1
|
Buonfiglio P, Bruque C, Salatino L, Lotersztein V, Pace M, Grinberg S, Elgoyhen A, Plazas P, Dalamón V. In silico and in vivo analyses of a novel variant in MYO6 identified in a family with postlingual non-syndromic hearing loss from Argentina. NAR Genom Bioinform 2024; 6:lqae162. [PMID: 39664812 PMCID: PMC11632615 DOI: 10.1093/nargab/lqae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
Hereditary hearing loss stands as the most prevalent sensory disorder, with over 124 non-syndromic genes and approximately 400 syndromic forms of deafness identified in humans. The clinical presentation of these conditions spans a spectrum, ranging from mild to profound hearing loss. The aim of this study was to identify the genetic cause of hearing loss in a family and functionally validate a novel variant identified in the MYO6 gene. After Whole Exome Sequencing analysis, the variant c.2775G>C p.Arg925Ser in MYO6 was detected in a family with postlingual non-syndromic hearing loss. By protein modeling a change in the electrostatic charge of the single alpha helix domain surface was revealed. Through a knockdown phenotype rescue assay in zebrafish, the detrimental effects of the identified variant on the auditory system was determined. These findings underscore the significance of a comprehensive approach, integrating both in silico and in vivo strategies, to ascertain the pathogenicity of this candidate variant. Such an approach has demonstrated its effectiveness in achieving an accurate genetic diagnosis and in promoting a more profound comprehension of the mechanisms that underlie the pathophysiology of hearing.
Collapse
Affiliation(s)
- Paula I Buonfiglio
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
| | - Carlos D Bruque
- Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad SAMIC, El Calafate, Provincia de Santa Cruz, 9405, Argentina
| | - Lucía Salatino
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Vanesa Lotersztein
- Servicio de Genética, Hospital Militar Central “Dr. Cosme Argerich”, Ciudad Autónoma de Buenos Aires, C1426, Argentina
| | - Mariela Pace
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
| | - Sofia Grinberg
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
| | - Ana B Elgoyhen
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Paola V Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Viviana Dalamón
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
| |
Collapse
|
2
|
Eltareb A, Rivera-Cancel J, Lopez GE, Giovambattista N. Backbone Hydration of α-Helical Peptides: Hydrogen-Bonding and Surface Hydrophobicity/Hydrophilicity. Mol Phys 2024; 122:e2323637. [PMID: 39845025 PMCID: PMC11753776 DOI: 10.1080/00268976.2024.2323637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/20/2024] [Indexed: 01/24/2025]
Abstract
The stability of proteins and small peptides depends on the way they interact with the surrounding water molecules. For small peptides, such as α-helical polyalanine (polyALA), water molecules can weaken the intramolecular hydrogen-bonds (HB) formed between the peptide backbone O and NH groups which are responsible for the α-helix structure. Here, we perform molecular dynamics simulations to study the hydration of polyALA, polyserine (polySER), and other homopolymer peptide α-helices at different temperatures and pressures. We find that water molecules form HB with most polyALA carbonyl O atoms, despite ALA hydrophobic CH3 side chain. Similar water-peptide backbone HB are found in other (hydrophobic and hydrophilic) homopolymer α-helices with large side chains, including polyvaline, polyleucine, and polyphenyalanine. A novel hydration mechanism is observed in polyserine (polySER): the backbone peptide rarely forms HB with water and, instead, the carbonyl O atoms tend to form HB with polySER side chain OH groups. We also quantify the hydrophobicity/hydrophilicity of polyALA and polySER by calculating the contact angle θ c of a water droplet pierced by a long polyALA/polySER α-helix. Unexpectedly, even when polyALA α-helix is supposed to be hydrophobic (θ c > 90°), we find that θ c ≈ 79°. For polySER, θ c ≈ 70°, consistent with α-helical polySER being hydrophilic.
Collapse
Affiliation(s)
- Ali Eltareb
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Janel Rivera-Cancel
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Gustavo E Lopez
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States
- Department of Chemistry, Lehman College of the City University of New York, Bronx, New York 10468, United States
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY 10016, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States
| |
Collapse
|
3
|
Fan SM, Li ZQ, Zhang SZ, Chen LY, Wei XY, Liang J, Zhao XQ, Su C. Multi-integrated approach for unraveling small open reading frames potentially associated with secondary metabolism in Streptomyces. mSystems 2023; 8:e0024523. [PMID: 37712700 PMCID: PMC10654065 DOI: 10.1128/msystems.00245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE Due to their small size and special chemical features, small open reading frame (smORF)-encoding peptides (SEPs) are often neglected. However, they may play critical roles in regulating gene expression, enzyme activity, and metabolite production. Studies on bacterial microproteins have mainly focused on pathogenic bacteria, which are importance to systematically investigate SEPs in streptomycetes and are rich sources of bioactive secondary metabolites. Our study is the first to perform a global identification of smORFs in streptomycetes. We established a peptidogenomic workflow for non-model microbial strains and identified multiple novel smORFs that are potentially linked to secondary metabolism in streptomycetes. Our multi-integrated approach in this study is meaningful to improve the quality and quantity of the detected smORFs. Ultimately, the workflow we established could be extended to other organisms and would benefit the genome mining of microproteins with critical functions for regulation and engineering useful microorganisms.
Collapse
Affiliation(s)
- Si-Min Fan
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | - Ze-Qi Li
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | - Shi-Zhe Zhang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | - Liang-Yu Chen
- ProteinT (Tianjin) biotechnology Co. Ltd., Tianjin, China
| | - Xi-Ying Wei
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | - Jian Liang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
- College of Biology and Geography, Yili Normal University, Yining, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai Jiao, China
| | - Chun Su
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| |
Collapse
|
4
|
Rosas R, Aguilar RR, Arslanovic N, Seck A, Smith DJ, Tyler JK, Churchill MEA. A novel single alpha-helix DNA-binding domain in CAF-1 promotes gene silencing and DNA damage survival through tetrasome-length DNA selectivity and spacer function. eLife 2023; 12:e83538. [PMID: 37432722 PMCID: PMC10335832 DOI: 10.7554/elife.83538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 06/13/2023] [Indexed: 07/12/2023] Open
Abstract
The histone chaperone chromatin assembly factor 1 (CAF-1) deposits two nascent histone H3/H4 dimers onto newly replicated DNA forming the central core of the nucleosome known as the tetrasome. How CAF-1 ensures there is sufficient space for the assembly of tetrasomes remains unknown. Structural and biophysical characterization of the lysine/glutamic acid/arginine-rich (KER) region of CAF-1 revealed a 128-Å single alpha-helix (SAH) motif with unprecedented DNA-binding properties. Distinct KER sequence features and length of the SAH drive the selectivity of CAF-1 for tetrasome-length DNA and facilitate function in budding yeast. In vivo, the KER cooperates with the DNA-binding winged helix domain in CAF-1 to overcome DNA damage sensitivity and maintain silencing of gene expression. We propose that the KER SAH links functional domains within CAF-1 with structural precision, acting as a DNA-binding spacer element during chromatin assembly.
Collapse
Affiliation(s)
- Ruben Rosas
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Rhiannon R Aguilar
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkUnited States
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD ProgramNew YorkUnited States
| | - Nina Arslanovic
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkUnited States
| | - Anna Seck
- Department of Biology, New York UniversityNew YorkUnited States
| | - Duncan J Smith
- Department of Biology, New York UniversityNew YorkUnited States
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkUnited States
| | - Mair EA Churchill
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| |
Collapse
|
5
|
Aufderhorst-Roberts A, Cussons S, Brockwell DJ, Dougan L. Diversity of viscoelastic properties of an engineered muscle-inspired protein hydrogel. SOFT MATTER 2023; 19:3167-3178. [PMID: 37067782 DOI: 10.1039/d2sm01225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Folded protein hydrogels are prime candidates as tuneable biomaterials but it is unclear to what extent their mechanical properties have mesoscopic, as opposed to molecular origins. To address this, we probe hydrogels inspired by the muscle protein titin and engineered to the polyprotein I275, using a multimodal rheology approach. Across multiple protocols, the hydrogels consistently exhibit power-law viscoelasticity in the linear viscoelastic regime with an exponent β = 0.03, suggesting a dense fractal meso-structure, with predicted fractal dimension df = 2.48. In the nonlinear viscoelastic regime, the hydrogel undergoes stiffening and energy dissipation, indicating simultaneous alignment and unfolding of the folded proteins on the nanoscale. Remarkably, this behaviour is highly reversible, as the value of β, df and the viscoelastic moduli return to their equilibrium value, even after multiple cycles of deformation. This highlights a previously unrevealed diversity of viscoelastic properties that originate on both at the nanoscale and the mesoscopic scale, providing powerful opportunities for engineering novel biomaterials.
Collapse
Affiliation(s)
- Anders Aufderhorst-Roberts
- Department of Physics, Centre for Materials Physics, University of Durham, Durham, DH1 3LE, UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sophie Cussons
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Lorna Dougan
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Zacharchenko T, Dorendorf T, Locker N, Van Dijk E, Katzemich A, Diederichs K, Bullard B, Mayans O. PK1 from Drosophila obscurin is an inactive pseudokinase with scaffolding properties. Open Biol 2023; 13:220350. [PMID: 37121260 PMCID: PMC10129394 DOI: 10.1098/rsob.220350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Obscurins are large filamentous proteins with crucial roles in the assembly, stability and regulation of muscle. Characteristic of these proteins is a tandem of two C-terminal kinase domains, PK1 and PK2, that are separated by a long intrinsically disordered sequence. The significance of this conserved domain arrangement is unknown. Our study of PK1 from Drosophila obscurin shows that this is a pseudokinase with features typical of the CAM-kinase family, but which carries a minimalistic regulatory tail that no longer binds calmodulin or has mechanosensory properties typical of other sarcomeric kinases. PK1 binds ATP with high affinity, but in the absence of magnesium and lacks detectable phosphotransfer activity. It also has a highly diverged active site, strictly conserved across arthropods, that might have evolved to accommodate an unconventional binder. We find that PK1 interacts with PK2, suggesting a functional relation to the latter. These findings lead us to speculate that PK1/PK2 form a pseudokinase/kinase dual system, where PK1 might act as an allosteric regulator of PK2 and where mechanosensing properties, akin to those described for regulatory tails in titin-like kinases, might now reside on the unstructured interkinase segment. We propose that the PK1-interkinase-PK2 region constitutes an integrated functional unit in obscurin proteins.
Collapse
Affiliation(s)
- Thomas Zacharchenko
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Till Dorendorf
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Evert Van Dijk
- Biosynth B.V., Zuidersluisweg 2, 8243 RC Lelystad, The Netherlands
| | | | - Kay Diederichs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | - Olga Mayans
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
7
|
Wang Z, Wang M, Zhao Z, Zheng P. Quantification of carboxylate-bridged di-zinc site stability in protein due ferri by single-molecule force spectroscopy. Protein Sci 2023; 32:e4583. [PMID: 36718829 PMCID: PMC9926469 DOI: 10.1002/pro.4583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Carboxylate-bridged diiron proteins belong to a protein family involved in different physiological processes. These proteins share the conservative EXXH motif, which provides the carboxylate bridge and is critical for metal binding. Here, we choose de novo-designed single-chain due ferri protein (DFsc), a four-helical protein with two EXXH motifs as a model protein, to study the stability of the carboxylate-bridged di-metal binding site. The mechanical and kinetic properties of the di-Zn site in DFsc were obtained by atomic force microscopy-based single-molecule force spectroscopy. Zn-DFsc showed a considerable rupture force of ~200 pN, while the apo-protein is mechanically labile. In addition, multiple rupture pathways were observed with different probabilities, indicating the importance of the EXXH-based carboxylate-bridged metal site. These results demonstrate carboxylate-bridged di-metal site is mechanically stable and improve our understanding of this important type of metalloprotein.
Collapse
Affiliation(s)
- Zhiyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Mengdie Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Zhongxin Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| |
Collapse
|
8
|
Ferenczy GG, Kellermayer M. Contribution of Hydrophobic Interactions to Protein Mechanical Stability. Comput Struct Biotechnol J 2022; 20:1946-1956. [PMID: 35521554 PMCID: PMC9062142 DOI: 10.1016/j.csbj.2022.04.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/07/2022] [Accepted: 04/17/2022] [Indexed: 11/26/2022] Open
Abstract
The role of hydrophobic and polar interactions in providing thermodynamic stability to folded proteins has been intensively studied, but the relative contribution of these interactions to the mechanical stability is less explored. We used steered molecular dynamics simulations with constant-velocity pulling to generate force-extension curves of selected protein domains and monitor hydrophobic surface unravelling upon extension. Hydrophobic contribution was found to vary between one fifth and one third of the total force while the rest of the contribution is attributed primarily to hydrogen bonds. Moreover, hydrophobic force peaks were shifted towards larger protein extensions with respect to the force peaks attributed to hydrogen bonds. The higher importance of hydrogen bonds compared to hydrophobic interactions in providing mechanical resistance is in contrast with the relative importance of the hydrophobic interactions in providing thermodynamic stability of proteins. The different contributions of these interactions to the mechanical stability are explained by the steeper free energy dependence of hydrogen bonds compared to hydrophobic interactions on the relative positions of interacting atoms. Comparative analyses for several protein domains revealed that the variation of hydrophobic forces is modest, while the contribution of hydrogen bonds to the force peaks becomes increasingly important for mechanically resistant protein domains.
Collapse
|
9
|
Zhao VY, Rodrigues JV, Lozovsky ER, Hartl DL, Shakhnovich EI. Switching an active site helix in dihydrofolate reductase reveals limits to subdomain modularity. Biophys J 2021; 120:4738-4750. [PMID: 34571014 PMCID: PMC8595743 DOI: 10.1016/j.bpj.2021.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
To what degree are individual structural elements within proteins modular such that similar structures from unrelated proteins can be interchanged? We study subdomain modularity by creating 20 chimeras of an enzyme, Escherichia coli dihydrofolate reductase (DHFR), in which a catalytically important, 10-residue α-helical sequence is replaced by α-helical sequences from a diverse set of proteins. The chimeras stably fold but have a range of diminished thermal stabilities and catalytic activities. Evolutionary coupling analysis indicates that the residues of this α-helix are under selection pressure to maintain catalytic activity in DHFR. Reversion to phenylalanine at key position 31 was found to partially restore catalytic activity, which could be explained by evolutionary coupling values. We performed molecular dynamics simulations using replica exchange with solute tempering. Chimeras with low catalytic activity exhibit nonhelical conformations that block the binding site and disrupt the positioning of the catalytically essential residue D27. Simulation observables and in vitro measurements of thermal stability and substrate-binding affinity are strongly correlated. Several E. coli strains with chromosomally integrated chimeric DHFRs can grow, with growth rates that follow predictions from a kinetic flux model that depends on the intracellular abundance and catalytic activity of DHFR. Our findings show that although α-helices are not universally substitutable, the molecular and fitness effects of modular segments can be predicted by the biophysical compatibility of the replacement segment.
Collapse
Affiliation(s)
- Victor Y Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - João V Rodrigues
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Elena R Lozovsky
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
10
|
Bogomolovas J, Fleming JR, Franke B, Manso B, Simon B, Gasch A, Markovic M, Brunner T, Knöll R, Chen J, Labeit S, Scheffner M, Peter C, Mayans O. Titin kinase ubiquitination aligns autophagy receptors with mechanical signals in the sarcomere. EMBO Rep 2021; 22:e48018. [PMID: 34402565 PMCID: PMC8490993 DOI: 10.15252/embr.201948018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Striated muscle undergoes remodelling in response to mechanical and physiological stress, but little is known about the integration of such varied signals in the myofibril. The interaction of the elastic kinase region from sarcomeric titin (A168-M1) with the autophagy receptors Nbr1/p62 and MuRF E3 ubiquitin ligases is well suited to link mechanosensing with the trophic response of the myofibril. To investigate the mechanisms of signal cross-talk at this titin node, we elucidated its 3D structure, analysed its response to stretch using steered molecular dynamics simulations and explored its functional relation to MuRF1 and Nbr1/p62 using cellular assays. We found that MuRF1-mediated ubiquitination of titin kinase promotes its scaffolding of Nbr1/p62 and that the process can be dynamically down-regulated by the mechanical unfolding of a linker sequence joining titin kinase with the MuRF1 receptor site in titin. We propose that titin ubiquitination is sensitive to the mechanical state of the sarcomere, the regulation of sarcomere targeting by Nbr1/p62 being a functional outcome. We conclude that MuRF1/Titin Kinase/Nbr1/p62 constitutes a distinct assembly that predictably promotes sarcomere breakdown in inactive muscle.
Collapse
Affiliation(s)
- Julius Bogomolovas
- Department of MedicineSchool of MedicineUniversity of CaliforniaSan Diego, La JollaCAUSA
- Department of Cognitive and Clinical NeuroscienceCentral Institute of Mental HealthMedical Faculty MannheimHeidelberg UniversityMannheimGermany
- Department of Integrative PathophysiologyMedical Faculty MannheimUniversity of HeidelbergMannheimGermany
| | | | - Barbara Franke
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Bruno Manso
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Bernd Simon
- Structural and Computational Biology UnitEMBLHeidelbergGermany
| | - Alexander Gasch
- Department of Integrative PathophysiologyMedical Faculty MannheimUniversity of HeidelbergMannheimGermany
| | | | - Thomas Brunner
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Ralph Knöll
- Integrated Cardio Metabolic Centre (ICMC)Heart and Vascular ThemeUniversity Hospital, MedHKarolinska InstitutetHuddingeSweden
- Bioscience, CardiovascularRenal & MetabolismBioPharmaceuticalsR&D, AstraZenecaGothenburgSweden
| | - Ju Chen
- Department of MedicineSchool of MedicineUniversity of CaliforniaSan Diego, La JollaCAUSA
| | - Siegfried Labeit
- Department of Integrative PathophysiologyMedical Faculty MannheimUniversity of HeidelbergMannheimGermany
| | | | - Christine Peter
- Department of ChemistryUniversity of KonstanzKonstanzGermany
| | - Olga Mayans
- Department of BiologyUniversity of KonstanzKonstanzGermany
| |
Collapse
|
11
|
Cenni C, Mansard L, Blanchet C, Baux D, Vaché C, Baudoin C, Moclyn M, Faugère V, Mondain M, Jeziorski E, Roux AF, Willems M. When Familial Hearing Loss Means Genetic Heterogeneity: A Model Case Report. Diagnostics (Basel) 2021; 11:diagnostics11091636. [PMID: 34573976 PMCID: PMC8465614 DOI: 10.3390/diagnostics11091636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/04/2021] [Indexed: 11/29/2022] Open
Abstract
We describe a family with both hearing loss (HL) and thrombocytopenia, caused by pathogenic variants in three genes. The proband was a child with neonatal thrombocytopenia, childhood-onset HL, hyper-laxity and severe myopia. The child’s mother (and some of her relatives) presented with moderate thrombocytopenia and adulthood-onset HL. The child’s father (and some of his relatives) presented with adult-onset HL. An HL panel analysis, completed by whole exome sequencing, was performed in this complex family. We identified three pathogenic variants in three different genes: MYH9, MYO7A and ACTG1. The thrombocytopenia in the child and her mother is explained by the MYH9 variant. The post-lingual HL in the paternal branch is explained by the MYO7A variant, absent in the proband, while the congenital HL of the child is explained by a de novo ACTG1 variant. This family, in which HL segregates, illustrates that multiple genetic conditions coexist in individuals and make patient care more complex than expected.
Collapse
Affiliation(s)
- Camille Cenni
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Université de Montpellier, 34090 Montpellier, France;
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Université de Montpellier, 34090 Monpellier, France; (L.M.); (D.B.); (C.V.); (C.B.); (M.M.); (V.F.); (A.-F.R.)
| | - Luke Mansard
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Université de Montpellier, 34090 Monpellier, France; (L.M.); (D.B.); (C.V.); (C.B.); (M.M.); (V.F.); (A.-F.R.)
| | - Catherine Blanchet
- Service ORL, CHU Montpellier, Université de Montpellier, 34090 Montpellier, France; (C.B.); (M.M.)
- Centre National de Référence Maladies Rares “Affections Sensorielles Génétiques”, CHU Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - David Baux
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Université de Montpellier, 34090 Monpellier, France; (L.M.); (D.B.); (C.V.); (C.B.); (M.M.); (V.F.); (A.-F.R.)
- INM, Université de Montpellier, INSERM U1298, 34090 Montpellier, France
| | - Christel Vaché
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Université de Montpellier, 34090 Monpellier, France; (L.M.); (D.B.); (C.V.); (C.B.); (M.M.); (V.F.); (A.-F.R.)
- INM, Université de Montpellier, INSERM U1298, 34090 Montpellier, France
| | - Corinne Baudoin
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Université de Montpellier, 34090 Monpellier, France; (L.M.); (D.B.); (C.V.); (C.B.); (M.M.); (V.F.); (A.-F.R.)
| | - Mélodie Moclyn
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Université de Montpellier, 34090 Monpellier, France; (L.M.); (D.B.); (C.V.); (C.B.); (M.M.); (V.F.); (A.-F.R.)
| | - Valérie Faugère
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Université de Montpellier, 34090 Monpellier, France; (L.M.); (D.B.); (C.V.); (C.B.); (M.M.); (V.F.); (A.-F.R.)
| | - Michel Mondain
- Service ORL, CHU Montpellier, Université de Montpellier, 34090 Montpellier, France; (C.B.); (M.M.)
| | - Eric Jeziorski
- Service de Pédiatrie Générale, Infectiologie et Immunologie Clinique, CHU Montpellier, Université de Montpellier, 34090 Montpellier, France;
| | - Anne-Françoise Roux
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Université de Montpellier, 34090 Monpellier, France; (L.M.); (D.B.); (C.V.); (C.B.); (M.M.); (V.F.); (A.-F.R.)
- INM, Université de Montpellier, INSERM U1298, 34090 Montpellier, France
| | - Marjolaine Willems
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Université de Montpellier, 34090 Montpellier, France;
- Correspondence:
| |
Collapse
|
12
|
Mier P, Paladin L, Tamana S, Petrosian S, Hajdu-Soltész B, Urbanek A, Gruca A, Plewczynski D, Grynberg M, Bernadó P, Gáspári Z, Ouzounis CA, Promponas VJ, Kajava AV, Hancock JM, Tosatto SCE, Dosztanyi Z, Andrade-Navarro MA. Disentangling the complexity of low complexity proteins. Brief Bioinform 2021; 21:458-472. [PMID: 30698641 PMCID: PMC7299295 DOI: 10.1093/bib/bbz007] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022] Open
Abstract
There are multiple definitions for low complexity regions (LCRs) in protein sequences, with all of them broadly considering LCRs as regions with fewer amino acid types compared to an average composition. Following this view, LCRs can also be defined as regions showing composition bias. In this critical review, we focus on the definition of sequence complexity of LCRs and their connection with structure. We present statistics and methodological approaches that measure low complexity (LC) and related sequence properties. Composition bias is often associated with LC and disorder, but repeats, while compositionally biased, might also induce ordered structures. We illustrate this dichotomy, and more generally the overlaps between different properties related to LCRs, using examples. We argue that statistical measures alone cannot capture all structural aspects of LCRs and recommend the combined usage of a variety of predictive tools and measurements. While the methodologies available to study LCRs are already very advanced, we foresee that a more comprehensive annotation of sequences in the databases will enable the improvement of predictions and a better understanding of the evolution and the connection between structure and function of LCRs. This will require the use of standards for the generation and exchange of data describing all aspects of LCRs. Short abstract There are multiple definitions for low complexity regions (LCRs) in protein sequences. In this critical review, we focus on the definition of sequence complexity of LCRs and their connection with structure. We present statistics and methodological approaches that measure low complexity (LC) and related sequence properties. Composition bias is often associated with LC and disorder, but repeats, while compositionally biased, might also induce ordered structures. We illustrate this dichotomy, plus overlaps between different properties related to LCRs, using examples.
Collapse
Affiliation(s)
- Pablo Mier
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Lisanna Paladin
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Stella Tamana
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Sophia Petrosian
- Biological Computation and Process Laboratory, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, Thessalonica, Greece
| | - Borbála Hajdu-Soltész
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Annika Urbanek
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Aleksandra Gruca
- Institute of Informatics, Silesian University of Technology, Gliwice, Poland
| | - Dariusz Plewczynski
- Center of New Technologies, University of Warsaw, Warsaw, Poland.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | | | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Christos A Ouzounis
- Biological Computation and Process Laboratory, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, Thessalonica, Greece
| | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Andrey V Kajava
- Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS-UMR, Institut de Biologie Computationnelle, Universite de Montpellier, Montpellier, France.,Institute of Bioengineering, University ITMO, St. Petersburg, Russia
| | - John M Hancock
- Earlham Institute, Norwich, UK.,ELIXIR Hub, Welcome Genome Campus, Hinxton, UK
| | - Silvio C E Tosatto
- Department of Biomedical Science, University of Padova, Padova, Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Zsuzsanna Dosztanyi
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
13
|
Scarff CA, Carrington G, Casas-Mao D, Chalovich JM, Knight PJ, Ranson NA, Peckham M. Structure of the shutdown state of myosin-2. Nature 2020; 588:515-520. [PMID: 33268888 PMCID: PMC7611489 DOI: 10.1038/s41586-020-2990-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
Myosin-2 is essential for processes as diverse as cell division and muscle contraction. Dephosphorylation of its regulatory light chain (RLC) promotes an inactive, ‘shutdown’ state with the filament-forming tail folded onto the two heads1, preventing filament formation and inactivating the motors2. The mechanism by which this happens is obscure. Here we report a cryo-electron microscopy structure of shutdown smooth muscle myosin, with a resolution of 6 Å in the head region. A pseudo-atomic model, obtained by flexible fitting of crystal structures into the density and molecular dynamics simulations, describes interaction interfaces at the atomic level. The N-terminal extension of one RLC interacts with the tail and the other with the partner head, revealing how the RLCs stabilise the shutdown state in different ways and how their phosphorylation would allow myosin activation. Additional interactions between the three segments of the coiled coil, the motor domains and LCs stabilise the shutdown molecule. The structure of the lever in each head is competent to generate force upon activation. This shutdown structure is relevant to all myosin-2 isoforms and provides a framework for understanding their disease-causing mutations.
Collapse
Affiliation(s)
- Charlotte A Scarff
- The Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Glenn Carrington
- The Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - David Casas-Mao
- The Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joseph M Chalovich
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Peter J Knight
- The Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Neil A Ranson
- The Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Michelle Peckham
- The Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK. .,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
14
|
Gupte TM, Ritt M, Sivaramakrishnan S. ER/K-link-Leveraging a native protein linker to probe dynamic cellular interactions. Methods Enzymol 2020; 647:173-208. [PMID: 33482988 PMCID: PMC8009693 DOI: 10.1016/bs.mie.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ER/K α-helices are a subset of single alpha helical domains, which exhibit unusual stability as isolated protein secondary structures. They adopt an elongated structural conformation, while regulating the frequency of interactions between proteins or polypeptides fused to their ends. Here we review recent advances on the structure, stability and function of ER/K α-helices as linkers (ER/K linkers) in native proteins. We describe methodological considerations in the molecular cloning, protein expression and measurement of interaction strengths, using sensors incorporating ER/K linkers. We highlight biological insights obtained over the last decade by leveraging distinct biophysical features of ER/K-linked sensors. We conclude with the outlook for the use of ER/K linkers in the selective modulation of dynamic cellular interactions.
Collapse
Affiliation(s)
- Tejas M Gupte
- Department of Genetics, Cell Biology, and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Michael Ritt
- Department of Genetics, Cell Biology, and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
15
|
Bergues-Pupo AE, Lipowsky R, Vila Verde A. Unfolding mechanism and free energy landscape of single, stable, alpha helices at low pull speeds. SOFT MATTER 2020; 16:9917-9928. [PMID: 33030193 DOI: 10.1039/d0sm01166e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single alpha helices (SAHs) stable in isolated form are often found in motor proteins where they bridge functional domains. Understanding the mechanical response of SAHs is thus critical to understand their function. The quasi-static force-extension relation of a small number of SAHs is known from single-molecule experiments. Unknown, or still controversial, are the molecular scale details behind those observations. We show that the deformation mechanism of SAHs pulled from the termini at pull speeds approaching the quasi-static limit differs from that of typical helices found in proteins, which are stable only when interacting with other protein domains. Using molecular dynamics simulations with atomistic resolution at low pull speeds previously inaccessible to simulation, we show that SAHs start unfolding from the termini at all pull speeds we investigated. Unfolding proceeds residue-by-residue and hydrogen bond breaking is not the main event determining the barrier to unfolding. We use the molecular simulation data to test the cooperative sticky chain model. This model yields excellent fits of the force-extension curves and quantifies the distance, xE = 0.13 nm, to the transition state, the natural frequency of bond vibration, ν0 = 0.82 ns-1, and the height, V0 = 2.9 kcal mol-1, of the free energy barrier associated with the deformation of single residues. Our results demonstrate that the sticky chain model could advantageously be used to analyze experimental force-extension curves of SAHs and other biopolymers.
Collapse
Affiliation(s)
- Ana Elisa Bergues-Pupo
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Ana Vila Verde
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
16
|
Protein mechanics probed using simple molecular models. Biochim Biophys Acta Gen Subj 2020; 1864:129613. [DOI: 10.1016/j.bbagen.2020.129613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/06/2020] [Accepted: 04/08/2020] [Indexed: 01/14/2023]
|
17
|
Glitsch MD. Helix 8 - Putting a spring in mechano-sensing. Cell Calcium 2020; 87:102192. [PMID: 32200169 DOI: 10.1016/j.ceca.2020.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Maike D Glitsch
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| |
Collapse
|
18
|
Lanzicher T, Zhou T, Saripalli C, Keschrumrus V, Smith III JE, Mayans O, Sbaizero O, Granzier H. Single-Molecule Force Spectroscopy on the N2A Element of Titin: Effects of Phosphorylation and CARP. Front Physiol 2020; 11:173. [PMID: 32256378 PMCID: PMC7093598 DOI: 10.3389/fphys.2020.00173] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/13/2020] [Indexed: 01/08/2023] Open
Abstract
Titin is a large filamentous protein that forms a sarcomeric myofilament with a molecular spring region that develops force in stretched sarcomeres. The molecular spring has a complex make-up that includes the N2A element. This element largely consists of a 104-residue unique sequence (N2A-Us) flanked by immunoglobulin domains (I80 and I81). The N2A element is of interest because it assembles a signalosome with CARP (Cardiac Ankyrin Repeat Protein) as an important component; CARP both interacts with the N2A-Us and I81 and is highly upregulated in response to mechanical stress. The mechanical properties of the N2A element were studied using single-molecule force spectroscopy, including how these properties are affected by CARP and phosphorylation. Three protein constructs were made that consisted of 0, 1, or 2 N2A-Us elements with flanking I80 and I81 domains and with specific handles at their ends for study by atomic force microscopy (AFM). The N2A-Us behaved as an entropic spring with a persistence length (Lp) of ∼0.35 nm and contour length (Lc) of ∼39 nm. CARP increased the Lp of the N2A-Us and the unfolding force of the Ig domains; force clamp experiments showed that CARP reduced the Ig domain unfolding kinetics. These findings suggest that CARP might function as a molecular chaperone that protects I81 from unfolding when mechanical stress is high. The N2A-Us was found to be a PKA substrate, and phosphorylation was blocked by CARP. Mass spectrometry revealed a PKA phosphosite (Ser-9895 in NP_001254479.2) located at the border between the N2A-Us and I81. AFM studies showed that phosphorylation affected neither the Lp of the N2A-Us nor the Ig domain unfolding force (Funfold). Simulating the force-sarcomere length relation of a single titin molecule containing all spring elements showed that the compliance of the N2A-Us only slightly reduces passive force (1.4%) with an additional small reduction by CARP (0.3%). Thus, it is improbable that the compliance of the N2A element has a mechanical function per se. Instead, it is likely that this compliance has local effects on binding of signaling molecules and that it contributes thereby to strain- and phosphorylation- dependent mechano-signaling.
Collapse
Affiliation(s)
- Thomas Lanzicher
- Department of Cellular & Molecular Medicine, The University of Arizona, Tucson, AZ, United States
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Tiankun Zhou
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Chandra Saripalli
- Department of Cellular & Molecular Medicine, The University of Arizona, Tucson, AZ, United States
| | - Vic Keschrumrus
- Department of Cellular & Molecular Medicine, The University of Arizona, Tucson, AZ, United States
| | - John E. Smith III
- Department of Cellular & Molecular Medicine, The University of Arizona, Tucson, AZ, United States
| | - Olga Mayans
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Henk Granzier
- Department of Cellular & Molecular Medicine, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
19
|
Barnes CA, Shen Y, Ying J, Bax A. Modulating the Stiffness of the Myosin VI Single α-Helical Domain. Biophys J 2020; 118:1119-1128. [PMID: 32049057 DOI: 10.1016/j.bpj.2020.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 11/28/2022] Open
Abstract
Highly charged, single α-helical (SAH) domains contain a high percentage of Arg, Lys, and Glu residues. Their dynamic salt bridge pairing creates the exceptional stiffness of these helical rods, with a persistence length of more than 200 Å for the myosin VI SAH domain. With the aim of modulating the stiffness of the helical structure, we investigated the effect, using NMR spectroscopy, of substituting key charged Arg, Lys, Glu, and Asp residues by Gly or His. Results indicate that such mutations result in the transient breaking of the helix at the site of mutation but with noticeable impact on amide hydrogen exchange rates extending as far as ±2 helical turns, pointing to a substantial degree of cooperativity in SAH stability. Whereas a single Gly substitution caused transient breaks ∼20% of the time, two consecutive Gly substitutions break the helix ∼65% of the time. NMR relaxation measurements indicate that the exchange rate between an intact and a broken helix is fast (>300,000 s-1) and that for the wild-type sequence, the finite persistence length is dominated by thermal fluctuations of backbone torsion angles and H-bond lengths, not by transient helix breaking. The double mutation D27H/E28H causes a pH-dependent fraction of helix disruption, in which the helix breakage increases from 26% at pH 7.5 to 53% at pH 5.5. The ability to modulate helical integrity by pH may enable incorporation of externally tunable dynamic components in the design of molecular machines.
Collapse
Affiliation(s)
- C Ashley Barnes
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland
| | - Yang Shen
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland
| | - Jinfa Ying
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland
| | - Ad Bax
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
20
|
Helix 8 is the essential structural motif of mechanosensitive GPCRs. Nat Commun 2019; 10:5784. [PMID: 31857598 PMCID: PMC6923424 DOI: 10.1038/s41467-019-13722-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are versatile cellular sensors for chemical stimuli, but also serve as mechanosensors involved in various (patho)physiological settings like vascular regulation, cardiac hypertrophy and preeclampsia. However, the molecular mechanisms underlying mechanically induced GPCR activation have remained elusive. Here we show that mechanosensitive histamine H1 receptors (H1Rs) are endothelial sensors of fluid shear stress and contribute to flow-induced vasodilation. At the molecular level, we observe that H1Rs undergo stimulus-specific patterns of conformational changes suggesting that mechanical forces and agonists induce distinct active receptor conformations. GPCRs lacking C-terminal helix 8 (H8) are not mechanosensitive, and transfer of H8 to non-responsive GPCRs confers, while removal of H8 precludes, mechanosensitivity. Moreover, disrupting H8 structural integrity by amino acid exchanges impairs mechanosensitivity. Altogether, H8 is the essential structural motif endowing GPCRs with mechanosensitivity. These findings provide a mechanistic basis for a better understanding of the roles of mechanosensitive GPCRs in (patho)physiology. GPCRs are versatile cellular sensors for chemical stimuli but the molecular mechanisms underlying mechanically induced GPCR activation have remained elusive. Here authors identify the C-terminal helix 8 (H8) as the essential structural motif endowing H1R and other GPCRs with mechanosensitivity.
Collapse
|
21
|
Hanson BS, Head D, Dougan L. The hierarchical emergence of worm-like chain behaviour from globular domain polymer chains. SOFT MATTER 2019; 15:8778-8789. [PMID: 31595281 DOI: 10.1039/c9sm01656b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Biological organisms make use of hierarchically organised structures to modulate mechanical behaviour across multiple lengthscales, allowing microscopic objects to generate macroscopic effects. Within these structural hierarchies, the resultant physical behaviour of the entire system is determined not only by the intrinsic mechanical properties of constituent subunits, but also by their organisation in three-dimensional space. When these subunits are polyproteins, colloidal chains or other globular domain polymers, the Kratky-Porod model is often assumed for the individual subunits. Hence, it is implicitly asserted that the polymeric object has an intrinsic parameter, the persistence length, that defines its flexibility. However, the persistence lengths extracted from experiment vary, and are often relatively small. Through a series of simulations on polymer chains formed of globular subunits, we show that the persistence length itself is a hierarchical structural property, related not only to the intrinsic mechanical properties of the underlying monomeric subunits, but emerging due to the organisation of inhomogenous geometry along the polymer contour.
Collapse
Affiliation(s)
| | - David Head
- School of Computing, University of Leeds, Leeds, UK
| | - Lorna Dougan
- School of Physics & Astronomy, University of Leeds, Leeds, UK. and Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
22
|
Churchill CDM, Healey MA, Preto J, Tuszynski JA, Woodside MT. Probing the Basis of α-Synuclein Aggregation by Comparing Simulations to Single-Molecule Experiments. Biophys J 2019; 117:1125-1135. [PMID: 31477241 DOI: 10.1016/j.bpj.2019.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/21/2019] [Accepted: 08/12/2019] [Indexed: 11/29/2022] Open
Abstract
Intrinsically disordered proteins often play an important role in protein aggregation. However, it is challenging to determine the structures and interactions that drive the early stages of aggregation because they are transient and obscured in a heterogeneous mixture of disordered states. Even computational methods are limited because the lack of ordered structure makes it difficult to ensure that the relevant conformations are sampled. We address these challenges by integrating atomistic simulations with high-resolution single-molecule measurements reported previously, using the measurements to help discern which parts of the disordered ensemble of structures in the simulations are most probable while using the simulations to identify residues and interactions that are important for oligomer stability. This approach was applied to α-synuclein, an intrinsically disordered protein that aggregates in the context of Parkinson's disease. We simulated single-molecule pulling experiments on dimers, the minimal oligomer, and compared them to force spectroscopy measurements. Force-extension curves were simulated starting from a set of 66 structures with substantial structured content selected from the ensemble of dimer structures generated at zero force via Monte Carlo simulations. The pattern of contour length changes as the structures unfolded through intermediate states was compared to the results from optical trapping measurements on the same dimer to discern likely structures occurring in the measurements. Simulated pulling curves were generally consistent with experimental data but with a larger number of transient intermediates. We identified an ensemble of β-rich dimer structures consistent with the experimental data from which dimer interfaces could be deduced. These results suggest specific druggable targets in the structural motifs of α-synuclein that may help prevent the earliest steps of oligomerization.
Collapse
Affiliation(s)
| | - Mark A Healey
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Jordane Preto
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada; Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
23
|
Barnes CA, Shen Y, Ying J, Takagi Y, Torchia DA, Sellers JR, Bax A. Remarkable Rigidity of the Single α-Helical Domain of Myosin-VI As Revealed by NMR Spectroscopy. J Am Chem Soc 2019; 141:9004-9017. [PMID: 31117653 PMCID: PMC6556874 DOI: 10.1021/jacs.9b03116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 11/29/2022]
Abstract
Although the α-helix has long been recognized as an all-important element of secondary structure, it generally requires stabilization by tertiary interactions with other parts of a protein's structure. Highly charged single α-helical (SAH) domains, consisting of a high percentage (>75%) of Arg, Lys, and Glu residues, are exceptions to this rule but have been difficult to characterize structurally. Our study focuses on the 68-residue medial tail domain of myosin-VI, which is found to contain a highly ordered α-helical structure extending from Glu-6 to Lys-63. High hydrogen exchange protection factors (15-150), small (ca. 4 Hz) 3 JHNHα couplings, and a near-perfect fit to an ideal model α-helix for its residual dipolar couplings (RDCs), measured in a filamentous phage medium, support the high regularity of this helix. Remarkably, the hydrogen exchange rates are far more homogeneous than the protection factors derived from them, suggesting that for these transiently broken helices the intrinsic exchange rates derived from the amino acid sequence are not appropriate reference values. 15N relaxation data indicate a very high degree of rotational diffusion anisotropy ( D∥/ D⊥ ≈ 7.6), consistent with the hydrodynamic behavior predicted for such a long, nearly straight α-helix. Alignment of the helix by a paramagnetic lanthanide ion attached to its N-terminal region shows a decrease in alignment as the distance from the tagging site increases. This decrease yields a precise measure for the persistence length of 224 ± 10 Å at 20 °C, supporting the idea that the role of the SAH helix is to act as an extension of the myosin-VI lever arm.
Collapse
|
24
|
Batchelor M, Wolny M, Baker EG, Paci E, Kalverda AP, Peckham M. Dynamic ion pair behavior stabilizes single α-helices in proteins. J Biol Chem 2019; 294:3219-3234. [PMID: 30593502 PMCID: PMC6398138 DOI: 10.1074/jbc.ra118.006752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/17/2018] [Indexed: 11/06/2022] Open
Abstract
Ion pairs are key stabilizing interactions between oppositely charged amino acid side chains in proteins. They are often depicted as single conformer salt bridges (hydrogen-bonded ion pairs) in crystal structures, but it is unclear how dynamic they are in solution. Ion pairs are thought to be particularly important in stabilizing single α-helix (SAH) domains in solution. These highly stable domains are rich in charged residues (such as Arg, Lys, and Glu) with potential ion pairs across adjacent turns of the helix. They provide a good model system to investigate how ion pairs can contribute to protein stability. Using NMR spectroscopy, small-angle X-ray light scattering (SAXS), and molecular dynamics simulations, we provide here experimental evidence that ion pairs exist in a SAH in murine myosin 7a (residues 858-935), but that they are not fixed or long lasting. In silico modeling revealed that the ion pairs within this α-helix exhibit dynamic behavior, rapidly forming and breaking and alternating between different partner residues. The low-energy helical state was compatible with a great variety of ion pair combinations. Flexible ion pair formation utilizing a subset of those available at any one time avoided the entropic penalty of fixing side chain conformations, which likely contributed to helix stability overall. These results indicate the dynamic nature of ion pairs in SAHs. More broadly, thermodynamic stability in other proteins is likely to benefit from the dynamic behavior of multi-option solvent-exposed ion pairs.
Collapse
Affiliation(s)
- Matthew Batchelor
- From the School of Molecular and Cellular Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Marcin Wolny
- From the School of Molecular and Cellular Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Emily G Baker
- the School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Emanuele Paci
- From the School of Molecular and Cellular Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Arnout P Kalverda
- From the School of Molecular and Cellular Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Michelle Peckham
- From the School of Molecular and Cellular Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| |
Collapse
|
25
|
Batchelor M, Paci E. Helical Polyampholyte Sequences Have Unique Thermodynamic Properties. J Phys Chem B 2018; 122:11784-11791. [PMID: 30351106 DOI: 10.1021/acs.jpcb.8b08344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Helices are the most common structural pattern observed in structured proteins. Polypeptide sequences that form helices in isolation have been identified and extensively studied. These are generally rich in alanine, the amino acid with strongest helical propensity. Insertion of charged or polar amino acids has been shown to be necessary to make alanine-rich peptides soluble and sometimes even increase the helicity of the peptides. More recently sequences that contain mostly charged residues (E-R/K rich) have been found in naturally occurring proteins that are highly helical, soluble, and extended regardless their length. Artificial sequences composed mostly or exclusively of charged amino acids have been designed that are also highly helical, depending on the specific pattern of oppositely charged residues. Here we explore the thermodynamic properties of a number of 16-residue long peptides with varying helical propensity by performing equilibrium simulations over a broad range of temperatures. We observe quantitative differences in the peptides' helical propensities that can be related to qualitative differences in the free energy landscape, depending on the ampholytic patterns in the sequence. The results provide hints on how the specific physical properties of naturally occurring long sequences with similar patterns of charged residues may relate to their biological function.
Collapse
Affiliation(s)
- Matthew Batchelor
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , U.K
| | - Emanuele Paci
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , U.K
| |
Collapse
|
26
|
Kovács Á, Dudola D, Nyitray L, Tóth G, Nagy Z, Gáspári Z. Detection of single alpha-helices in large protein sequence sets using hardware acceleration. J Struct Biol 2018; 204:109-116. [PMID: 29908248 DOI: 10.1016/j.jsb.2018.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Single alpha-helices (SAHs) are increasingly recognized as important structural and functional elements of proteins. Comprehensive identification of SAH segments in large protein datasets was largely hindered by the slow speed of the most restrictive prediction tool for their identification, FT_CHARGE on common hardware. We have previously implemented an FPGA-based version of this tool allowing fast analysis of a large number of sequences. Using this implementation, we have set up of a semi-automated pipeline capable of analyzing full UniProt releases in reasonable time and compiling monthly updates of a comprehensive database of SAH segments. Releases of this database, denoted CSAHDB, is available on the CSAHserver 2 website at csahserver.itk.ppke.hu. An overview of human SAH-containing sequences combined with a literature survey suggests specific roles of SAH segments in proteins involved in RNA-based regulation processes as well as cytoskeletal proteins, a number of which is also linked to the development and function of synapses.
Collapse
Affiliation(s)
- Ákos Kovács
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Dániel Dudola
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Tóth
- Department for Research and Development, National Research, Development and Innovation Office, Budapest, Hungary
| | - Zoltán Nagy
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| |
Collapse
|
27
|
Nadler H, Shaulov L, Blitsman Y, Mordechai M, Jopp J, Sal-Man N, Berkovich R. Deciphering the Mechanical Properties of Type III Secretion System EspA Protein by Single Molecule Force Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6261-6270. [PMID: 29726683 DOI: 10.1021/acs.langmuir.8b01198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacterial pathogens inject virulence factors into host cells during bacterial infections using type III secretion systems. In enteropathogenic Escherichia coli, this system contains an external filament, formed by a self-oligomerizing protein called E. coli secreted protein A (EspA). The EspA filament penetrates the thick viscous mucus layer to facilitate the attachment of the bacteria to the gut-epithelium. To do that, the EspA filament requires noteworthy mechanical endurance considering the mechanical shear stresses found within the intestinal tract. To date, the mechanical properties of the EspA filament and the structural and biophysical knowledge of monomeric EspA are very limited, mostly due to the strong tendency of the protein to self-oligomerize. To overcome this limitation, we employed a single molecule force spectroscopy (SMFS) technique and studied the mechanical properties of EspA. Force extension dynamic of (I91)4-EspA-(I91)4 chimera revealed two structural unfolding events occurring at low forces during EspA unfolding, thus indicating no unique mechanical stability of the monomeric protein. SMFS examination of purified monomeric EspA protein, treated by a gradually refolding protocol, exhibited similar mechanical properties as the EspA protein within the (I91)4-EspA-(I91)4 chimera. Overall, our results suggest that the mechanical integrity of the EspA filament likely originates from the interactions between EspA monomers and not from the strength of an individual monomer.
Collapse
Affiliation(s)
- Hila Nadler
- Department of Chemical Engineering , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Lihi Shaulov
- Department of Microbiology, Immunology and Genetics , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Yossi Blitsman
- Department of Chemical Engineering , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Moran Mordechai
- Department of Chemical Engineering , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Jürgen Jopp
- The Ilse Katz Institute for Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Neta Sal-Man
- Department of Microbiology, Immunology and Genetics , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Ronen Berkovich
- Department of Chemical Engineering , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
- The Ilse Katz Institute for Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer Sheva 8410501 , Israel
| |
Collapse
|
28
|
Batchelor M, Wolny M, Kurzawa M, Dougan L, Knight PJ, Peckham M. Determining Stable Single Alpha Helical (SAH) Domain Properties by Circular Dichroism and Atomic Force Microscopy. Methods Mol Biol 2018; 1805:185-211. [PMID: 29971719 DOI: 10.1007/978-1-4939-8556-2_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stable, single α-helical (SAH) domains exist in a number of unconventional myosin isoforms, as well as other proteins. These domains are formed from sequences rich in charged residues (Arg, Lys, and Glu), they can be hundreds of residues long, and in isolation they can tolerate significant changes in pH and salt concentration without loss in helicity. Here we describe methods for the preparation and purification of SAH domains and SAH domain-containing constructs, using the myosin 10 SAH domain as an example. We go on to describe the use of circular dichroism spectroscopy and force spectroscopy with the atomic force microscope for the elucidation of structural and mechanical properties of these unusual helical species.
Collapse
Affiliation(s)
- Matthew Batchelor
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Marcin Wolny
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Marta Kurzawa
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Lorna Dougan
- Astbury Centre for Structural Molecular Biology and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter J Knight
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michelle Peckham
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
29
|
Simm D, Hatje K, Kollmar M. Distribution and evolution of stable single α-helices (SAH domains) in myosin motor proteins. PLoS One 2017; 12:e0174639. [PMID: 28369123 PMCID: PMC5378345 DOI: 10.1371/journal.pone.0174639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/13/2017] [Indexed: 11/19/2022] Open
Abstract
Stable single-alpha helices (SAHs) are versatile structural elements in many prokaryotic and eukaryotic proteins acting as semi-flexible linkers and constant force springs. This way SAH-domains function as part of the lever of many different myosins. Canonical myosin levers consist of one or several IQ-motifs to which light chains such as calmodulin bind. SAH-domains provide flexibility in length and stiffness to the myosin levers, and may be particularly suited for myosins working in crowded cellular environments. Although the function of the SAH-domains in human class-6 and class-10 myosins has well been characterised, the distribution of the SAH-domain in all myosin subfamilies and across the eukaryotic tree of life remained elusive. Here, we analysed the largest available myosin sequence dataset consisting of 7919 manually annotated myosin sequences from 938 species representing all major eukaryotic branches using the SAH-prediction algorithm of Waggawagga, a recently developed tool for the identification of SAH-domains. With this approach we identified SAH-domains in more than one third of the supposed 79 myosin subfamilies. Depending on the myosin class, the presence of SAH-domains can range from a few to almost all class members indicating complex patterns of independent and taxon-specific SAH-domain gain and loss.
Collapse
Affiliation(s)
- Dominic Simm
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Göttingen, Germany
| | - Klas Hatje
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Martin Kollmar
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- * E-mail:
| |
Collapse
|
30
|
Wolny M, Batchelor M, Bartlett GJ, Baker EG, Kurzawa M, Knight PJ, Dougan L, Woolfson DN, Paci E, Peckham M. Characterization of long and stable de novo single alpha-helix domains provides novel insight into their stability. Sci Rep 2017; 7:44341. [PMID: 28287151 PMCID: PMC5347031 DOI: 10.1038/srep44341] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/07/2017] [Indexed: 12/22/2022] Open
Abstract
Naturally-occurring single α-helices (SAHs), are rich in Arg (R), Glu (E) and Lys (K) residues, and stabilized by multiple salt bridges. Understanding how salt bridges promote their stability is challenging as SAHs are long and their sequences highly variable. Thus, we designed and tested simple de novo 98-residue polypeptides containing 7-residue repeats (AEEEXXX, where X is K or R) expected to promote salt-bridge formation between Glu and Lys/Arg. Lys-rich sequences (EK3 (AEEEKKK) and EK2R1 (AEEEKRK)) both form SAHs, of which EK2R1 is more helical and thermo-stable suggesting Arg increases stability. Substituting Lys with Arg (or vice versa) in the naturally-occurring myosin-6 SAH similarly increased (or decreased) its stability. However, Arg-rich de novo sequences (ER3 (AEEERRR) and EK1R2 (AEEEKRR)) aggregated. Combining a PDB analysis with molecular modelling provides a rational explanation, demonstrating that Glu and Arg form salt bridges more commonly, utilize a wider range of rotamer conformations, and are more dynamic than Glu-Lys. This promiscuous nature of Arg helps explain the increased propensity of de novo Arg-rich SAHs to aggregate. Importantly, the specific K:R ratio is likely to be important in determining helical stability in de novo and naturally-occurring polypeptides, giving new insight into how single α-helices are stabilized.
Collapse
Affiliation(s)
- Marcin Wolny
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew Batchelor
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Gail J. Bartlett
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, UK
| | - Emily G. Baker
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, UK
| | - Marta Kurzawa
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter J. Knight
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Lorna Dougan
- Astbury Centre for Structural Molecular Biology and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Derek N. Woolfson
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, UK
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD, UK
- BrisSynBio, University of Bristol, Life Sciences Building, Bristol, BS8 1TQ, UK
| | - Emanuele Paci
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michelle Peckham
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
31
|
Ulrich AKC, Seeger M, Schütze T, Bartlick N, Wahl MC. Scaffolding in the Spliceosome via Single α Helices. Structure 2016; 24:1972-1983. [PMID: 27773687 DOI: 10.1016/j.str.2016.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/08/2016] [Accepted: 09/28/2016] [Indexed: 12/16/2022]
Abstract
The spliceosomal B complex-specific protein Prp38 forms a complex with the intrinsically unstructured proteins MFAP1 and Snu23. Our binding and crystal structure analyses show that MFAP1 and Snu23 contact Prp38 via ER/K motif-stabilized single α helices, which have previously been recognized only as rigid connectors or force springs between protein domains. A variant of the Prp38-binding single α helix of MFAP1, in which ER/K motifs not involved in Prp38 binding were mutated, was less α-helical in isolation and showed a reduced Prp38 affinity, with opposing tendencies in interaction enthalpy and entropy. Our results indicate that the strengths of single α helix-based interactions can be tuned by the degree of helix stabilization in the unbound state. MFAP1, Snu23, and several other spliceosomal proteins contain multiple regions that likely form single α helices via which they might tether several binding partners and act as intermittent scaffolds that facilitate remodeling steps during assembly of an active spliceosome.
Collapse
Affiliation(s)
- Alexander K C Ulrich
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Martin Seeger
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Tonio Schütze
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Natascha Bartlick
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany; Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Straße 15, 12489 Berlin, Germany.
| |
Collapse
|
32
|
Bavi N, Bavi O, Vossoughi M, Naghdabadi R, Hill AP, Martinac B, Jamali Y. Nanomechanical properties of MscL α helices: A steered molecular dynamics study. Channels (Austin) 2016; 11:209-223. [PMID: 27753526 DOI: 10.1080/19336950.2016.1249077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Gating of mechanosensitive (MS) channels is driven by a hierarchical cascade of movements and deformations of transmembrane helices in response to bilayer tension. Determining the intrinsic mechanical properties of the individual transmembrane helices is therefore central to understanding the intricacies of the gating mechanism of MS channels. We used a constant-force steered molecular dynamics (SMD) approach to perform unidirectional pulling tests on all the helices of MscL in M. tuberculosis and E. coli homologs. Using this method, we could overcome the issues encountered with the commonly used constant-velocity SMD simulations, such as low mechanical stability of the helix during stretching and high dependency of the elastic properties on the pulling rate. We estimated Young's moduli of the α-helices of MscL to vary between 0.2 and 12.5 GPa with TM2 helix being the stiffest. We also studied the effect of water on the properties of the pore-lining TM1 helix. In the absence of water, this helix exhibited a much stiffer response. By monitoring the number of hydrogen bonds, it appears that water acts like a 'lubricant' (softener) during TM1 helix elongation. These data shed light on another physical aspect underlying hydrophobic gating of MS channels, in particular MscL.
Collapse
Affiliation(s)
- N Bavi
- a Division of Molecular Cardiology and Biophysics , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia.,b St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Darlinghurst , NSW , Australia
| | - O Bavi
- c Institute for Nanoscience and Nanotechnology, Sharif University of Technology , Tehran , Iran
| | - M Vossoughi
- c Institute for Nanoscience and Nanotechnology, Sharif University of Technology , Tehran , Iran.,d Biochemical & Bioenvironmental Research Center (BBRC) , Tehran , Iran
| | - R Naghdabadi
- c Institute for Nanoscience and Nanotechnology, Sharif University of Technology , Tehran , Iran.,e Department of Mechanical Engineering , Sharif University of Technology , Tehran , Iran
| | - A P Hill
- a Division of Molecular Cardiology and Biophysics , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia
| | - B Martinac
- a Division of Molecular Cardiology and Biophysics , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia.,b St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Darlinghurst , NSW , Australia
| | - Y Jamali
- f Department of Mathematics , Tarbiat Modares University , Tehran , Iran.,g Computational Physical Sciences Research Laboratory , School of Nanoscience, Institute for Research in Fundamental Sciences (IPM) , Tehran , Iran
| |
Collapse
|
33
|
Zhou T, Fleming JR, Franke B, Bogomolovas J, Barsukov I, Rigden DJ, Labeit S, Mayans O. CARP interacts with titin at a unique helical N2A sequence and at the domain Ig81 to form a structured complex. FEBS Lett 2016; 590:3098-110. [PMID: 27531639 DOI: 10.1002/1873-3468.12362] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/29/2016] [Accepted: 08/09/2016] [Indexed: 11/07/2022]
Abstract
The cardiac ankyrin repeat protein (CARP) is up-regulated in the myocardium during cardiovascular disease and in response to mechanical or toxic stress. Stress-induced CARP interacts with the N2A spring region of the titin filament to modulate muscle compliance. We characterize the interaction between CARP and titin-N2A and show that the binding site in titin spans the dual domain UN2A-Ig81. We find that the unique sequence UN2A is not structurally disordered, but that it has a stable, elongated α-helical fold that possibly acts as a constant force spring. Our findings portray CARP/titin-N2A as a structured node and help to rationalize the molecular basis of CARP mechanosensing in the sarcomeric I-band.
Collapse
Affiliation(s)
- Tiankun Zhou
- Department of Biology, University of Konstanz, Germany.,Institute of Integrative Biology, University of Liverpool, UK
| | - Jennifer R Fleming
- Department of Biology, University of Konstanz, Germany.,Institute of Integrative Biology, University of Liverpool, UK
| | | | - Julius Bogomolovas
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Igor Barsukov
- Institute of Integrative Biology, University of Liverpool, UK
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, UK
| | - Siegfried Labeit
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Olga Mayans
- Department of Biology, University of Konstanz, Germany. .,Institute of Integrative Biology, University of Liverpool, UK.
| |
Collapse
|
34
|
Setty SC, Horam S, Pasupuleti M, Haq W. Modulating the Antimicrobial Activity of Temporin L Through Introduction of Fluorinated Phenylalanine. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9553-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
The myosin X motor is optimized for movement on actin bundles. Nat Commun 2016; 7:12456. [PMID: 27580874 PMCID: PMC5025751 DOI: 10.1038/ncomms12456] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 07/05/2016] [Indexed: 11/09/2022] Open
Abstract
Myosin X has features not found in other myosins. Its structure must underlie its unique ability to generate filopodia, which are essential for neuritogenesis, wound healing, cancer metastasis and some pathogenic infections. By determining high-resolution structures of key components of this motor, and characterizing the in vitro behaviour of the native dimer, we identify the features that explain the myosin X dimer behaviour. Single-molecule studies demonstrate that a native myosin X dimer moves on actin bundles with higher velocities and takes larger steps than on single actin filaments. The largest steps on actin bundles are larger than previously reported for artificially dimerized myosin X constructs or any other myosin. Our model and kinetic data explain why these large steps and high velocities can only occur on bundled filaments. Thus, myosin X functions as an antiparallel dimer in cells with a unique geometry optimized for movement on actin bundles.
Collapse
|
36
|
Baboolal TG, Mashanov GI, Nenasheva TA, Peckham M, Molloy JE. A Combination of Diffusion and Active Translocation Localizes Myosin 10 to the Filopodial Tip. J Biol Chem 2016; 291:22373-22385. [PMID: 27566544 PMCID: PMC5077179 DOI: 10.1074/jbc.m116.730689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/24/2016] [Indexed: 11/06/2022] Open
Abstract
Myosin 10 is an actin-based molecular motor that localizes to the tips of filopodia in mammalian cells. To understand how it is targeted to this distinct region of the cell, we have used total internal reflection fluorescence microscopy to study the movement of individual full-length and truncated GFP-tagged molecules. Truncation mutants lacking the motor region failed to localize to filopodial tips but still bound transiently at the plasma membrane. Deletion of the single α-helical and anti-parallel coiled-coil forming regions, which lie between the motor and pleckstrin homology domains, reduced the instantaneous velocity of intrafilopodial movement but did not affect the number of substrate adherent filopodia. Deletion of the anti-parallel coiled-coil forming region, but not the EKR-rich region of the single α-helical domain, restored intrafilopodial trafficking, suggesting this region is important in determining myosin 10 motility. We propose a model by which myosin 10 rapidly targets to the filopodial tip via a sequential reduction in dimensionality. Molecules first undergo rapid diffusion within the three-dimensional volume of the cell body. They then exhibit periods of slower two-dimensional diffusion in the plane of the plasma membrane. Finally, they move in a unidimensional, highly directed manner along the polarized actin filament bundle within the filopodium becoming confined to a single point at the tip. Here we have observed directly each phase of the trafficking process using single molecule fluorescence imaging of live cells and have quantified our observations using single particle tracking, autocorrelation analysis, and kymographs.
Collapse
Affiliation(s)
- Thomas G Baboolal
- From the Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT and
| | - Gregory I Mashanov
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Tatiana A Nenasheva
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Michelle Peckham
- From the Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT and
| | - Justin E Molloy
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| |
Collapse
|
37
|
Doležal M, Hadravová R, Kožíšek M, Bednárová L, Langerová H, Ruml T, Rumlová M. Functional and Structural Characterization of Novel Type of Linker Connecting Capsid and Nucleocapsid Protein Domains in Murine Leukemia Virus. J Biol Chem 2016; 291:20630-42. [PMID: 27514744 DOI: 10.1074/jbc.m116.746461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 12/24/2022] Open
Abstract
The assembly of immature retroviral particles is initiated in the cytoplasm by the binding of the structural polyprotein precursor Gag with viral genomic RNA. The protein interactions necessary for assembly are mediated predominantly by the capsid (CA) and nucleocapsid (NC) domains, which have conserved structures. In contrast, the structural arrangement of the CA-NC connecting region differs between retroviral species. In HIV-1 and Rous sarcoma virus, this region forms a rod-like structure that separates the CA and NC domains, whereas in Mason-Pfizer monkey virus, this region is densely packed, thus holding the CA and NC domains in close proximity. Interestingly, the sequence connecting the CA and NC domains in gammaretroviruses, such as murine leukemia virus (MLV), is unique. The sequence is called a charged assembly helix (CAH) due to a high number of positively and negatively charged residues. Although both computational and deletion analyses suggested that the MLV CAH forms a helical conformation, no structural or biochemical data supporting this hypothesis have been published. Using an in vitro assembly assay, alanine scanning mutagenesis, and biophysical techniques (circular dichroism, NMR, microcalorimetry, and electrophoretic mobility shift assay), we have characterized the structure and function of the MLV CAH. We provide experimental evidence that the MLV CAH belongs to a group of charged, E(R/K)-rich, single α-helices. This is the first single α-helix motif identified in viral proteins.
Collapse
Affiliation(s)
- Michal Doležal
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6
| | - Romana Hadravová
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6
| | - Milan Kožíšek
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6
| | - Lucie Bednárová
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6
| | - Hana Langerová
- the Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Technická 3, 166 28 Prague, and
| | - Tomáš Ruml
- the Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Technická 3, 166 28 Prague, and
| | - Michaela Rumlová
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, the Department of Biotechnology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
38
|
Tych KM, Batchelor M, Hoffmann T, Wilson MC, Hughes ML, Paci E, Brockwell DJ, Dougan L. Differential Effects of Hydrophobic Core Packing Residues for Thermodynamic and Mechanical Stability of a Hyperthermophilic Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7392-7402. [PMID: 27338140 DOI: 10.1021/acs.langmuir.6b01550] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proteins from organisms that have adapted to environmental extremes provide attractive systems to explore and determine the origins of protein stability. Improved hydrophobic core packing and decreased loop-length flexibility can increase the thermodynamic stability of proteins from hyperthermophilic organisms. However, their impact on protein mechanical stability is not known. Here, we use protein engineering, biophysical characterization, single-molecule force spectroscopy (SMFS), and molecular dynamics (MD) simulations to measure the effect of altering hydrophobic core packing on the stability of the cold shock protein TmCSP from the hyperthermophilic bacterium Thermotoga maritima. We make two variants of TmCSP in which a mutation is made to reduce the size of aliphatic groups from buried hydrophobic side chains. In the first, a mutation is introduced in a long loop (TmCSP L40A); in the other, the mutation is introduced on the C-terminal β-strand (TmCSP V62A). We use MD simulations to confirm that the mutant TmCSP L40A shows the most significant increase in loop flexibility, and mutant TmCSP V62A shows greater disruption to the core packing. We measure the thermodynamic stability (ΔGD-N) of the mutated proteins and show that there is a more significant reduction for TmCSP L40A (ΔΔG = 63%) than TmCSP V62A (ΔΔG = 47%), as might be expected on the basis of the relative reduction in the size of the side chain. By contrast, SMFS measures the mechanical stability (ΔG*) and shows a greater reduction for TmCSP V62A (ΔΔG* = 8.4%) than TmCSP L40A (ΔΔG* = 2.5%). While the impact on the mechanical stability is subtle, the results demonstrate the power of tuning noncovalent interactions to modulate both the thermodynamic and mechanical stability of a protein. Such understanding and control provide the opportunity to design proteins with optimized thermodynamic and mechanical properties.
Collapse
Affiliation(s)
- Katarzyna M Tych
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Matthew Batchelor
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Toni Hoffmann
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Michael C Wilson
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Megan L Hughes
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Emanuele Paci
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - David J Brockwell
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Lorna Dougan
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
39
|
Hughes ML, Dougan L. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:076601. [PMID: 27309041 DOI: 10.1088/0034-4885/79/7/076601] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
One of the most exciting developments in the field of biological physics in recent years is the ability to manipulate single molecules and probe their properties and function. Since its emergence over two decades ago, single molecule force spectroscopy has become a powerful tool to explore the response of biological molecules, including proteins, DNA, RNA and their complexes, to the application of an applied force. The force versus extension response of molecules can provide valuable insight into its mechanical stability, as well as details of the underlying energy landscape. In this review we will introduce the technique of single molecule force spectroscopy using the atomic force microscope (AFM), with particular focus on its application to study proteins. We will review the models which have been developed and employed to extract information from single molecule force spectroscopy experiments. Finally, we will end with a discussion of future directions in this field.
Collapse
Affiliation(s)
- Megan L Hughes
- School of Physics and Astronomy, University of Leeds, LS2 9JT, UK. Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, UK
| | | |
Collapse
|
40
|
Tych KM, Batchelor M, Hoffmann T, Wilson MC, Paci E, Brockwell DJ, Dougan L. Tuning protein mechanics through an ionic cluster graft from an extremophilic protein. SOFT MATTER 2016; 12:2688-2699. [PMID: 26809452 DOI: 10.1039/c5sm02938d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Proteins from extremophilic organisms provide excellent model systems to determine the role of non-covalent interactions in defining protein stability and dynamics as well as being attractive targets for the development of robust biomaterials. Hyperthermophilic proteins have a prevalence of salt bridges, relative to their mesophilic homologues, which are thought to be important for enhanced thermal stability. However, the impact of salt bridges on the mechanical properties of proteins is far from understood. Here, a combination of protein engineering, biophysical characterisation, single molecule force spectroscopy (SMFS) and molecular dynamics (MD) simulations directly investigates the role of salt bridges in the mechanical stability of two cold shock proteins; BsCSP from the mesophilic organism Bacillus subtilis and TmCSP from the hyperthermophilic organism Thermotoga maritima. Single molecule force spectroscopy shows that at ambient temperatures TmCSP is mechanically stronger yet, counter-intuitively, its native state can withstand greater deformation before unfolding (i.e. it is mechanically soft) compared with BsCSP. MD simulations were used to identify the location and quantify the population of salt bridges, and reveal that TmCSP contains a larger number of highly occupied salt bridges than BsCSP. To test the hypothesis that salt-bridges endow these mechanical properties on the hyperthermophilic CSP, a charged triple mutant (CTM) variant of BsCSP was generated by grafting an ionic cluster from TmCSP into the BsCSP scaffold. As expected CTM is thermodynamically more stable and mechanically softer than BsCSP. We show that a grafted ionic cluster can increase the mechanical softness of a protein and speculate that it could provide a mechanical recovery mechanism and that it may be a design feature applicable to other proteins.
Collapse
Affiliation(s)
- Katarzyna M Tych
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | |
Collapse
|
41
|
Dobson L, Nyitray L, Gáspári Z. A conserved charged single α-helix with a putative steric role in paraspeckle formation. RNA (NEW YORK, N.Y.) 2015; 21:2023-2029. [PMID: 26428695 PMCID: PMC4647456 DOI: 10.1261/rna.053058.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
Paraspeckles are subnuclear particles involved in the regulation of mRNA expression. They are formed by the association of DBHS family proteins and the NEAT1 long noncoding RNA. Here, we show that a recently identified structural motif, the charged single α-helix, is largely conserved in the DBHS family. Based on the available structural data and a previously suggested multimerization scheme of DBHS proteins, we built a structural model of a (PSPC1/NONO)(n) multimer that might have relevance in paraspeckle formation. Our model contains an extended coiled-coil region that is followed by and partially overlaps with the predicted charged single α-helix. We suggest that the charged single α-helix can act as an elastic ruler governing the exact positioning of the dimeric core structures relative to each other during paraspeckle assembly along the NEAT1 noncoding RNA.
Collapse
Affiliation(s)
- László Dobson
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, H-1083 Budapest, Hungary
| | - László Nyitray
- Eötvös Loránd University, Department of Biochemistry, H-1117 Budapest, Hungary
| | - Zoltán Gáspári
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, H-1083 Budapest, Hungary
| |
Collapse
|
42
|
Samejima K, Platani M, Wolny M, Ogawa H, Vargiu G, Knight PJ, Peckham M, Earnshaw WC. The Inner Centromere Protein (INCENP) Coil Is a Single α-Helix (SAH) Domain That Binds Directly to Microtubules and Is Important for Chromosome Passenger Complex (CPC) Localization and Function in Mitosis. J Biol Chem 2015; 290:21460-72. [PMID: 26175154 PMCID: PMC4571873 DOI: 10.1074/jbc.m115.645317] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Indexed: 11/06/2022] Open
Abstract
The chromosome passenger complex (CPC) is a master regulator of mitosis. Inner centromere protein (INCENP) acts as a scaffold regulating CPC localization and activity. During early mitosis, the N-terminal region of INCENP forms a three-helix bundle with Survivin and Borealin, directing the CPC to the inner centromere where it plays essential roles in chromosome alignment and the spindle assembly checkpoint. The C-terminal IN box region of INCENP is responsible for binding and activating Aurora B kinase. The central region of INCENP has been proposed to comprise a coiled coil domain acting as a spacer between the N- and C-terminal domains that is involved in microtubule binding and regulation of the spindle checkpoint. Here we show that the central region (213 residues) of chicken INCENP is not a coiled coil but a ∼ 32-nm-long single α-helix (SAH) domain. The N-terminal half of this domain directly binds to microtubules in vitro. By analogy with previous studies of myosin 10, our data suggest that the INCENP SAH might stretch up to ∼ 80 nm under physiological forces. Thus, the INCENP SAH could act as a flexible "dog leash," allowing Aurora B to phosphorylate dynamic substrates localized in the outer kinetochore while at the same time being stably anchored to the heterochromatin of the inner centromere. Furthermore, by achieving this flexibility via an SAH domain, the CPC avoids a need for dimerization (required for coiled coil formation), which would greatly complicate regulation of the proximity-induced trans-phosphorylation that is critical for Aurora B activation.
Collapse
Affiliation(s)
- Kumiko Samejima
- From The Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom and
| | - Melpomeni Platani
- From The Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom and
| | - Marcin Wolny
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Hiromi Ogawa
- From The Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom and
| | - Giulia Vargiu
- From The Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom and
| | - Peter J Knight
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Michelle Peckham
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - William C Earnshaw
- From The Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom and
| |
Collapse
|
43
|
Abstract
The human genome contains 39 myosin genes, divided up into 12 different classes. The structure, cellular function and biochemical properties of many of these isoforms remain poorly characterized and there is still some controversy as to whether some myosin isoforms are monomers or dimers. Myosin isoforms 6 and 10 contain a stable single α-helical (SAH) domain, situated just after the canonical lever. The SAH domain is stiff enough to be able to lengthen the lever allowing the myosin to take a larger step. In addition, atomic force microscopy and atomistic simulations show that SAH domains unfold at relatively low forces and have a high propensity to refold. These properties are likely to be important for protein function, enabling motors to carry cargo in dense actin networks, and other proteins to remain attached to binding partners in the crowded cell.
Collapse
|
44
|
Effect of external pulling forces on the length distribution of peptides. Biochim Biophys Acta Gen Subj 2014; 1850:903-910. [PMID: 25261776 DOI: 10.1016/j.bbagen.2014.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND The distribution of the length of a polypeptide, or that of the distance between any two of its atoms, is an important property as it can be analytically or numerically estimated for a number of polymer models. Importantly, it is directly measurable through a number of different experimental techniques. Length distributions can be straightforwardly assessed from molecular dynamics simulation; however, true convergence through full accurate coverage of the length range is difficult to achieve. METHODS The application of external constant force combined with the weighted-histogram analysis method (WHAM) is used to enhance sampling of unlikely 'long' or 'short' conformations and obtain the potential of mean force, while also collecting dynamic properties of the chain under variable tension. RESULTS We demonstrate the utility of constant force to enhance the sampling efficiency and obtain experimentally measurable quantities on a series of short peptides, including charge-rich sequences that are known to be highly helical but whose properties are distinct from those of helical peptides undergoing helix-coil transitions. CONCLUSIONS Force-enhanced sampling enhances the range and accuracy of the length-based potential of mean force of the peptide, in particular those sequences that contain increased numbers of charged residues. GENERAL SIGNIFICANCE This approach allows users to simultaneously probe the force-dependent behaviour of peptides directly, enhance the range and accuracy of the length-based PMF of the peptide and also test the convergence of simulations by comparing the overlap of PMF profiles from different constant forces. This article is part of a special issue entitled Recent developments of molecular dynamics.
Collapse
|