmune and neurological disorders. It has an indispensable role in several biological processes in humans, and therefore, cellular concentrations of lyso-PS are tightly regulated to ensure optimal signaling and functioning in physiological settings. Given its biological importance, the past two decades have seen an explosion in the available literature toward our understanding of diverse aspects of lyso-PS metabolism and signaling and its association with human diseases. In this Review, we aim to comprehensively summarize different aspects of lyso-PS, such as its structure, biodistribution, chemical synthesis, and SAR studies with some synthetic analogs. From a biochemical perspective, we provide an exhaustive coverage of the diverse biological activities modulated by lyso-PSs, such as its metabolism and the receptors that respond to them in humans. We also briefly discuss the human diseases associated with aberrant lyso-PS metabolism and signaling and posit some future directions that may advance our understanding of lyso-PS-mediated mammalian physiology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
6
|
Mohammad I, Liebmann KL, Miller SC. Firefly luciferin methyl ester illuminates the activity of multiple serine hydrolases. Chem Commun (Camb) 2023; 59:8552-8555. [PMID: 37337906 PMCID: PMC10347678 DOI: 10.1039/d3cc02540c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Firefly luciferin methyl ester is hydrolyzed by monoacylglycerol lipase MAGL, amidase FAAH, poorly-characterized hydrolase ABHD11, and hydrolases known for S-depalmitoylation (LYPLA1/2), not just esterase CES1. This enables activity-based bioluminescent assays for serine hydrolases and suggests that the 'esterase activity' responsible for hydrolyzing ester prodrugs is more diverse than previously supposed.
Collapse
Affiliation(s)
- Innus Mohammad
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| | - Kate L Liebmann
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| | - Stephen C Miller
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| |
Collapse
|
7
|
He Q, Qu M, Shen T, Su J, Xu Y, Xu C, Barkat MQ, Cai J, Zhu H, Zeng LH, Wu X. Control of mitochondria-associated endoplasmic reticulum membranes by protein S-palmitoylation: Novel therapeutic targets for neurodegenerative diseases. Ageing Res Rev 2023; 87:101920. [PMID: 37004843 DOI: 10.1016/j.arr.2023.101920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic coupling structures between mitochondria and the endoplasmic reticulum (ER). As a new subcellular structure, MAMs combine the two critical organelle functions. Mitochondria and the ER could regulate each other via MAMs. MAMs are involved in calcium (Ca2+) homeostasis, autophagy, ER stress, lipid metabolism, etc. Researchers have found that MAMs are closely related to metabolic syndrome and neurodegenerative diseases (NDs). The formation of MAMs and their functions depend on specific proteins. Numerous protein enrichments, such as the IP3R-Grp75-VDAC complex, constitute MAMs. The changes in these proteins govern the interaction between mitochondria and the ER; they also affect the biological functions of MAMs. S-palmitoylation is a reversible protein post-translational modification (PTM) that mainly occurs on protein cysteine residues. More and more studies have shown that the S-palmitoylation of proteins is closely related to their membrane localization. Here, we first briefly describe the composition and function of MAMs, reviewing the component and biological roles of MAMs mediated by S-palmitoylation, elaborating on S-palmitoylated proteins in Ca2+ flux, lipid rafts, and so on. We try to provide new insight into the molecular basis of MAMs-related diseases, mainly NDs. Finally, we propose potential drug compounds targeting S-palmitoylation.
Collapse
Affiliation(s)
- Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China
| | - Meiyu Qu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiakun Su
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jibao Cai
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Haibin Zhu
- Department of Gynecology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
8
|
Simard M, Archambault AS, Lavoie JPC, Dumais É, Di Marzo V, Flamand N. Biosynthesis and metabolism of endocannabinoids and their congeners from the monoacylglycerol andN-acyl-ethanolamine families. Biochem Pharmacol 2022; 205:115261. [PMID: 36152677 DOI: 10.1016/j.bcp.2022.115261] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022]
Abstract
The endocannabinoids 2-arachidonoyl-glycerol (2-AG) and N-arachidonoyl-ethanolamine (AEA) are eicosanoids implicated in numerous physiological processes like appetite, adipogenesis, inflammatory pain and inflammation. They mediate most of their physiological effect by activating the cannabinoid (CB) receptors 1 and 2. Other than directly binding to the CB receptors, 2-AG and AEA are also metabolized by most eicosanoid biosynthetic enzymes, yielding many metabolites that are part of the oxyendocannabinoidome. Some of these metabolites have been found in vivo, have the ability to modulate specific receptors and thus potentially influence physiological processes. In this review, we discuss the biosynthesis and metabolism of 2-AG and AEA, as well as their congeners from the monoacyl-glycerol and N-acyl-ethanolamine families, with a special focus on the metabolism by oxygenases involved in arachidonic acid metabolism. We highlight the knowledge gaps in our understanding of the regulation and roles the oxyendocannabinoidome mediators.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Anne-Sophie Archambault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada; Present address: Department of Pathology and Laboratory Medicine, University of British Columbia / BC Children's Hospital Research Institute, Vancouver, British Colombia, Canada
| | - Jean-Philippe C Lavoie
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Élizabeth Dumais
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Vincenzo Di Marzo
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), 80078 Pozzuoli, Italy; Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, École de Nutrition, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC G1V 0A6, Canada; Joint International Unit between the Consiglio Nazionale delle Ricerche (Italy) and Université Laval (Canada) on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu)
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
9
|
Vanhoutte R, Verhelst SHL. Combinatorial Optimization of Activity-Based Probes for Acyl Protein Thioesterases 1 and 2. ACS Med Chem Lett 2022; 13:1144-1150. [DOI: 10.1021/acsmedchemlett.2c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Roeland Vanhoutte
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven − University of Leuven, Herestraat 49,
Box 802, 3000 Leuven, Belgium
| | - Steven H. L. Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven − University of Leuven, Herestraat 49,
Box 802, 3000 Leuven, Belgium
- AG Chemical Proteomics, Leibniz Institute for Analytical Sciences − ISAS, Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
| |
Collapse
|
10
|
Sangphech N, Sillapachaiyaporn C, Nilkhet S, Chuchawankul S. Auricularia polytricha ethanol crude extract from sequential maceration induces lipid accumulation and inflammatory suppression in RAW264.7 macrophages. Food Funct 2021; 12:10563-10570. [PMID: 34571527 DOI: 10.1039/d0fo02574g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Auricularia polytricha (AP), an edible mushroom, is continuously being studied due to the medicinal properties. In this study, AP crude extracts from three sequential extraction, starting from hexane (APH), ethanol (APE) and water (APW), were examined for their anti-inflammatory activity and lipid accumulation property in macrophages. APE treatment was found to increase lipid droplet accumulation in both RAW264.7 and LPS-stimulated RAW264.7 cells in a dose dependent manner. Furthermore, nitric oxide production upon LPS stimulation was suppressed on APE pre-treatment. LC-MS analysis was performed to identify the potential bioactive compounds in APE. The PPARγ agonist, 15-Deoxy-Δ12,14-prostaglandin J2-2-glycerol ester (15d-PGJ2-G), was uniquely presented in APE, which was previously described to bind with PPARγ and induces lipid uptake via the upregulation of Cd36. We found that pre-treatment with APE also showed an increase in Cd36 mRNA in RAW264.7 cells, indicating that 15d-PGJ2-G is the potential active compound found in AP. In conclusion, APE exhibited the induction of lipid uptake via CD36, resulting in lipid accumulation.
Collapse
Affiliation(s)
- Naunpun Sangphech
- Medical Technology, School of Allied Health Sciences, Walailak University, 222 Thaiburi, Thasala, Nakorn Si Thammarat, 80160, Thailand
| | - Chanin Sillapachaiyaporn
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunita Nilkhet
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Immunomodulation of Natural Products Research Group, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Field SD, Lee W, Dutra JK, Serneo FSF, Oyer J, Xu H, Johnson DS, am Ende CW, Seneviratne U. Fluorophosphonate‐Based Degrader Identifies Degradable Serine Hydrolases by Quantitative Proteomics. Chembiochem 2020; 21:2916-2920. [DOI: 10.1002/cbic.202000253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Indexed: 01/26/2023]
Affiliation(s)
- S. Denise Field
- Pfizer Worldwide Research and Development 1 Portland St Cambridge MA 02139 USA
| | - Wankyu Lee
- Pfizer Worldwide Research and Development 1 Portland St Cambridge MA 02139 USA
| | - Jason K. Dutra
- Pfizer Worldwide Research and Development Eastern Point Road Groton CT 06340 USA
| | - Finley Scott F. Serneo
- Pfizer Worldwide Research and Development 10770 Science Center Drive San Diego CA 92121 USA
| | - Jon Oyer
- Pfizer Worldwide Research and Development 10770 Science Center Drive San Diego CA 92121 USA
| | - Hua Xu
- Pfizer Worldwide Research and Development 1 Portland St Cambridge MA 02139 USA
| | - Douglas S. Johnson
- Pfizer Worldwide Research and Development 1 Portland St Cambridge MA 02139 USA
| | | | - Uthpala Seneviratne
- Pfizer Worldwide Research and Development 1 Portland St Cambridge MA 02139 USA
| |
Collapse
|
12
|
Kingsley PJ, Rouzer CA, Morgan AJ, Patel S, Marnett LJ. Aspects of Prostaglandin Glycerol Ester Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:77-88. [PMID: 31562623 DOI: 10.1007/978-3-030-21735-8_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Cyclooxygenase enzymes (COX-1 and COX-2) incorporate 2 molecules of O2 into arachidonic acid (AA), resulting in an array of bioactive prostaglandins. However, much work has been done showing that COX-2 will perform this reaction on several different AA-containing molecules, most importantly, the endocannabinoid 2-arachidonoylglycerol (2-AG). The products of 2-AG oxygenation, prostaglandin glycerol esters (PG-Gs), are analogous to canonical prostaglandins. This chapter reviews the literature detailing the production, metabolism, and bioactivity of these compounds, as well as their detection in intact animals.
Collapse
Affiliation(s)
- Philip J Kingsley
- A. B. Hancock Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Carol A Rouzer
- A. B. Hancock Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Amanda J Morgan
- A. B. Hancock Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Department of Molecular Physiology & Biophysics, and the Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lawrence J Marnett
- A. B. Hancock Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
13
|
Turcotte C, Dumais É, Archambault AS, Martin C, Blanchet MR, Bissonnette É, Boulet LP, Laviolette M, Di Marzo V, Flamand N. Human leukocytes differentially express endocannabinoid-glycerol lipases and hydrolyze 2-arachidonoyl-glycerol and its metabolites from the 15-lipoxygenase and cyclooxygenase pathways. J Leukoc Biol 2019; 106:1337-1347. [PMID: 31556464 DOI: 10.1002/jlb.3a0919-049rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 11/08/2022] Open
Abstract
2-Arachidonoyl-glycerol (2-AG) is an endocannabinoid with anti-inflammatory properties. Blocking 2-AG hydrolysis to enhance CB2 signaling has proven effective in mouse models of inflammation. However, the expression of 2-AG lipases has never been thoroughly investigated in human leukocytes. Herein, we investigated the expression of seven 2-AG hydrolases by human blood leukocytes and alveolar macrophages (AMs) and found the following protein expression pattern: monoacylglycerol (MAG lipase; eosinophils, AMs, monocytes), carboxylesterase (CES1; monocytes, AMs), palmitoyl-protein thioesterase (PPT1; AMs), α/β-hydrolase domain (ABHD6; mainly AMs), ABHD12 (all), ABHD16A (all), and LYPLA2 (lysophospholipase 2; monocytes, lymphocytes, AMs). We next found that all leukocytes could hydrolyze 2-AG and its metabolites derived from cyclooxygenase-2 (prostaglandin E2 -glycerol [PGE2 -G]) and the 15-lipoxygenase (15-hydroxy-eicosatetraenoyl-glycerol [15-HETE-G]). Neutrophils and eosinophils were consistently better at hydrolyzing 2-AG and its metabolites than monocytes and lymphocytes. Moreover, the efficacy of leukocytes to hydrolyze 2-AG and its metabolites was 2-AG ≥ 15-HETE-G >> PGE2 -G for each leukocyte. Using the inhibitors methylarachidonoyl-fluorophosphonate (MAFP), 4-nitrophenyl-4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184), Palmostatin B, 4'-carbamoylbiphenyl-4-yl methyl(3-(pyridin-4-yl)benzyl)carbamate, N-methyl-N-[[3-(4-pyridinyl)phenyl]methyl]-4'-(aminocarbonyl)[1,1'-biphenyl]-4-yl ester carbamic acid (WWL70), 4'-[[[methyl[[3-(4-pyridinyl)phenyl]methyl]amino]carbonyl]oxy]-[1,1'-biphenyl]-4-carboxylic acid, ethyl ester (WWL113), tetrahydrolipstatin, and ML349, we could not pinpoint a specific hydrolase responsible for the hydrolysis of 2-AG, PGE2 -G, and 15-HETE-G by these leukocytes. Furthermore, JZL184, a selective MAG lipase inhibitor, blocked the hydrolysis of 2-AG, PGE2 -G, and 15-HETE-G by neutrophils and the hydrolysis of PGE2 -G and 15-HETE-G by lymphocytes, two cell types with limited/no MAG lipase. Using an activity-based protein profiling (ABPP) probe to label hydrolases in leukocytes, we found that they express many MAFP-sensitive hydrolases and an unknown JZL184-sensitive hydrolase of ∼52 kDa. Altogether, our results indicate that human leukocytes are experts at hydrolyzing 2-AG and its metabolites via multiple lipases and probably via a yet-to-be characterized 52 kDa hydrolase. Blocking 2-AG hydrolysis in humans will likely abrogate the ability of human leukocytes to degrade 2-AG and its metabolites and increase their anti-inflammatory effects in vivo.
Collapse
Affiliation(s)
- Caroline Turcotte
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Élizabeth Dumais
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Anne-Sophie Archambault
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Cyril Martin
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Marie-Renée Blanchet
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Élyse Bissonnette
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Louis-Philippe Boulet
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Michel Laviolette
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Vincenzo Di Marzo
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Nicolas Flamand
- Québec City Heat and Lung Institute, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| |
Collapse
|
14
|
Buisseret B, Alhouayek M, Guillemot-Legris O, Muccioli GG. Endocannabinoid and Prostanoid Crosstalk in Pain. Trends Mol Med 2019; 25:882-896. [PMID: 31160168 DOI: 10.1016/j.molmed.2019.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022]
Abstract
Interfering with endocannabinoid (eCB) metabolism to increase their levels is a proven anti-nociception strategy. However, because the eCB and prostanoid systems are intertwined, interfering with eCB metabolism will affect the prostanoid system and inversely. Key to this connection is the production of the cyclooxygenase (COX) substrate arachidonic acid upon eCB hydrolysis as well as the ability of COX to metabolize the eCBs anandamide (AEA) and 2-arachidonoylglycerol (2-AG) into prostaglandin-ethanolamides (PG-EA) and prostaglandin-glycerol esters (PG-G), respectively. Recent studies shed light on the role of PG-Gs and PG-EAs in nociception and inflammation. Here, we discuss the role of these complex systems in nociception and new opportunities to alleviate pain by interacting with them.
Collapse
Affiliation(s)
- Baptiste Buisseret
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium.
| |
Collapse
|
15
|
Buisseret B, Guillemot-Legris O, Muccioli GG, Alhouayek M. Prostaglandin D2-glycerol ester decreases carrageenan-induced inflammation and hyperalgesia in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:609-618. [DOI: 10.1016/j.bbalip.2019.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/27/2018] [Accepted: 01/20/2019] [Indexed: 12/19/2022]
|
16
|
Wepy JA, Galligan JJ, Kingsley PJ, Xu S, Goodman MC, Tallman KA, Rouzer CA, Marnett LJ. Lysophospholipases cooperate to mediate lipid homeostasis and lysophospholipid signaling. J Lipid Res 2018; 60:360-374. [PMID: 30482805 DOI: 10.1194/jlr.m087890] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
Lysophospholipids (LysoPLs) are bioactive lipid species involved in cellular signaling processes and the regulation of cell membrane structure. LysoPLs are metabolized through the action of lysophospholipases, including lysophospholipase A1 (LYPLA1) and lysophospholipase A2 (LYPLA2). A new X-ray crystal structure of LYPLA2 compared with a previously published structure of LYPLA1 demonstrated near-identical folding of the two enzymes; however, LYPLA1 and LYPLA2 have displayed distinct substrate specificities in recombinant enzyme assays. To determine how these in vitro substrate preferences translate into a relevant cellular setting and better understand the enzymes' role in LysoPL metabolism, CRISPR-Cas9 technology was utilized to generate stable KOs of Lypla1 and/or Lypla2 in Neuro2a cells. Using these cellular models in combination with a targeted lipidomics approach, LysoPL levels were quantified and compared between cell lines to determine the effect of losing lysophospholipase activity on lipid metabolism. This work suggests that LYPLA1 and LYPLA2 are each able to account for the loss of the other to maintain lipid homeostasis in cells; however, when both are deleted, LysoPL levels are dramatically increased, causing phenotypic and morphological changes to the cells.
Collapse
Affiliation(s)
- James A Wepy
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - James J Galligan
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Philip J Kingsley
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Shu Xu
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Michael C Goodman
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Keri A Tallman
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Carol A Rouzer
- Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Lawrence J Marnett
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146 .,Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| |
Collapse
|
17
|
Zaballa ME, van der Goot FG. The molecular era of protein S-acylation: spotlight on structure, mechanisms, and dynamics. Crit Rev Biochem Mol Biol 2018; 53:420-451. [DOI: 10.1080/10409238.2018.1488804] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- María-Eugenia Zaballa
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Abstract
S-palmitoylation is required for membrane anchoring, proper trafficking, and the normal function of hundreds of integral and peripheral membrane proteins. Previous bioorthogonal pulse-chase proteomics analyses identified Ras family GTPases, polarity proteins, and G proteins as rapidly cycling S-palmitoylated proteins sensitive to depalmitoylase inhibition, yet the breadth of enzyme regulated dynamic S-palmitoylation largely remains a mystery. Here, we present a pulsed bioorthogonal S-palmitoylation assay for temporal analysis of S-palmitoylation dynamics. Low concentration hexadecylfluorophosphonate (HDFP) inactivates the APT and ABHD17 families of depalmitoylases, which dramatically increases alkynyl-fatty acid labeling and stratifies S-palmitoylated proteins into kinetically distinct subgroups. Most surprisingly, HDFP treatment does not affect steady-state S-palmitoylation levels, despite inhibiting all validated depalmitoylating enzymes. S-palmitoylation profiling of APT1-/-/APT2-/- mouse brains similarly show no change in S-palmitoylation levels. In comparison with hydroxylamine-switch methods, bioorthogonal alkynyl fatty acids are only incorporated into a small fraction of dynamic S-palmitoylated proteins, raising the possibility that S-palmitoylation is more stable than generally characterized. Overall, disrupting depalmitoylase activity enhances alkynyl fatty acid incorporation, but does not greatly affect steady state S-palmitoylation across the proteome.
Collapse
Affiliation(s)
- Sang Joon Won
- Program in Chemical Biology, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA
| | - Brent R. Martin
- Program in Chemical Biology, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Baggelaar MP, Maccarrone M, van der Stelt M. 2-Arachidonoylglycerol: A signaling lipid with manifold actions in the brain. Prog Lipid Res 2018; 71:1-17. [PMID: 29751000 DOI: 10.1016/j.plipres.2018.05.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 11/19/2022]
Abstract
2-Arachidonoylglycerol (2-AG) is a signaling lipid in the central nervous system that is a key regulator of neurotransmitter release. 2-AG is an endocannabinoid that activates the cannabinoid CB1 receptor. It is involved in a wide array of (patho)physiological functions, such as emotion, cognition, energy balance, pain sensation and neuroinflammation. In this review, we describe the biosynthetic and metabolic pathways of 2-AG and how chemical and genetic perturbation of these pathways has led to insight in the biological role of this signaling lipid. Finally, we discuss the potential therapeutic benefits of modulating 2-AG levels in the brain.
Collapse
Affiliation(s)
- Marc P Baggelaar
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; European Centre for Brain Research/IRCCS Santa Lucia Foundation, via del Fosso del Fiorano 65, 00143 Rome, Italy
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands..
| |
Collapse
|
20
|
Alhouayek M, Buisseret B, Paquot A, Guillemot-Legris O, Muccioli GG. The endogenous bioactive lipid prostaglandin D
2
‐glycerol ester reduces murine colitis
via
DP1 and PPARγ receptors. FASEB J 2018; 32:5000-5011. [DOI: 10.1096/fj.201701205r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de LouvainBrusselsBelgium
| | - Baptiste Buisseret
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de LouvainBrusselsBelgium
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de LouvainBrusselsBelgium
| | - Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de LouvainBrusselsBelgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de LouvainBrusselsBelgium
| |
Collapse
|
21
|
Won SJ, Cheung See Kit M, Martin BR. Protein depalmitoylases. Crit Rev Biochem Mol Biol 2018; 53:83-98. [PMID: 29239216 PMCID: PMC6009847 DOI: 10.1080/10409238.2017.1409191] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
Abstract
Protein depalmitoylation describes the removal of thioester-linked long chain fatty acids from cysteine residues in proteins. For many S-palmitoylated proteins, this process is promoted by acyl protein thioesterase enzymes, which catalyze thioester hydrolysis to solubilize and displace substrate proteins from membranes. The closely related enzymes acyl protein thioesterase 1 (APT1; LYPLA1) and acyl protein thioesterase 2 (APT2; LYPLA2) were initially identified from biochemical assays as G protein depalmitoylases, yet later were shown to accept a number of S-palmitoylated protein and phospholipid substrates. Leveraging the development of isoform-selective APT inhibitors, several studies report distinct roles for APT enzymes in growth factor and hormonal signaling. Recent crystal structures of APT1 and APT2 reveal convergent acyl binding channels, suggesting additional factors beyond acyl chain recognition mediate substrate selection. In addition to APT enzymes, the ABHD17 family of hydrolases contributes to the depalmitoylation of Ras-family GTPases and synaptic proteins. Overall, enzymatic depalmitoylation ensures efficient membrane targeting by balancing the palmitoylation cycle, and may play additional roles in signaling, growth, and cell organization. In this review, we provide a perspective on the biochemical, structural, and cellular analysis of protein depalmitoylases, and outline opportunities for future studies of systems-wide analysis of protein depalmitoylation.
Collapse
Affiliation(s)
- Sang Joon Won
- a Program in Chemical Biology , University of Michigan , Ann Arbor , MI , USA
| | | | - Brent R Martin
- a Program in Chemical Biology , University of Michigan , Ann Arbor , MI , USA
- b Department of Chemistry , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
22
|
Fowler CJ, Doherty P, Alexander SPH. Endocannabinoid Turnover. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:31-66. [PMID: 28826539 DOI: 10.1016/bs.apha.2017.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this review, we consider the biosynthetic, hydrolytic, and oxidative metabolism of the endocannabinoids anandamide and 2-arachidonoylglycerol. We describe the enzymes associated with these events and their characterization. We identify the inhibitor profile for these enzymes and the status of therapeutic exploitation, which to date has been limited to clinical trials for fatty acid amide hydrolase inhibitors. To bring the review to a close, we consider whether point block of a single enzyme is likely to be the most successful approach for therapeutic exploitation of the endocannabinoid system.
Collapse
Affiliation(s)
| | - Patrick Doherty
- Wolfson Centre for Age-Related Disease, King's College London, London, United Kingdom
| | | |
Collapse
|
23
|
Turcotte C, Zarini S, Jean S, Martin C, Murphy RC, Marsolais D, Laviolette M, Blanchet MR, Flamand N. The Endocannabinoid Metabolite Prostaglandin E 2 (PGE 2)-Glycerol Inhibits Human Neutrophil Functions: Involvement of Its Hydrolysis into PGE 2 and EP Receptors. THE JOURNAL OF IMMUNOLOGY 2017; 198:3255-3263. [PMID: 28258202 DOI: 10.4049/jimmunol.1601767] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/01/2017] [Indexed: 01/05/2023]
Abstract
The endocannabinoids 2-arachidonoyl-glycerol and N-arachidonoyl-ethanolamine mediate an array of pro- and anti-inflammatory effects. These effects are related, in part, to their metabolism by eicosanoid biosynthetic enzymes. For example, N-arachidonoyl-ethanolamine and 2-arachidonoyl-glycerol can be metabolized by cyclooxygenase-2 into PG-ethanolamide (PG-EA) and PG-glycerol (PG-G), respectively. Although PGE2 is a recognized suppressor of neutrophil functions, the impact of cyclooxygenase-derived endocannabinoids such as PGE2-EA or PGE2-G on neutrophils is unknown. This study's aim was to define the effects of these mediators on neutrophil functions and the underlying cellular mechanisms involved. We show that PGE2-G, but not PGE2-EA, inhibits leukotriene B4 biosynthesis, superoxide production, migration, and antimicrobial peptide release. The effects of PGE2-G were prevented by EP1/EP2 receptor antagonist AH-6809 but not the EP4 antagonist ONO-AE2-227. The effects of PGE2-G required its hydrolysis into PGE2, were not observed with the non-hydrolyzable PGE2-serinol amide, and were completely prevented by methyl-arachidonoyl-fluorophosphate and palmostatin B, and partially prevented by JZL184 and WWL113. Although we could detect six of the documented PG-G hydrolases in neutrophils by quantitative PCR, only ABHD12 and ABHD16A were detected by immunoblot. Our pharmacological data, combined with our protein expression data, did not allow us to pinpoint one PGE2-G lipase, and rather support the involvement of an uncharacterized lipase and/or of multiple hydrolases. In conclusion, we show that PGE2-G inhibits human neutrophil functions through its hydrolysis into PGE2, and by activating the EP2 receptor. This also indicates that neutrophils could regulate inflammation by altering the balance between PG-G and PG levels in vivo.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Simona Zarini
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045
| | - Stéphanie Jean
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Cyril Martin
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045
| | - David Marsolais
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Michel Laviolette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Marie-Renée Blanchet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| |
Collapse
|
24
|
Won SJ, Eschweiler JD, Majmudar JD, Chong FS, Hwang SY, Ruotolo BT, Martin BR. Affinity-Based Selectivity Profiling of an In-Class Selective Competitive Inhibitor of Acyl Protein Thioesterase 2. ACS Med Chem Lett 2017; 8:215-220. [PMID: 28197315 DOI: 10.1021/acsmedchemlett.6b00441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/09/2016] [Indexed: 11/28/2022] Open
Abstract
Activity-based protein profiling (ABPP) has revolutionized the discovery and optimization of active-site ligands across distinct enzyme families, providing a robust platform for in-class selectivity profiling. Nonetheless, this approach is less straightforward for profiling reversible inhibitors and does not access proteins outside the ABPP probe's target profile. While the active-site competitive acyl protein thioesterase 2 inhibitor ML349 (Ki = 120 nM) is highly selective within the serine hydrolase enzyme family, it could still interact with other cellular targets. Here we present a chemoproteomic workflow to enrich and profile candidate ML349-binding proteins. In human cell lysates, biotinylated-ML349 enriches a recurring set of proteins, including metabolite kinases and flavin-dependent oxidoreductases that are potentially enhanced by avidity-driven multimeric interactions. Confirmatory assays by native mass spectrometry and fluorescence polarization quickly rank-ordered these weak off-targets, providing justification to explore ligand interactions and stoichiometry beyond ABPP.
Collapse
Affiliation(s)
- Sang Joon Won
- Program
in Chemical Biology and ‡Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Joseph D. Eschweiler
- Program
in Chemical Biology and ‡Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jaimeen D. Majmudar
- Program
in Chemical Biology and ‡Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Fei San Chong
- Program
in Chemical Biology and ‡Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Sin Ye Hwang
- Program
in Chemical Biology and ‡Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Brandon T. Ruotolo
- Program
in Chemical Biology and ‡Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Brent R. Martin
- Program
in Chemical Biology and ‡Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
25
|
Navia-Paldanius D, Patel JZ, López Navarro M, Jakupović H, Goffart S, Pasonen-Seppänen S, Nevalainen TJ, Jääskeläinen T, Laitinen T, Laitinen JT, Savinainen JR. Chemoproteomic, biochemical and pharmacological approaches in the discovery of inhibitors targeting human α/β-hydrolase domain containing 11 (ABHD11). Eur J Pharm Sci 2016; 93:253-63. [PMID: 27544863 DOI: 10.1016/j.ejps.2016.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/28/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
Abstract
ABHD11 (α/β-hydrolase domain containing 11) is a non-annotated enzyme belonging to the family of metabolic serine hydrolases (mSHs). Its natural substrates and products are unknown. Using competitive activity-based protein profiling (ABPP) to identify novel inhibitors of human (h)ABHD11, three compounds from our chemical library exhibited low nanomolar potency towards hABHD11. Competitive ABPP of various proteomes revealed fatty acid amide hydrolase (FAAH) as the sole off-target among the mSHs. Our fluorescent activity assays designed for natural lipase substrates revealed no activity of hABHD11 towards mono- or diacylglycerols. A broader profiling using para-nitrophenyl (pNP)-linked substrates indicated no amidase/protease, phosphatase, sulfatase, phospholipase C or phosphodiesterase activity. Instead, hABHD11 readily utilized para-nitrophenyl butyrate (pNPC4), indicating lipase/esterase-type activity that could be exploited in inhibitor discovery. Additionally, a homology model was created based on the crystal structure of bacterial esterase YbfF. In contrast to YbfF, which reportedly hydrolyze long-chain acyl-CoA, hABHD11 did not utilize oleoyl-CoA or arachidonoyl-CoA. In conclusion, the present study reports the discovery of potent hABHD11 inhibitors with good selectivity among mSHs. We developed substrate-based activity assays for hABHD11 that could be further exploited in inhibitor discovery and created the first homology-based hABHD11 model, offering initial insights into the active site of this poorly characterized enzyme.
Collapse
Affiliation(s)
- Dina Navia-Paldanius
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O Box 1627, 70211 Kuopio, Finland.
| | - Jayendra Z Patel
- School of Pharmacy, University of Eastern Finland, P.O Box 1627, 70211 Kuopio, Finland
| | - Miriam López Navarro
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O Box 1627, 70211 Kuopio, Finland
| | - Hermina Jakupović
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O Box 1627, 70211 Kuopio, Finland
| | - Steffi Goffart
- Department of Biology, University of Eastern Finland, P.O Box 111, 80101 Joensuu, Finland
| | - Sanna Pasonen-Seppänen
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O Box 1627, 70211 Kuopio, Finland
| | - Tapio J Nevalainen
- School of Pharmacy, University of Eastern Finland, P.O Box 1627, 70211 Kuopio, Finland
| | - Tiina Jääskeläinen
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O Box 1627, 70211 Kuopio, Finland; Institute of Dentistry, University of Eastern Finland, P.O Box 1627, 70211 Kuopio, Finland
| | - Tuomo Laitinen
- School of Pharmacy, University of Eastern Finland, P.O Box 1627, 70211 Kuopio, Finland
| | - Jarmo T Laitinen
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O Box 1627, 70211 Kuopio, Finland
| | - Juha R Savinainen
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
26
|
Turcotte C, Chouinard F, Lefebvre JS, Flamand N. Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide, and their metabolites. J Leukoc Biol 2015; 97:1049-70. [PMID: 25877930 DOI: 10.1189/jlb.3ru0115-021r] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/28/2015] [Indexed: 12/26/2022] Open
Abstract
2-Arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA) are endocannabinoids that have been implicated in many physiologic disorders, including obesity, metabolic syndromes, hepatic diseases, pain, neurologic disorders, and inflammation. Their immunomodulatory effects are numerous and are not always mediated by cannabinoid receptors, reflecting the presence of an arachidonic acid (AA) molecule in their structure, the latter being the precursor of numerous bioactive lipids that are pro- or anti-inflammatory. 2-AG and AEA can thus serve as a source of AA but can also be metabolized by most eicosanoid biosynthetic enzymes, yielding additional lipids. In this regard, enhancing endocannabinoid levels by using endocannabinoid hydrolysis inhibitors is likely to augment the levels of these lipids that could regulate inflammatory cell functions. This review summarizes the metabolic pathways involved in the biosynthesis and metabolism of AEA and 2-AG, as well as the biologic effects of the 2-AG and AEA lipidomes in the regulation of inflammation.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - François Chouinard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Julie S Lefebvre
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
27
|
Zhao N, Darby CM, Small J, Bachovchin DA, Jiang X, Burns-Huang KE, Botella H, Ehrt S, Boger DL, Anderson ED, Cravatt BF, Speers AE, Fernandez-Vega V, Hodder PS, Eberhart C, Rosen H, Spicer TP, Nathan CF. Target-based screen against a periplasmic serine protease that regulates intrabacterial pH homeostasis in Mycobacterium tuberculosis. ACS Chem Biol 2015; 10:364-71. [PMID: 25457457 PMCID: PMC4340348 DOI: 10.1021/cb500746z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Mycobacterium tuberculosis (Mtb) maintains its intrabacterial pH (pHIB) near neutrality in the acidic environment of phagosomes within
activated macrophages. A previously reported genetic screen revealed
that Mtb loses this ability when the mycobacterial
acid resistance protease (marP) gene is disrupted.
In the present study, a high throughput screen (HTS) of compounds
against the protease domain of MarP identified benzoxazinones as inhibitors
of MarP. A potent benzoxazinone, BO43 (6-chloro-2-(2′-methylphenyl)-4H-1,3-benzoxazin-4-one),
acylated MarP and lowered Mtb’s pHIB and survival during incubation at pH 4.5. BO43 had similar effects
on MarP-deficient Mtb, suggesting the existence of
additional target(s). Reaction of an alkynyl-benzoxazinone, BO43T,
with Mycobacterium bovis variant bacille
Calmette-Guérin (BCG) followed by
click chemistry with azido-biotin identified both the MarP homologue
and the high temperature requirement A1 (HtrA1) homologue, an essential
protein. Thus, the chemical probe identified through a target-based
screen not only reacted with its intended target in the intact cells
but also implicated an additional enzyme that had eluded a genetic
screen biased against essential genes.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 445 E 69th Street, New York, New York 10021, United States
| | - Crystal M. Darby
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 445 E 69th Street, New York, New York 10021, United States
| | - Jennifer Small
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 445 E 69th Street, New York, New York 10021, United States
| | - Daniel A. Bachovchin
- Department
of Chemical Physiology, The Scripps Research Institute, 10550 N Torrey
Pines Road, La Jolla, California 92037, United States
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 445 E 69th Street, New York, New York 10021, United States
| | - Kristin E. Burns-Huang
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 445 E 69th Street, New York, New York 10021, United States
| | - Helene Botella
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 445 E 69th Street, New York, New York 10021, United States
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 445 E 69th Street, New York, New York 10021, United States
| | - Dale L. Boger
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey
Pines Road, La Jolla, California 92037, United States
| | - Erin D. Anderson
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey
Pines Road, La Jolla, California 92037, United States
| | - Benjamin F. Cravatt
- Department
of Chemical Physiology, The Scripps Research Institute, 10550 N Torrey
Pines Road, La Jolla, California 92037, United States
| | - Anna E. Speers
- Department
of Chemical Physiology, The Scripps Research Institute, 10550 N Torrey
Pines Road, La Jolla, California 92037, United States
| | | | - Peter S. Hodder
- Department
of Chemical Physiology, The Scripps Research Institute, 10550 N Torrey
Pines Road, La Jolla, California 92037, United States
| | - Christina Eberhart
- Department
of Chemical Physiology, The Scripps Research Institute, 10550 N Torrey
Pines Road, La Jolla, California 92037, United States
| | - Hugh Rosen
- Department
of Chemical Physiology, The Scripps Research Institute, 10550 N Torrey
Pines Road, La Jolla, California 92037, United States
| | - Timothy P. Spicer
- Department
of Chemical Physiology, The Scripps Research Institute, 10550 N Torrey
Pines Road, La Jolla, California 92037, United States
| | - Carl F. Nathan
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 445 E 69th Street, New York, New York 10021, United States
| |
Collapse
|