1
|
Johnson MP. Structure, regulation and assembly of the photosynthetic electron transport chain. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00847-y. [PMID: 40399647 DOI: 10.1038/s41580-025-00847-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 05/23/2025]
Abstract
The electron transfer chain of chloroplast thylakoid membranes uses solar energy to split water into electrons and protons, creating energetic gradients that drive the formation of photosynthetic fuel in the form of NADPH and ATP. These metabolites are then used to power the fixation of carbon dioxide into biomass through the Calvin-Benson-Bassham cycle in the chloroplast stroma. Recent advances in molecular genetics, structural biology and spectroscopy have provided an unprecedented understanding of the molecular events involved in photosynthetic electron transfer from photon capture to ATP production. Specifically, we have gained insights into the assembly of the photosynthetic complexes into larger supercomplexes, thylakoid membrane organization and the mechanisms underpinning efficient light harvesting, photoprotection and oxygen evolution. In this Review, I focus on the angiosperm plant thylakoid system, outlining our current knowledge on the structure, function, regulation and assembly of each component of the photosynthetic chain. I explain how solar energy is harvested and converted into chemical energy by the photosynthetic electron transfer chain, how its components are integrated into a complex membrane macrostructure and how this organization contributes to regulation and photoprotection.
Collapse
Affiliation(s)
- Matthew P Johnson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
2
|
Rolo D, Schöttler MA, Sandoval-Ibáñez O, Bock R. Structure, function, and assembly of PSI in thylakoid membranes of vascular plants. THE PLANT CELL 2024; 36:4080-4108. [PMID: 38848316 PMCID: PMC11449065 DOI: 10.1093/plcell/koae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
The photosynthetic apparatus is formed by thylakoid membrane-embedded multiprotein complexes that carry out linear electron transport in oxygenic photosynthesis. The machinery is largely conserved from cyanobacteria to land plants, and structure and function of the protein complexes involved are relatively well studied. By contrast, how the machinery is assembled in thylakoid membranes remains poorly understood. The complexes participating in photosynthetic electron transfer are composed of many proteins, pigments, and redox-active cofactors, whose temporally and spatially highly coordinated incorporation is essential to build functional mature complexes. Several proteins, jointly referred to as assembly factors, engage in the biogenesis of these complexes to bring the components together in a step-wise manner, in the right order and time. In this review, we focus on the biogenesis of the terminal protein supercomplex of the photosynthetic electron transport chain, PSI, in vascular plants. We summarize our current knowledge of the assembly process and the factors involved and describe the challenges associated with resolving the assembly pathway in molecular detail.
Collapse
Affiliation(s)
- David Rolo
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Omar Sandoval-Ibáñez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
3
|
Rolo D, Sandoval-Ibáñez O, Thiele W, Schöttler MA, Gerlach I, Zoschke R, Schwartzmann J, Meyer EH, Bock R. CO-EXPRESSED WITH PSI ASSEMBLY1 (CEPA1) is a photosystem I assembly factor in Arabidopsis. THE PLANT CELL 2024; 36:4179-4211. [PMID: 38382089 PMCID: PMC11449006 DOI: 10.1093/plcell/koae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Photosystem I (PSI) forms a large macromolecular complex of ∼580 kDa that resides in the thylakoid membrane and mediates photosynthetic electron transfer. PSI is composed of 18 protein subunits and nearly 200 co-factors. The assembly of the complex in thylakoid membranes requires high spatial and temporal coordination, and is critically dependent on a sophisticated assembly machinery. Here, we report and characterize CO-EXPRESSED WITH PSI ASSEMBLY1 (CEPA1), a PSI assembly factor in Arabidopsis (Arabidopsis thaliana). The CEPA1 gene was identified bioinformatically as being co-expressed with known PSI assembly factors. Disruption of the CEPA1 gene leads to a pale phenotype and retarded plant development but does not entirely abolish photoautotrophy. Biophysical and biochemical analyses revealed that the phenotype is caused by a specific defect in PSI accumulation. We further show that CEPA1 acts at the post-translational level and co-localizes with PSI in nonappressed thylakoid membranes. In native gels, CEPA1 co-migrates with thylakoid protein complexes, including putative PSI assembly intermediates. Finally, protein-protein interaction assays suggest cooperation of CEPA1 with the PSI assembly factor PHOTOSYSTEM I ASSEMBLY3 (PSA3). Together, our data support an important but nonessential role of CEPA1 in PSI assembly.
Collapse
Affiliation(s)
- David Rolo
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Omar Sandoval-Ibáñez
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Wolfram Thiele
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ines Gerlach
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Reimo Zoschke
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Joram Schwartzmann
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Etienne H Meyer
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
4
|
Lu H, Xiao Y, Liu Y, Zhang J, Zhao Y. Integrative Transcriptomics and Proteomics Analysis of a Cotton Mutant yl1 with a Chlorophyll-Reduced Leaf. PLANTS (BASEL, SWITZERLAND) 2024; 13:1789. [PMID: 38999629 PMCID: PMC11244299 DOI: 10.3390/plants13131789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
Leaf color mutants serve as ideal materials for studying photosynthesis, chlorophyll metabolism, and other physiological processes. Here, we identified a spontaneous yellow-leaf mutant (yl1) with chlorophyll-reduced leaves from G. hirsutum L. cv ZM24. Compare to wild type ZM24 with green leaves, yl1 exhibited patchy yellow leaves and reduced chlorophyll content. To further explore the mechanisms of the patchy yellow phenotype of the mutant plant, the transcriptomics and proteomics profiles were conducted for the mutant and wild types. A total of 9247 differentially expressed genes (DEGs) and 1368 differentially accumulated proteins (DAPs) were identified. Following gene ontology (GO) annotation and KEGG enrichment, the DEGs/DAPs were found to be significantly involved in multiple important pathways, including the obsolete oxidation-reduction process, photosynthesis, light-harvesting, the microtubule-based process, cell redox homeostasis, and the carbohydrate metabolic process. In photosynthesis and the light-harvesting pathway, a total of 39 DAPs/DEGs were identified, including 9 genes in the PSI, 7 genes in the PS II, 9 genes in the light-harvesting chlorophyll protein complex (LHC), 10 genes in the PsbP family, and 4 genes in the cytochrome b6/f complex. To validate the reliability of the omics data, GhPPD1, a DAPs in the PsbP family, was knocked down in cotton using the TRV-based VIGS system, and it was observed that the GhPPD1-silenced plants exhibited patchy yellow color, accompanied by a significant decrease in chlorophyll content. In conclusion, this study integrated transcriptomic and proteomic approaches to gain a deeper understanding of the mechanisms underlying the chlorophyll-reduced leaf phenotype.
Collapse
Affiliation(s)
- Hejun Lu
- Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Xianghu Laboratory, Hangzhou 311231, China
| | - Yuyang Xiao
- Plant Genomics and Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuxin Liu
- Plant Genomics and Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiachen Zhang
- Plant Genomics and Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanyan Zhao
- Plant Genomics and Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Skotnicová P, Srivastava A, Aggarwal D, Talbot J, Karlínová I, Moos M, Mareš J, Bučinská L, Koník P, Šimek P, Tichý M, Sobotka R. A thylakoid biogenesis BtpA protein is required for the initial step of tetrapyrrole biosynthesis in cyanobacteria. THE NEW PHYTOLOGIST 2024; 241:1236-1249. [PMID: 37986097 DOI: 10.1111/nph.19397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Biogenesis of the photosynthetic apparatus requires complicated molecular machinery, individual components of which are either poorly characterized or unknown. The BtpA protein has been described as a factor required for the stability of photosystem I (PSI) in cyanobacteria; however, how the BtpA stabilized PSI remains unexplained. To clarify the role of BtpA, we constructed and characterized the btpA-null mutant (ΔbtpA) in the cyanobacterium Synechocystis sp. PCC 6803. The mutant contained only c. 1% of chlorophyll and nearly no thylakoid membranes. However, this strain, growing only in the presence of glucose, was genetically unstable and readily generated suppressor mutations that restore the photoautotrophy. Two suppressor mutations were mapped into the hemA gene encoding glutamyl-tRNA reductase (GluTR) - the first enzyme of tetrapyrrole biosynthesis. Indeed, the GluTR was not detectable in the ΔbtpA mutant and the suppressor mutations restored biosynthesis of tetrapyrroles and photoautotrophy by increased GluTR expression or by improved GluTR stability/processivity. We further demonstrated that GluTR associates with a large BtpA oligomer and that BtpA is required for the stability of GluTR. Our results show that the BtpA protein is involved in the biogenesis of photosystems at the level of regulation of tetrapyrrole biosynthesis.
Collapse
Affiliation(s)
- Petra Skotnicová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Amit Srivastava
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Department of Biological and Environmental Science, Nanoscience Centre, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Divya Aggarwal
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Jana Talbot
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tas., 7005, Australia
| | - Iva Karlínová
- Biology Centre of the Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Martin Moos
- Biology Centre of the Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Jan Mareš
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Biology Centre of the Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Lenka Bučinská
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
| | - Peter Koník
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Petr Šimek
- Biology Centre of the Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Martin Tichý
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Třeboň, 379 01, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| |
Collapse
|
6
|
Ji D, Li Q, Guo Y, An W, Manavski N, Meurer J, Chi W. NADP+ supply adjusts the synthesis of photosystem I in Arabidopsis chloroplasts. PLANT PHYSIOLOGY 2022; 189:2128-2143. [PMID: 35385122 PMCID: PMC9343004 DOI: 10.1093/plphys/kiac161] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
In oxygenic photosynthesis, NADP+ acts as the final acceptor of the photosynthetic electron transport chain and receives electrons via the thylakoid membrane complex photosystem I (PSI) to synthesize NAPDH by the enzyme ferredoxin:NADP+ oxidoreductase. The NADP+/NADPH redox couple is essential for cellular metabolism and redox homeostasis. However, how the homeostasis of these two dinucleotides is integrated into chloroplast biogenesis remains largely unknown. Here, we demonstrate the important role of NADP+ supply for the biogenesis of PSI by examining the nad kinase 2 (nadk2) mutant in Arabidopsis (Arabidopsis thaliana), which demonstrates disrupted synthesis of NADP+ from NAD+ in chloroplasts. Although the nadk2 mutant is highly sensitive to light, the reaction center of photosystem II (PSII) is only mildly and likely only secondarily affected compared to the wild-type. Our studies revealed that the primary limitation of photosynthetic electron transport, even at low light intensities, occurs at PSI rather than at PSII in the nadk2 mutant. Remarkably, this primarily impairs the de novo synthesis of the two PSI core subunits PsaA and PsaB, leading to the deficiency of the PSI complex in the nadk2 mutant. This study reveals an unexpected molecular link between NADK activity and mRNA translation of psaA/B in chloroplasts that may mediate a feedback mechanism to adjust de novo biosynthesis of the PSI complex in response to a variable NADPH demand. This adjustment may be important to protect PSI from photoinhibition under conditions that favor acceptor side limitation.
Collapse
Affiliation(s)
- Daili Ji
- Author for correspondence: (W.C.) and (D.J.)
| | - Qiuxin Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinjie Guo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing An
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nikolay Manavski
- Faculty of Biology, Plant Molecular Biology, Ludwig-Maximilians University, Munich, D-82152, Germany
| | - Jörg Meurer
- Faculty of Biology, Plant Molecular Biology, Ludwig-Maximilians University, Munich, D-82152, Germany
| | - Wei Chi
- Author for correspondence: (W.C.) and (D.J.)
| |
Collapse
|
7
|
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK. Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Genet 2021; 17:e1009725. [PMID: 34492001 PMCID: PMC8448359 DOI: 10.1371/journal.pgen.1009725] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/17/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022] Open
Abstract
Large-scale mutant libraries have been indispensable for genetic studies, and the development of next-generation genome sequencing technologies has greatly advanced efforts to analyze mutants. In this work, we sequenced the genomes of 660 Chlamydomonas reinhardtii acetate-requiring mutants, part of a larger photosynthesis mutant collection previously generated by insertional mutagenesis with a linearized plasmid. We identified 554 insertion events from 509 mutants by mapping the plasmid insertion sites through paired-end sequences, in which one end aligned to the plasmid and the other to a chromosomal location. Nearly all (96%) of the events were associated with deletions, duplications, or more complex rearrangements of genomic DNA at the sites of plasmid insertion, and together with deletions that were unassociated with a plasmid insertion, 1470 genes were identified to be affected. Functional annotations of these genes were enriched in those related to photosynthesis, signaling, and tetrapyrrole synthesis as would be expected from a library enriched for photosynthesis mutants. Systematic manual analysis of the disrupted genes for each mutant generated a list of 253 higher-confidence candidate photosynthesis genes, and we experimentally validated two genes that are essential for photoautotrophic growth, CrLPA3 and CrPSBP4. The inventory of candidate genes includes 53 genes from a phylogenomically defined set of conserved genes in green algae and plants. Altogether, 70 candidate genes encode proteins with previously characterized functions in photosynthesis in Chlamydomonas, land plants, and/or cyanobacteria; 14 genes encode proteins previously shown to have functions unrelated to photosynthesis. Among the remaining 169 uncharacterized genes, 38 genes encode proteins without any functional annotation, signifying that our results connect a function related to photosynthesis to these previously unknown proteins. This mutant library, with genome sequences that reveal the molecular extent of the chromosomal lesions and resulting higher-confidence candidate genes, will aid in advancing gene discovery and protein functional analysis in photosynthesis.
Collapse
Affiliation(s)
- Setsuko Wakao
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Patrick M. Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California, United States of America
- Innovative Genomics Institute, University of California, Berkeley, California, United States of America
| | - Katharine Guan
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Wendy Schackwitz
- Joint Genome Institute, Berkeley, California, United States of America
| | - Joshua Ye
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Dhruv Patel
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Robert M. Shih
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Rachel M. Dent
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Mansi Chovatia
- Joint Genome Institute, Berkeley, California, United States of America
| | - Aditi Sharma
- Joint Genome Institute, Berkeley, California, United States of America
| | - Joel Martin
- Joint Genome Institute, Berkeley, California, United States of America
| | - Chia-Lin Wei
- Joint Genome Institute, Berkeley, California, United States of America
| | - Krishna K. Niyogi
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| |
Collapse
|
8
|
Ishikawa N, Yokoe Y, Nishimura T, Nakano T, Ifuku K. PsbQ-Like Protein 3 Functions as an Assembly Factor for the Chloroplast NADH Dehydrogenase-Like Complex in Arabidopsis. PLANT & CELL PHYSIOLOGY 2020; 61:1252-1261. [PMID: 32333781 DOI: 10.1093/pcp/pcaa050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Angiosperms have three PsbQ-like (PQL) proteins in addition to the PsbQ subunit of the oxygen-evolving complex of photosystem II. Previous studies have shown that two PQL proteins, PnsL2 and PnsL3, are subunits of the chloroplast NADH dehydrogenase-like (NDH) complex involved in the photosystem I (PSI) cyclic electron flow. In addition, another PsbQ homolog, PQL3, is required for the NDH activity; however, the molecular function of PQL3 has not been elucidated. Here, we show that PQL3 is an assembly factor, particularly for the accumulation of subcomplex B (SubB) of the chloroplast NDH. In the pql3 mutant of Arabidopsis thaliana, the amounts of NDH subunits in SubB, PnsB1 and PsnB4, were decreased, causing a severe reduction in the NDH-PSI supercomplex. Analysis using blue native polyacrylamide gel electrophoresis suggested that the incorporation of PnsL3 into SubB was affected in the pql3 mutant. Unlike other PsbQ homologs, PQL3 was weakly associated with thylakoid membranes and was only partially protected from thermolysin digestion. Consistent with the function as an assembly factor, PQL3 accumulated independently in other NDH mutants, such as pnsl1-3. Furthermore, PQL3 accumulated in young leaves in a manner similar to the accumulation of CRR3, an assembly factor for SubB. These results suggest that PQL3 has developed a distinct function as an assembly factor for the NDH complex during evolution of the PsbQ protein family in angiosperms.
Collapse
Affiliation(s)
- Noriko Ishikawa
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuki Yokoe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Taishi Nishimura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takeshi Nakano
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kentaro Ifuku
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Photosystem II Extrinsic Proteins and Their Putative Role in Abiotic Stress Tolerance in Higher Plants. PLANTS 2018; 7:plants7040100. [PMID: 30441780 PMCID: PMC6313935 DOI: 10.3390/plants7040100] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023]
Abstract
Abiotic stress remains one of the major challenges in managing and preventing crop loss. Photosystem II (PSII), being the most susceptible component of the photosynthetic machinery, has been studied in great detail over many years. However, much of the emphasis has been placed on intrinsic proteins, particularly with respect to their involvement in the repair of PSII-associated damage. PSII extrinsic proteins include PsbO, PsbP, PsbQ, and PsbR in higher plants, and these are required for oxygen evolution under physiological conditions. Changes in extrinsic protein expression have been reported to either drastically change PSII efficiency or change the PSII repair system. This review discusses the functional role of these proteins in plants and indicates potential areas of further study concerning these proteins.
Collapse
|
10
|
Albanese P, Manfredi M, Re A, Marengo E, Saracco G, Pagliano C. Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a non-model organism aided by transcriptomic data integration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:786-800. [PMID: 30118564 DOI: 10.1111/tpj.14068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 05/02/2023]
Abstract
Plant thylakoid membranes contain hundreds of proteins that closely interact to cope with ever-changing environmental conditions. We investigated how Pisum sativum L. (pea) grown at different irradiances optimizes light-use efficiency through the differential accumulation of thylakoid proteins. Thylakoid membranes from plants grown under low (LL), moderate (ML) and high (HL) light intensity were characterized by combining chlorophyll fluorescence measurements with quantitative label-free proteomic analysis. Protein sequences retrieved from available transcriptomic data considerably improved thylakoid proteome profiling, increasing the quantifiable proteins from 63 to 194. The experimental approach used also demonstrates that this integrative omics strategy is powerful for unravelling protein isoforms and functions that are still unknown in non-model organisms. We found that the different growth irradiances affect the electron transport kinetics but not the relative abundance of photosystems (PS) I and II. Two acclimation strategies were evident. The behaviour of plants acclimated to LL was compared at higher irradiances: (i) in ML, plants turn on photoprotective responses mostly modulating the PSII light-harvesting capacity, either accumulating Lhcb4.3 or favouring the xanthophyll cycle; (ii) in HL, plants reduce the pool of light-harvesting complex II and enhance the PSII repair cycle. When growing at ML and HL, plants accumulate ATP synthase, boosting both cyclic and linear electron transport by finely tuning the ΔpH across the membrane and optimizing protein trafficking by adjusting the thylakoid architecture. Our results provide a quantitative snapshot of how plants coordinate light harvesting, electron transport and protein synthesis by adjusting the thylakoid membrane proteome in a light-dependent manner.
Collapse
Affiliation(s)
- Pascal Albanese
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy
| | - Marcello Manfredi
- ISALIT-Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Angela Re
- Center for Sustainable Future Technologies-CSFT@POLITO, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino, Italy
| | - Emilio Marengo
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Guido Saracco
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy
| | - Cristina Pagliano
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy
| |
Collapse
|
11
|
Yang H, Li P, Zhang A, Wen X, Zhang L, Lu C. Tetratricopeptide repeat protein Pyg7 is essential for photosystem I assembly by interacting with PsaC in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017. [PMID: 28636143 DOI: 10.1111/tpj.13618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although progress has been made in determining the structure and understanding the function of photosystem I (PSI), the PSI assembly process remains poorly understood. PsaC is an essential subunit of PSI and participates in the transfer of electrons to ferredoxin. However, how PsaC is assembled during accumulation of the PSI complex is unknown. In the present study, we showed that Pyg7 localized to the stromal thylakoid and associated with the PSI complex. We also showed that Pyg7 interacted with PsaC. Furthermore, we found that the PSI assembly process was blocked following formation of the PsaAB heterodimer in the pyg7 mutant. In addition, the analyses of PSI stability in Pyg7RNAi plants showed that Pyg7 is involved in maintaining the assembled PSI complex under excess-light conditions. Moreover, we demonstrated that decreased Pyg7 content resulted in decreased efficiency of PSI assembly in Pyg7RNAi plants. These findings suggest that the role of Pyg7 in PSI biogenesis has evolved as an essential assembly factor by interacting with PsaC in Arabidopsis, in addition to being a stability factor for PSI as seen in Synechocystis.
Collapse
Affiliation(s)
- Huixia Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Pin Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aihong Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaogang Wen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Shen J, Williams-Carrier R, Barkan A. PSA3, a Protein on the Stromal Face of the Thylakoid Membrane, Promotes Photosystem I Accumulation in Cooperation with the Assembly Factor PYG7. PLANT PHYSIOLOGY 2017; 174:1850-1862. [PMID: 28522455 PMCID: PMC5490921 DOI: 10.1104/pp.17.00524] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/17/2017] [Indexed: 05/16/2023]
Abstract
PSI is a large protein-pigment complex located in the thylakoid membrane in cyanobacteria, plants, and algae. Although the structure and components of PSI are well characterized, mechanisms that orchestrate its assembly are poorly understood. In this study, we discovered a novel nucleus-encoded protein, Photosystem I Assembly3 (PSA3), that is required for PSI accumulation. PSA3 is conserved among green photosynthetic eukaryotes but is lacking in cyanobacteria. Mutations in the psa3 gene cause the specific loss of PSI in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). Ribosome profiling and pulse-labeling analyses showed that chloroplast- encoded PSI subunits are synthesized at normal rates in psa3 mutants, indicating that PSA3 is involved in the biogenesis of PSI at a posttranslational step. PSA3 resides on the stromal face of the thylakoid membrane, where it is found in a complex that is slightly smaller than PSI. Structural predictions suggest that PSA3 binds a basic peptide in a manner that is sensitive to the oxidation state of Cys pairs flanking the predicted peptide binding groove. PSA3 and the previously described PSI biogenesis factor PYG7 interact in yeast two-hybrid and bimolecular fluorescence complementation assays, and they are found in thylakoid membrane complexes of similar size. These and other results indicate that PSA3 cooperates with PYG7 to promote the stable assembly of PSI, and that the PsaC subunit is likely to be the primary target of their action.
Collapse
Affiliation(s)
- Jie Shen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
13
|
Wittenberg G, Järvi S, Hojka M, Tóth SZ, Meyer EH, Aro EM, Schöttler MA, Bock R. Identification and characterization of a stable intermediate in photosystem I assembly in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:478-490. [PMID: 28161893 DOI: 10.1111/tpj.13505] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/29/2017] [Accepted: 01/31/2017] [Indexed: 05/06/2023]
Abstract
Photosystem I (PSI) is the most efficient bioenergetic nanomachine in nature and one of the largest membrane protein complexes known. It is composed of 18 protein subunits that bind more than 200 co-factors and prosthetic groups. While the structure and function of PSI have been studied in great detail, very little is known about the PSI assembly process. In this work, we have characterized a PSI assembly intermediate in tobacco plants, which we named PSI*. We found PSI* to contain only a specific subset of the core subunits of PSI. PSI* is particularly abundant in young leaves where active thylakoid biogenesis takes place. Moreover, PSI* was found to overaccumulate in PsaF-deficient mutant plants, and we show that re-initiation of PsaF synthesis promotes the maturation of PSI* into PSI. The attachment of antenna proteins to PSI also requires the transition from PSI* to mature PSI. Our data could provide a biochemical entry point into the challenging investigation of PSI biogenesis and allow us to improve the model for the assembly pathway of PSI in thylakoid membranes of vascular plants.
Collapse
Affiliation(s)
- Gal Wittenberg
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Sari Järvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Marta Hojka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Etienne H Meyer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Mark A Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
14
|
Järvi S, Suorsa M, Tadini L, Ivanauskaite A, Rantala S, Allahverdiyeva Y, Leister D, Aro EM. Thylakoid-Bound FtsH Proteins Facilitate Proper Biosynthesis of Photosystem I. PLANT PHYSIOLOGY 2016; 171:1333-43. [PMID: 27208291 PMCID: PMC4902603 DOI: 10.1104/pp.16.00200] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/29/2016] [Indexed: 05/23/2023]
Abstract
Thylakoid membrane-bound FtsH proteases have a well-characterized role in degradation of the photosystem II (PSII) reaction center protein D1 upon repair of photodamaged PSII. Here, we show that the Arabidopsis (Arabidopsis thaliana) var1 and var2 mutants, devoid of the FtsH5 and FtsH2 proteins, respectively, are capable of normal D1 protein turnover under moderate growth light intensity. Instead, they both demonstrate a significant scarcity of PSI complexes. It is further shown that the reduced level of PSI does not result from accelerated photodamage of the PSI centers in var1 or var2 under moderate growth light intensity. On the contrary, radiolabeling experiments revealed impaired synthesis of the PsaA/B reaction center proteins of PSI, which was accompanied by the accumulation of PSI-specific assembly factors. psaA/B transcript accumulation and translation initiation, however, occurred in var1 and var2 mutants as in wild-type Arabidopsis, suggesting problems in later stages of PsaA/B protein expression in the two var mutants. Presumably, the thylakoid membrane-bound FtsH5 and FtsH2 have dual functions in the maintenance of photosynthetic complexes. In addition to their function as a protease in the degradation of the photodamaged D1 protein, they also are required, either directly or indirectly, for early assembly of the PSI complexes.
Collapse
Affiliation(s)
- Sari Järvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Luca Tadini
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Aiste Ivanauskaite
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Sanna Rantala
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Dario Leister
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| |
Collapse
|
15
|
Tetratricopeptide repeat protein protects photosystem I from oxidative disruption during assembly. Proc Natl Acad Sci U S A 2016; 113:2774-9. [PMID: 26903622 DOI: 10.1073/pnas.1524040113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A Chlamydomonas reinhardtii mutant lacking CGL71, a thylakoid membrane protein previously shown to be involved in photosystem I (PSI) accumulation, exhibited photosensitivity and highly reduced abundance of PSI under photoheterotrophic conditions. Remarkably, the PSI content of this mutant declined to nearly undetectable levels under dark, oxic conditions, demonstrating that reduced PSI accumulation in the mutant is not strictly the result of photodamage. Furthermore, PSI returns to nearly wild-type levels when the O2 concentration in the medium is lowered. Overall, our results suggest that the accumulation of PSI in the mutant correlates with the redox state of the stroma rather than photodamage and that CGL71 functions under atmospheric O2 conditions to allow stable assembly of PSI. These findings may reflect the history of the Earth's atmosphere as it transitioned from anoxic to highly oxic (1-2 billion years ago), a change that required organisms to evolve mechanisms to assist in the assembly and stability of proteins or complexes with O2-sensitive cofactors.
Collapse
|
16
|
Virdi KS, Wamboldt Y, Kundariya H, Laurie JD, Keren I, Kumar KRS, Block A, Basset G, Luebker S, Elowsky C, Day PM, Roose JL, Bricker TM, Elthon T, Mackenzie SA. MSH1 Is a Plant Organellar DNA Binding and Thylakoid Protein under Precise Spatial Regulation to Alter Development. MOLECULAR PLANT 2016; 9:245-260. [PMID: 26584715 DOI: 10.1016/j.molp.2015.10.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 05/20/2023]
Abstract
As metabolic centers, plant organelles participate in maintenance, defense, and signaling. MSH1 is a plant-specific protein involved in organellar genome stability in mitochondria and plastids. Plastid depletion of MSH1 causes heritable, non-genetic changes in development and DNA methylation. We investigated the msh1 phenotype using hemi-complementation mutants and transgene-null segregants from RNAi suppression lines to sub-compartmentalize MSH1 effects. We show that MSH1 expression is spatially regulated, specifically localizing to plastids within the epidermis and vascular parenchyma. The protein binds DNA and localizes to plastid and mitochondrial nucleoids, but fractionation and protein-protein interactions data indicate that MSH1 also associates with the thylakoid membrane. Plastid MSH1 depletion results in variegation, abiotic stress tolerance, variable growth rate, and delayed maturity. Depletion from mitochondria results in 7%-10% of plants altered in leaf morphology, heat tolerance, and mitochondrial genome stability. MSH1 does not localize within the nucleus directly, but plastid depletion produces non-genetic changes in flowering time, maturation, and growth rate that are heritable independent of MSH1. MSH1 depletion alters non-photoactive redox behavior in plastids and a sub-set of mitochondrially altered lines. Ectopic expression produces deleterious effects, underlining its strict expression control. Unraveling the complexity of the MSH1 effect offers insight into triggers of plant-specific, transgenerational adaptation behaviors.
Collapse
Affiliation(s)
- Kamaldeep S Virdi
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Yashitola Wamboldt
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Hardik Kundariya
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - John D Laurie
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Ido Keren
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - K R Sunil Kumar
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Anna Block
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Gilles Basset
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Steve Luebker
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Christian Elowsky
- Center for Biotechnology, University of Nebraska, Lincoln, NE 68588, USA
| | - Philip M Day
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Johnna L Roose
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Terry M Bricker
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Thomas Elthon
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Sally A Mackenzie
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
17
|
Ifuku K. Localization and functional characterization of the extrinsic subunits of photosystem II: an update. Biosci Biotechnol Biochem 2015; 79:1223-31. [DOI: 10.1080/09168451.2015.1031078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Photosystem II (PSII), which catalyzes photosynthetic water oxidation, is composed of more than 20 subunits, including membrane-intrinsic and -extrinsic proteins. The extrinsic proteins of PSII shield the catalytic Mn4CaO5 cluster from exogenous reductants and serve to optimize oxygen evolution at physiological ionic conditions. These proteins include PsbO, found in all oxygenic organisms, PsbP and PsbQ, specific to higher plants and green algae, and PsbU, PsbV, CyanoQ, and CyanoP in cyanobacteria. Furthermore, red algal PSII has PsbQ′ in addition to PsbO, PsbV, and PsbU, and diatoms have Psb31 in supplement to red algal-type extrinsic proteins, exemplifying the functional divergence of these proteins during evolution. This review provides an updated summary of recent findings on PSII extrinsic proteins and discusses their binding, function, and evolution within various photosynthetic organisms.
Collapse
Affiliation(s)
- Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
18
|
Yang H, Liu J, Wen X, Lu C. Molecular mechanism of photosystem I assembly in oxygenic organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:838-48. [PMID: 25582571 DOI: 10.1016/j.bbabio.2014.12.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/27/2014] [Accepted: 12/30/2014] [Indexed: 11/26/2022]
Abstract
Photosystem I, an integral membrane and multi-subunit complex, catalyzes the oxidation of plastocyanin and the reduction of ferredoxin by absorbed light energy. Photosystem I participates in photosynthetic acclimation processes by being involved in cyclic electron transfer and state transitions for sustaining efficient photosynthesis. The photosystem I complex is highly conserved from cyanobacteria to higher plants and contains the light-harvesting complex and the reaction center complex. The assembly of the photosystem I complex is highly complicated and involves the concerted assembly of multiple subunits and hundreds of cofactors. A suite of regulatory factors for the assembly of photosystem I subunits and cofactors have been identified that constitute an integrative network regulating PSI accumulation. This review aims to discuss recent findings in the field relating to how the photosystem I complex is assembled in oxygenic organisms. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Huixia Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jun Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaogang Wen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
19
|
Fristedt R, Williams-Carrier R, Merchant SS, Barkan A. A thylakoid membrane protein harboring a DnaJ-type zinc finger domain is required for photosystem I accumulation in plants. J Biol Chem 2014; 289:30657-30667. [PMID: 25228689 DOI: 10.1074/jbc.m114.587758] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Photosystem I (PSI) is a large pigment-protein complex and one of the two photosystems that drive electron transfer in oxygenic photosynthesis. We identified a nuclear gene required specifically for the accumulation of PSI in a forward genetic analysis of chloroplast biogenesis in maize. This gene, designated psa2, belongs to the "GreenCut" gene set, a group of genes found in green algae and plants but not in non-photosynthetic organisms. Disruption of the psa2 ortholog in Arabidopsis likewise resulted in the specific loss of PSI proteins. PSA2 harbors a conserved domain found in DnaJ chaperones where it has been shown to form a zinc finger and to have protein-disulfide isomerase activity. Accordingly, PSA2 exhibited protein-disulfide reductase activity in vitro. PSA2 localized to the thylakoid lumen and was found in a ∼250-kDa complex harboring the peripheral PSI protein PsaG but lacking several core PSI subunits. PSA2 mRNA is coexpressed with mRNAs encoding various proteins involved in the biogenesis of the photosynthetic apparatus with peak expression preceding that of genes encoding structural components. PSA2 protein abundance was not decreased in the absence of PSI but was reduced in the absence of the PSI assembly factor Ycf3. These findings suggest that a complex harboring PSA2 and PsaG mediates thiol transactions in the thylakoid lumen that are important for the assembly of PSI.
Collapse
Affiliation(s)
- Rikard Fristedt
- Department of Chemistry and Biochemistry and UCLA, Los Angeles, California 90095; Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095 and
| | | | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry and UCLA, Los Angeles, California 90095; Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095 and
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403.
| |
Collapse
|