1
|
Parashar A, Jha D, Mehta V, Chauhan B, Ghosh P, Deb PK, Jaiswal M, Prajapati SK. Sonic hedgehog signalling pathway contributes in age-related disorders and Alzheimer's disease. Ageing Res Rev 2024; 96:102271. [PMID: 38492808 DOI: 10.1016/j.arr.2024.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD) is caused by the aging process and manifested by cognitive deficits and progressive memory loss. During aging, several conditions, including hypertension, diabetes, and cholesterol, have been identified as potential causes of AD by affecting Sonic hedgehog (Shh) signalling. In addition to being essential for cell differentiation and proliferation, Shh signalling is involved in tissue repair and the prevention of neurodegeneration. Neurogenesis is dependent on Shh signalling; inhibition of this pathway results in neurodegeneration. Several protein-protein interactions that are involved in Shh signalling are implicated in the pathophysiology of AD like overexpression of the protein nexin-1 inhibits the Shh pathway in AD. A protein called Growth Arrest Specific-1 works with another protein called cysteine dioxygenase (CDO) to boost Shh signalling. CDO is involved in the development of the central nervous system (CNS). Shh signalling strengthened the blood brain barrier and therefore prevent the entry of amyloid beta and other toxins to the brain from periphery. Further, several traditional remedies used for AD and dementia, including Epigallocatechin gallate, yokukansan, Lycium barbarum polysaccharides, salvianolic acid, and baicalin, are known to stimulate the Shh pathway. In this review, we elaborated that the Shh signalling exerts a substantial influence on the pathogenesis of AD. In this article, we have tried to explore the various possible connections between the Shh signalling and various known pathologies of AD.
Collapse
Affiliation(s)
- Arun Parashar
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173 212, India.
| | - Dhruv Jha
- Birla Institute of Technology, India
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Rohru, District Shimla, Himachal Pradesh 171207, India
| | - Bonney Chauhan
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173 212, India
| | - Pappu Ghosh
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173 212, India
| | - Prashanta Kumar Deb
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173 212, India
| | | | | |
Collapse
|
2
|
Miller SJ, Darji RY, Walaieh S, Lewis JA, Logan R. Senolytic and senomorphic secondary metabolites as therapeutic agents in Drosophila melanogaster models of Parkinson's disease. Front Neurol 2023; 14:1271941. [PMID: 37840914 PMCID: PMC10568035 DOI: 10.3389/fneur.2023.1271941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Drosophila melanogaster is a valuable model organism for a wide range of biological exploration. The well-known advantages of D. melanogaster include its relatively simple biology, the ease with which it is genetically modified, the relatively low financial and time costs associated with their short gestation and life cycles, and the large number of offspring they produce per generation. D. melanogaster has facilitated the discovery of many significant insights into the pathology of Parkinson's disease (PD) and has served as an excellent preclinical model of PD-related therapeutic discovery. In this review, we provide an overview of the major D. melanogaster models of PD, each of which provide unique insights into PD-relevant pathology and therapeutic targets. These models are discussed in the context of their past, current, and future potential use for studying the utility of secondary metabolites as therapeutic agents in PD. Over the last decade, senolytics have garnered an exponential interest in their ability to mitigate a broad spectrum of diseases, including PD. Therefore, an emphasis is placed on the senolytic and senomorphic properties of secondary metabolites. It is expected that D. melanogaster will continue to be critical in the effort to understand and improve treatment of PD, including their involvement in translational studies focused on secondary metabolites.
Collapse
Affiliation(s)
- Sean J. Miller
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, United States
| | - Rayyan Y. Darji
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, United States
| | - Sami Walaieh
- Department of Biology, Eastern Nazarene College, Quincy, MA, United States
| | - Jhemerial A. Lewis
- Department of Biology, Eastern Nazarene College, Quincy, MA, United States
| | - Robert Logan
- Department of Biology, Eastern Nazarene College, Quincy, MA, United States
| |
Collapse
|
3
|
Sun Y, Islam S, Gao Y, Nakamura T, Zou K, Michikawa M. Apolipoprotein E4 inhibits γ-secretase activity via binding to the γ-secretase complex. J Neurochem 2022; 164:858-874. [PMID: 36582176 DOI: 10.1111/jnc.15750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/07/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
The mechanisms of amyloid accumulation in familial Alzheimer's disease (FAD) and sporadic AD (SAD) are controversial. In FAD, mutations in presenilin (PSEN) impair γ-secretase activity and lead to abnormal amyloid β-protein (Aβ) production, thereby increasing the Aβ42/40 ratio. SAD is postulated to be caused by decreased Aβ clearance of apolipoprotein E4 (APOE4), the strongest risk factor for SAD. However, whether intracellular APOE4 affects Aβ production is unclear. Using APOE3 and APOE4 knock-in (KI) mouse brain and primary cultured fibroblasts from these mice, in this study, we demonstrated that APOE3 and APOE4 bind to the γ-secretase complex and isoform-dependently regulate its activity and Aβ production. We found that Aβ40 levels and γ-secretase activity were higher in APOE knockout mouse brain than in wild-type mouse brain. APOE4-KI fibroblasts had significant lower Aβ levels and γ-secretase activity but higher Aβ42/40 ratio compared with APOE3-KI cells, indicating that APOE4-KI reduces Aβ production by inhibiting γ-secretase activity. Interestingly, the levels of γ-secretase complex bound to APOE4 are higher than those bound to APOE3, and the levels of γ-secretase complex in the brain and fibroblasts of APOE4-KI mice were higher than those of APOE3-KI mice. Taken together, our findings demonstrate that intracellular APOE4 inhibits Aβ production, more preferentially inhibits Aβ40 production, and thereby induces an increase in the Aβ42/40 ratio via binding to the γ-secretase complex. These results suggest a novel mechanism in which intracellular APOE4 contributes to the pathogenesis of SAD by inhibiting γ-secretase activity.
Collapse
Affiliation(s)
- Yang Sun
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Sadequl Islam
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuan Gao
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Tomohisa Nakamura
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kun Zou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
4
|
Pterostilbene Promotes Mean Lifespan in Both Male and Female Drosophila Melanogaster Modulating Different Proteins in the Two Sexes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1744408. [PMID: 35222791 PMCID: PMC8865974 DOI: 10.1155/2022/1744408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Aging is a multifactorial phenomenon characterized by degenerative processes closely connected to oxidative damage and chronic inflammation. Recently, many studies have shown that natural bioactive compounds are useful in delaying the aging process. In this work, we studied the effects of an in vivo supplementation of the stilbenoid pterostilbene on lifespan extension in Drosophila melanogaster. We found that the average lifespan of flies of both sexes was increased by pterostilbene supplementation with a higher effect in females. The expression of longevity related genes (Sir2, Foxo, and Notch) was increased in both sexes but with different patterns. Pterostilbene counteracted oxidative stress induced by ethanol and paraquat and up-regulated the antioxidant enzymes Ho e Trxr-1 in male but not in female flies. On the other hand, pterostilbene decreased the inflammatory mediators dome and egr only in female flies. Proteomic analysis revealed that pterostilbene modulates 113 proteins in male flies and only 9 in females. Only one of these proteins was modulated by pterostilbene in both sexes: vacuolar H[+] ATPase 68 kDa subunit 2 (Vha68-2) that was strongly down-regulated. These findings suggest a potential role of pterostilbene in increasing lifespan both in male and female flies by mechanisms that seem to be different in the two sexes, highlighting the need to conduct nutraceutical supplementation studies on males and females separately in order to give more reliable results.
Collapse
|
5
|
Noorani AA, Yamashita H, Gao Y, Islam S, Sun Y, Nakamura T, Enomoto H, Zou K, Michikawa M. High temperature promotes amyloid β-protein production and γ-secretase complex formation via Hsp90. J Biol Chem 2020; 295:18010-18022. [PMID: 33067321 PMCID: PMC7939388 DOI: 10.1074/jbc.ra120.013845] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by neuronal loss and accumulation of β-amyloid-protein (Aβ) in the brain parenchyma. Sleep impairment is associated with AD and affects about 25-40% of patients in the mild-to-moderate stages of the disease. Sleep deprivation leads to increased Aβ production; however, its mechanism remains largely unknown. We hypothesized that the increase in core body temperature induced by sleep deprivation may promote Aβ production. Here, we report temperature-dependent regulation of Aβ production. We found that an increase in temperature, from 37 °C to 39 °C, significantly increased Aβ production in amyloid precursor protein-overexpressing cells. We also found that high temperature (39 °C) significantly increased the expression levels of heat shock protein 90 (Hsp90) and the C-terminal fragment of presenilin 1 (PS1-CTF) and promoted γ-secretase complex formation. Interestingly, Hsp90 was associated with the components of the premature γ-secretase complex, anterior pharynx-defective-1 (APH-1), and nicastrin (NCT) but was not associated with PS1-CTF or presenilin enhancer-2. Hsp90 knockdown abolished the increased level of Aβ production and the increased formation of the γ-secretase complex at high temperature in culture. Furthermore, with in vivo experiments, we observed increases in the levels of Hsp90, PS1-CTF, NCT, and the γ-secretase complex in the cortex of mice housed at higher room temperature (30 °C) compared with those housed at standard room temperature (23 °C). Our results suggest that high temperature regulates Aβ production by modulating γ-secretase complex formation through the binding of Hsp90 to NCT/APH-1.
Collapse
Affiliation(s)
- Arshad Ali Noorani
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hitoshi Yamashita
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Yuan Gao
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Sadequl Islam
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yang Sun
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Tomohisa Nakamura
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroyuki Enomoto
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kun Zou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
6
|
Sergeant N, Vingtdeux V, Eddarkaoui S, Gay M, Evrard C, Le Fur N, Laurent C, Caillierez R, Obriot H, Larchanché PE, Farce A, Coevoet M, Carato P, Kouach M, Descat A, Dallemagne P, Buée-Scherrer V, Blum D, Hamdane M, Buée L, Melnyk P. New piperazine multi-effect drugs prevent neurofibrillary degeneration and amyloid deposition, and preserve memory in animal models of Alzheimer's disease. Neurobiol Dis 2019; 129:217-233. [PMID: 30928644 DOI: 10.1016/j.nbd.2019.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 03/01/2019] [Accepted: 03/26/2019] [Indexed: 12/01/2022] Open
Abstract
Alzheimer's Disease is a devastating dementing disease involving amyloid deposits, neurofibrillary tangles, progressive and irreversible cognitive impairment. Today, only symptomatic drugs are available and therapeutic treatments, possibly acting at a multiscale level, are thus urgently needed. To that purpose, we designed multi-effects compounds by synthesizing drug candidates derived by substituting a novel N,N'-disubstituted piperazine anti-amyloid scaffold and adding acetylcholinesterase inhibition property. Two compounds were synthesized and evaluated. The most promising hybrid molecule reduces both the amyloid pathology and the Tau pathology as well as the memory impairments in a preclinical model of Alzheimer's disease. In vitro also, the compound reduces the phosphorylation of Tau and inhibits the release of Aβ peptides while preserving the processing of other metabolites of the amyloid precursor protein. We synthetized and tested the first drug capable of ameliorating both the amyloid and Tau pathology in animal models of AD as well as preventing the major brain lesions and associated memory impairments. This work paves the way for future compound medicines against both Alzheimer's-related brain lesions development and the associated cognitive impairments.
Collapse
Affiliation(s)
- Nicolas Sergeant
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France.
| | - Valérie Vingtdeux
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Marion Gay
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Caroline Evrard
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Nicolas Le Fur
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Cyril Laurent
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Raphaelle Caillierez
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Hélène Obriot
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Paul-Emmanuel Larchanché
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Amaury Farce
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Mathilde Coevoet
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Pascal Carato
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Mostafa Kouach
- Univ. Lille, CUMA - Centre Universitaire de Mesures et d'Analyses, F-59000 Lille, France
| | - Amandine Descat
- Univ. Lille, CUMA - Centre Universitaire de Mesures et d'Analyses, F-59000 Lille, France
| | - Patrick Dallemagne
- UNICAEN, UFR des Sciences Pharmaceutiques, EA 4258 CERMN, F-14032 Caen, France
| | - Valérie Buée-Scherrer
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Malika Hamdane
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Patricia Melnyk
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France.
| |
Collapse
|
7
|
Vorobyeva AG, Saunders AJ. Amyloid-β interrupts canonical Sonic hedgehog signaling by distorting primary cilia structure. Cilia 2018; 7:5. [PMID: 30140428 PMCID: PMC6098584 DOI: 10.1186/s13630-018-0059-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Background Primary cilia are small non-motile microtubule and cell membrane protrusions expressed on most vertebrate cells, including cortical and hippocampal neurons. These small organelles serve as sensory structures sampling the extracellular environment and reprogramming the transcriptional machinery in response to environmental change. Primary cilia are decorated with a variety of receptor proteins and are necessary for specific signaling cascades such as the Sonic hedgehog (Shh) pathway. Disrupting cilia structure or function results in a spectrum of diseases collectively referred to as ciliopathies. Common to human ciliopathies is cognitive impairment, a symptom also observed in Alzheimer's disease (AD). One hallmark of AD is accumulation of senile plaques composed of neurotoxic Amyloid-β (Aβ) peptide. The Aβ peptide is generated by the proteolytic cleavage of the amyloid precursor protein (APP). We set out to determine if Aβ affects primary cilia structure and the Shh signaling cascade. Methods We utilized in vitro cell-based assays in combination with fluorescent confocal microscopy to address our study goals. Shh signaling and cilia structure was studied using two different cell lines, mouse NIH3T3 and human HeLa cells. To investigate how Aβ levels affect Shh signaling and cilia structure in these cells, we utilized naturally secreted Aβ as well as synthetic Aβ. Effects on Shh signaling were assessed by luciferase activity while cilia structure was analyzed by fluorescent microscopy. Results Here, we report that APP localizes to primary cilia and Aβ treatment results in distorted primary cilia structure. In addition, we demonstrate that Aβ treatment interrupts canonical Shh signal transduction. Conclusions Overall, our study illustrates that Aβ can alter primary cilia structure suggesting that elevated Aβ levels, like those observed in AD patients, could have similar effects on neuronal primary cilia in the brain. Additionally, our study suggests that Aβ impairs the Shh signaling pathway. Together our findings shed light on two novel targets for future AD therapeutics.
Collapse
|
8
|
Shi ZM, Han YW, Han XH, Zhang K, Chang YN, Hu ZM, Qi HX, Ting C, Zhen Z, Hong W. Upstream regulators and downstream effectors of NF-κB in Alzheimer's disease. J Neurol Sci 2016; 366:127-134. [DOI: 10.1016/j.jns.2016.05.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 12/09/2022]
|
9
|
Wang H, Sang N, Zhang C, Raghupathi R, Tanzi RE, Saunders A. Cathepsin L Mediates the Degradation of Novel APP C-Terminal Fragments. Biochemistry 2015; 54:2806-16. [PMID: 25910068 PMCID: PMC4521409 DOI: 10.1021/acs.biochem.5b00329] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is characterized by the deposition of amyloid β (Aβ), a peptide generated from proteolytic processing of its precursor, amyloid precursor protein (APP). Canonical APP proteolysis occurs via α-, β-, and γ-secretases. APP is also actively degraded by protein degradation systems. By pharmacologically inhibiting protein degradation with ALLN, we observed an accumulation of several novel APP C-terminal fragments (CTFs). The two major novel CTFs migrated around 15 and 25 kDa and can be observed across multiple cell types. The process was independent of cytotoxicity or protein synthesis. We further determine that the accumulation of the novel CTFs is not mediated by proteasome or calpain inhibition, but by cathepsin L inhibition. Moreover, these novel CTFs are not generated by an increased amount of BACE. Here, we name the CTF of 25 kDa as η-CTF (eta-CTF). Our data suggest that under physiological conditions, a subset of APP undergoes alternative processing and the intermediate products, the 15 kDa CTFs, and the η-CTFs aret rapidly degraded and/or processed via the protein degradation machinery, specifically, cathepsin L.
Collapse
Affiliation(s)
- Haizhi Wang
- Department of Biology, College of Art and Sciences, Drexel University, Philadelphia, Pennsylvania 19104, United States
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Nianli Sang
- Department of Biology, College of Art and Sciences, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Can Zhang
- Harvard University and Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Ramesh Raghupathi
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Rudolph E. Tanzi
- Harvard University and Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Aleister Saunders
- Department of Biology, College of Art and Sciences, Drexel University, Philadelphia, Pennsylvania 19104, United States
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19104, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Melnyk P, Vingtdeux V, Burlet S, Eddarkaoui S, Grosjean ME, Larchanché PE, Hochart G, Sergheraert C, Estrella C, Barrier M, Poix V, Plancq P, Lannoo C, Hamdane M, Delacourte A, Verwaerde P, Buée L, Sergeant N. Chloroquine and chloroquinoline derivatives as models for the design of modulators of amyloid Peptide precursor metabolism. ACS Chem Neurosci 2015; 6:559-69. [PMID: 25611616 DOI: 10.1021/cn5003013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The amyloid precursor protein (APP) plays a central role in Alzheimer's disease (AD). Preventing deregulated APP processing by inhibiting amyloidogenic processing of carboxy-terminal fragments (APP-CTFs), and reducing the toxic effect of amyloid beta (Aβ) peptides remain an effective therapeutic strategy. We report the design of piperazine-containing compounds derived from chloroquine structure and evaluation of their effects on APP metabolism and ability to modulate the processing of APP-CTF and the production of Aβ peptide. Compounds which retained alkaline properties and high affinity for acidic cell compartments were the most effective. The present study demonstrates that (1) the amino side chain of chloroquine can be efficiently substituted by a bis(alkylamino)piperazine chain, (2) the quinoline nucleus can be replaced by a benzyl or a benzimidazole moiety, and (3) pharmacomodulation of the chemical structure allows the redirection of APP metabolism toward a decrease of Aβ peptide release, and increased stability of APP-CTFs and amyloid intracellular fragment. Moreover, the benzimidazole compound 29 increases APP-CTFs in vivo and shows promising activity by the oral route. Together, this family of compounds retains a lysosomotropic activity which inhibits lysosome-related Aβ production, and is likely to be beneficial for therapeutic applications in AD.
Collapse
Affiliation(s)
- Patricia Melnyk
- Université de Lille, F-59000 Lille, France
- UDSL, EA 4481,
UFR Pharmacie, F-59000 Lille, France
- CNRS UMR8161, F-59000 Lille, France
| | - Valérie Vingtdeux
- Université de Lille, F-59000 Lille, France
- Inserm UMR-S1172, Alzheimer & Tauopathies, Jean-Pierre Aubert Research Center, F-59000 Lille, France
| | | | - Sabiha Eddarkaoui
- Université de Lille, F-59000 Lille, France
- Inserm UMR-S1172, Alzheimer & Tauopathies, Jean-Pierre Aubert Research Center, F-59000 Lille, France
| | - Marie-Eve Grosjean
- Université de Lille, F-59000 Lille, France
- Inserm UMR-S1172, Alzheimer & Tauopathies, Jean-Pierre Aubert Research Center, F-59000 Lille, France
| | | | - Guillaume Hochart
- Université de Lille, F-59000 Lille, France
- UDSL, EA 4481,
UFR Pharmacie, F-59000 Lille, France
- CNRS UMR8161, F-59000 Lille, France
| | | | | | | | | | | | | | - Malika Hamdane
- Université de Lille, F-59000 Lille, France
- Inserm UMR-S1172, Alzheimer & Tauopathies, Jean-Pierre Aubert Research Center, F-59000 Lille, France
| | - André Delacourte
- Université de Lille, F-59000 Lille, France
- Inserm UMR-S1172, Alzheimer & Tauopathies, Jean-Pierre Aubert Research Center, F-59000 Lille, France
| | | | - Luc Buée
- Université de Lille, F-59000 Lille, France
- Inserm UMR-S1172, Alzheimer & Tauopathies, Jean-Pierre Aubert Research Center, F-59000 Lille, France
| | - Nicolas Sergeant
- Université de Lille, F-59000 Lille, France
- Inserm UMR-S1172, Alzheimer & Tauopathies, Jean-Pierre Aubert Research Center, F-59000 Lille, France
| |
Collapse
|