1
|
Hanisch FG. Site-Specific O-glycosylation of SARS-CoV-2 Spike Protein and Its Impact on Immune and Autoimmune Responses. Cells 2024; 13:107. [PMID: 38247799 PMCID: PMC10814047 DOI: 10.3390/cells13020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
The world-wide COVID-19 pandemic has promoted a series of alternative vaccination strategies aiming to elicit neutralizing adaptive immunity in the human host. However, restricted efficacies of these vaccines targeting epitopes on the spike (S) protein that is involved in primary viral entry were observed and putatively assigned to viral glycosylation as an effective escape mechanism. Besides the well-recognized N-glycan shield covering SARS-CoV-2 spike (S) proteins, immunization strategies may be hampered by heavy O-glycosylation and variable O-glycosites fluctuating depending on the organ sites of primary infection and those involved in immunization. A further complication associated with viral glycosylation arises from the development of autoimmune antibodies to self-carbohydrates, including O-linked blood group antigens, as structural parts of viral proteins. This outline already emphasizes the importance of viral glycosylation in general and, in particular, highlights the impact of the site-specific O-glycosylation of virions, since this modification is independent of sequons and varies strongly in dependence on cell-specific repertoires of peptidyl-N-acetylgalactosaminyltransferases with their varying site preferences and of glycan core-specific glycosyltransferases. This review summarizes the current knowledge on the viral O-glycosylation of the SARS-CoV-2 spike protein and its impact on virulence and immune modulation in the host.
Collapse
Affiliation(s)
- Franz-Georg Hanisch
- Center of Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| |
Collapse
|
2
|
Jin C, Lundstrøm J, Korhonen E, Luis AS, Bojar D. Breast Milk Oligosaccharides Contain Immunomodulatory Glucuronic Acid and LacdiNAc. Mol Cell Proteomics 2023; 22:100635. [PMID: 37597722 PMCID: PMC10509713 DOI: 10.1016/j.mcpro.2023.100635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
Breast milk is abundant with functionalized milk oligosaccharides (MOs) to nourish and protect the neonate. Yet we lack a comprehensive understanding of the repertoire and evolution of MOs across Mammalia. We report ∼400 MO-species associations (>100 novel structures) from milk glycomics of nine mostly understudied species: alpaca, beluga whale, black rhinoceros, bottlenose dolphin, impala, L'Hoest's monkey, pygmy hippopotamus, domestic sheep, and striped dolphin. This revealed the hitherto unknown existence of the LacdiNAc motif (GalNAcβ1-4GlcNAc) in MOs of all species except alpaca, sheep, and striped dolphin, indicating the widespread occurrence of this potentially antimicrobial motif in MOs. We also characterize glucuronic acid-containing MOs in the milk of impala, dolphins, sheep, and rhinoceros, previously only reported in cows. We demonstrate that these GlcA-MOs exhibit potent immunomodulatory effects. Our study extends the number of known MOs by >15%. Combined with >1900 curated MO-species associations, we characterize MO motif distributions, presenting an exhaustive overview of MO biodiversity.
Collapse
Affiliation(s)
- Chunsheng Jin
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jon Lundstrøm
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Emma Korhonen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ana S Luis
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Zhong X, D’Antona AM, Scarcelli JJ, Rouse JC. New Opportunities in Glycan Engineering for Therapeutic Proteins. Antibodies (Basel) 2022; 11:5. [PMID: 35076453 PMCID: PMC8788452 DOI: 10.3390/antib11010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
Glycans as sugar polymers are important metabolic, structural, and physiological regulators for cellular and biological functions. They are often classified as critical quality attributes to antibodies and recombinant fusion proteins, given their impacts on the efficacy and safety of biologics drugs. Recent reports on the conjugates of N-acetyl-galactosamine and mannose-6-phosphate for lysosomal degradation, Fab glycans for antibody diversification, as well as sialylation therapeutic modulations and O-linked applications, have been fueling the continued interest in glycoengineering. The current advancements of the human glycome and the development of a comprehensive network in glycosylation pathways have presented new opportunities in designing next-generation therapeutic proteins.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA;
| | - Aaron M. D’Antona
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA;
| | - John J. Scarcelli
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA;
| | - Jason C. Rouse
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA;
| |
Collapse
|
4
|
Lenza MP, Oyenarte I, Diercks T, Quintana JI, Gimeno A, Coelho H, Diniz A, Peccati F, Delgado S, Bosch A, Valle M, Millet O, Abrescia NGA, Palazón A, Marcelo F, Jiménez‐Osés G, Jiménez‐Barbero J, Ardá A, Ereño‐Orbea J. Structural Characterization of N-Linked Glycans in the Receptor Binding Domain of the SARS-CoV-2 Spike Protein and their Interactions with Human Lectins. Angew Chem Int Ed Engl 2020; 59:23763-23771. [PMID: 32915505 PMCID: PMC7894318 DOI: 10.1002/anie.202011015] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/08/2020] [Indexed: 01/17/2023]
Abstract
The glycan structures of the receptor binding domain of the SARS-CoV2 spike glycoprotein expressed in human HEK293F cells have been studied by using NMR. The different possible interacting epitopes have been deeply analysed and characterized, providing evidence of the presence of glycan structures not found in previous MS-based analyses. The interaction of the RBD 13 C-labelled glycans with different human lectins, which are expressed in different organs and tissues that may be affected during the infection process, has also been evaluated by NMR. In particular, 15 N-labelled galectins (galectins-3, -7 and -8 N-terminal), Siglecs (Siglec-8, Siglec-10), and C-type lectins (DC-SIGN, MGL) have been employed. Complementary experiments from the glycoprotein perspective or from the lectin's point of view have permitted to disentangle the specific interacting epitopes in each case. Based on these findings, 3D models of the interacting complexes have been proposed.
Collapse
Affiliation(s)
- Maria Pia Lenza
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Iker Oyenarte
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Tammo Diercks
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Jon Imanol Quintana
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Ana Gimeno
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Helena Coelho
- UCIBIOREQUIMTEDepartamento de QuímicaFaculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516CaparicaPortugal
| | - Ana Diniz
- UCIBIOREQUIMTEDepartamento de QuímicaFaculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516CaparicaPortugal
| | - Francesca Peccati
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Sandra Delgado
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Alexandre Bosch
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Mikel Valle
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Oscar Millet
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Nicola G. A. Abrescia
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
- Ikerbasque, Basque Foundation for Science48013BilbaoSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
| | - Asís Palazón
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
- Ikerbasque, Basque Foundation for Science48013BilbaoSpain
| | - Filipa Marcelo
- UCIBIOREQUIMTEDepartamento de QuímicaFaculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516CaparicaPortugal
| | - Gonzalo Jiménez‐Osés
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Jesús Jiménez‐Barbero
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
- Ikerbasque, Basque Foundation for Science48013BilbaoSpain
- Department of Organic Chemistry IIUniversity of the Basque CountryUPV/EHU48940LeioaSpain
| | - Ana Ardá
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - June Ereño‐Orbea
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
- Ikerbasque, Basque Foundation for Science48013BilbaoSpain
| |
Collapse
|
5
|
Lenza MP, Oyenarte I, Diercks T, Quintana JI, Gimeno A, Coelho H, Diniz A, Peccati F, Delgado S, Bosch A, Valle M, Millet O, Abrescia NGA, Palazón A, Marcelo F, Jiménez‐Osés G, Jiménez‐Barbero J, Ardá A, Ereño‐Orbea J. Structural Characterization of N‐Linked Glycans in the Receptor Binding Domain of the SARS‐CoV‐2 Spike Protein and their Interactions with Human Lectins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maria Pia Lenza
- CIC bioGUNE Basque Research and Technology Alliance BRTA Bizkaia Technology Park 48162 Derio Spain
| | - Iker Oyenarte
- CIC bioGUNE Basque Research and Technology Alliance BRTA Bizkaia Technology Park 48162 Derio Spain
| | - Tammo Diercks
- CIC bioGUNE Basque Research and Technology Alliance BRTA Bizkaia Technology Park 48162 Derio Spain
| | - Jon Imanol Quintana
- CIC bioGUNE Basque Research and Technology Alliance BRTA Bizkaia Technology Park 48162 Derio Spain
| | - Ana Gimeno
- CIC bioGUNE Basque Research and Technology Alliance BRTA Bizkaia Technology Park 48162 Derio Spain
| | - Helena Coelho
- UCIBIO REQUIMTE Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Ana Diniz
- UCIBIO REQUIMTE Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Francesca Peccati
- CIC bioGUNE Basque Research and Technology Alliance BRTA Bizkaia Technology Park 48162 Derio Spain
| | - Sandra Delgado
- CIC bioGUNE Basque Research and Technology Alliance BRTA Bizkaia Technology Park 48162 Derio Spain
| | - Alexandre Bosch
- CIC bioGUNE Basque Research and Technology Alliance BRTA Bizkaia Technology Park 48162 Derio Spain
| | - Mikel Valle
- CIC bioGUNE Basque Research and Technology Alliance BRTA Bizkaia Technology Park 48162 Derio Spain
| | - Oscar Millet
- CIC bioGUNE Basque Research and Technology Alliance BRTA Bizkaia Technology Park 48162 Derio Spain
| | - Nicola G. A. Abrescia
- CIC bioGUNE Basque Research and Technology Alliance BRTA Bizkaia Technology Park 48162 Derio Spain
- Ikerbasque, Basque Foundation for Science 48013 Bilbao Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Instituto de Salud Carlos III Madrid Spain
| | - Asís Palazón
- CIC bioGUNE Basque Research and Technology Alliance BRTA Bizkaia Technology Park 48162 Derio Spain
- Ikerbasque, Basque Foundation for Science 48013 Bilbao Spain
| | - Filipa Marcelo
- UCIBIO REQUIMTE Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Gonzalo Jiménez‐Osés
- CIC bioGUNE Basque Research and Technology Alliance BRTA Bizkaia Technology Park 48162 Derio Spain
| | - Jesús Jiménez‐Barbero
- CIC bioGUNE Basque Research and Technology Alliance BRTA Bizkaia Technology Park 48162 Derio Spain
- Ikerbasque, Basque Foundation for Science 48013 Bilbao Spain
- Department of Organic Chemistry II University of the Basque Country UPV/EHU 48940 Leioa Spain
| | - Ana Ardá
- CIC bioGUNE Basque Research and Technology Alliance BRTA Bizkaia Technology Park 48162 Derio Spain
| | - June Ereño‐Orbea
- CIC bioGUNE Basque Research and Technology Alliance BRTA Bizkaia Technology Park 48162 Derio Spain
- Ikerbasque, Basque Foundation for Science 48013 Bilbao Spain
| |
Collapse
|
6
|
Trefoil factors share a lectin activity that defines their role in mucus. Nat Commun 2020; 11:2265. [PMID: 32404934 PMCID: PMC7221086 DOI: 10.1038/s41467-020-16223-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
The mucosal epithelium secretes a host of protective disulfide-rich peptides, including the trefoil factors (TFFs). The TFFs increase the viscoelasticity of the mucosa and promote cell migration, though the molecular mechanisms underlying these functions have remained poorly defined. Here, we demonstrate that all TFFs are divalent lectins that recognise the GlcNAc-α-1,4-Gal disaccharide, which terminates some mucin-like O-glycans. Degradation of this disaccharide by a glycoside hydrolase abrogates TFF binding to mucins. Structural, mutagenic and biophysical data provide insights into how the TFFs recognise this disaccharide and rationalise their ability to modulate the physical properties of mucus across different pH ranges. These data reveal that TFF activity is dependent on the glycosylation state of mucosal glycoproteins and alludes to a lectin function for trefoil domains in other human proteins. Trefoil factors (TFFs) protect the mucosa and have various reported binding activities, but whether they share a common interaction mechanism has remained unclear. Here, the authors provide structural and biochemical evidence that all three human TFFs are divalent lectins that recognise the same disaccharide.
Collapse
|
7
|
Zhong X, Jagarlapudi S, Weng Y, Ly M, Rouse JC, McClure K, Ishino T, Zhang Y, Sousa E, Cohen J, Tzvetkova B, Cote K, Scarcelli JJ, Johnson K, Palandra J, Apgar JR, Yaddanapudi S, Gonzalez-Villalobos RA, Opsahl AC, Lam K, Yao Q, Duan W, Sievers A, Zhou J, Ferguson D, D'Antona A, Zollner R, Zhu HL, Kriz R, Lin L, Clerin V. Structure-function relationships of the soluble form of the antiaging protein Klotho have therapeutic implications for managing kidney disease. J Biol Chem 2020; 295:3115-3133. [PMID: 32005658 PMCID: PMC7062171 DOI: 10.1074/jbc.ra119.012144] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/20/2020] [Indexed: 01/28/2023] Open
Abstract
The fortuitously discovered antiaging membrane protein αKlotho (Klotho) is highly expressed in the kidney, and deletion of the Klotho gene in mice causes a phenotype strikingly similar to that of chronic kidney disease (CKD). Klotho functions as a co-receptor for fibroblast growth factor 23 (FGF23) signaling, whereas its shed extracellular domain, soluble Klotho (sKlotho), carrying glycosidase activity, is a humoral factor that regulates renal health. Low sKlotho in CKD is associated with disease progression, and sKlotho supplementation has emerged as a potential therapeutic strategy for managing CKD. Here, we explored the structure-function relationship and post-translational modifications of sKlotho variants to guide the future design of sKlotho-based therapeutics. Chinese hamster ovary (CHO)- and human embryonic kidney (HEK)-derived WT sKlotho proteins had varied activities in FGF23 co-receptor and β-glucuronidase assays in vitro and distinct properties in vivo Sialidase treatment of heavily sialylated CHO-sKlotho increased its co-receptor activity 3-fold, yet it remained less active than hyposialylated HEK-sKlotho. MS and glycopeptide-mapping analyses revealed that HEK-sKlotho is uniquely modified with an unusual N-glycan structure consisting of N,N'-di-N-acetyllactose diamine at multiple N-linked sites, one of which at Asn-126 was adjacent to a putative GalNAc transfer motif. Site-directed mutagenesis and structural modeling analyses directly implicated N-glycans in Klotho's protein folding and function. Moreover, the introduction of two catalytic glutamate residues conserved across glycosidases into sKlotho enhanced its glucuronidase activity but decreased its FGF23 co-receptor activity, suggesting that these two functions might be structurally divergent. These findings open up opportunities for rational engineering of pharmacologically enhanced sKlotho therapeutics for managing kidney disease.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139.
| | - Srinath Jagarlapudi
- Internal Medicine, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Yan Weng
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Mellisa Ly
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810
| | - Jason C Rouse
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810
| | - Kim McClure
- Internal Medicine, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Tetsuya Ishino
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Yan Zhang
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Eric Sousa
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Justin Cohen
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Boriana Tzvetkova
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810
| | - Kaffa Cote
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810
| | - John J Scarcelli
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810
| | - Keith Johnson
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810
| | - Joe Palandra
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - James R Apgar
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Suma Yaddanapudi
- Internal Medicine, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | | | - Alan C Opsahl
- Internal Medicine, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Khetemenee Lam
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Qing Yao
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Weili Duan
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Annette Sievers
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Jing Zhou
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Darren Ferguson
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Aaron D'Antona
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Richard Zollner
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Hongli L Zhu
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Ron Kriz
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Laura Lin
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Valerie Clerin
- Internal Medicine, Pfizer Worldwide Research, Cambridge, Massachusetts 02139.
| |
Collapse
|
8
|
Benicky J, Sanda M, Brnakova Kennedy Z, Goldman R. N-Glycosylation is required for secretion of the precursor to brain-derived neurotrophic factor (proBDNF) carrying sulfated LacdiNAc structures. J Biol Chem 2019; 294:16816-16830. [PMID: 31558607 DOI: 10.1074/jbc.ra119.009989] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/18/2019] [Indexed: 01/17/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is generated by proteolytic cleavage of a prodomain from the proBDNF precursor either intracellularly by furin-like proteases or extracellularly by plasmin or matrix metalloproteinases. ProBDNF carries a single N-glycosylation sequon (Asn-127) that remains virtually unstudied despite being located in a highly conserved region proximal to the proteolytic site. To study the proBDNF structure and function, here we expressed the protein and its nonglycosylated N127Q mutant in HEK293F cells. We found that mutation of the Asn-127 prevents intracellular maturation and secretion, an effect reproduced in WT proBDNF by tunicamycin-induced inhibition of N-glycosylation. Absence of the N-glycan did not affect the kinetics of proBDNF cleavage by furin in vitro, indicating that effects other than a direct furin-proBDNF interaction may regulate proBDNF maturation. Using an optimized LC-MS/MS workflow, we demonstrate that secreted proBDNF is fully glycosylated and carries rare N-glycans terminated by GalNAcβ1-4GlcNAcβ1-R (LacdiNAc) extensively modified by terminal sulfation. We and others noted that this type of glycosylation is protein-specific, extends to proBDNF expressed in PC12 cells, and implies the presence of interacting partners that recognize this glycan epitope. The findings of our study reveal that proBDNF carries an unusual type of N-glycans important for its processing and secretion. Our results open new opportunities for functional studies of these protein glycoforms in different cells and tissues.
Collapse
Affiliation(s)
- Julius Benicky
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C. 20057.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, D. C. 20057
| | - Miloslav Sanda
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C. 20057.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, D. C. 20057
| | - Zuzana Brnakova Kennedy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C. 20057.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, D. C. 20057
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C. 20057 .,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, D. C. 20057.,Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, D. C. 20057
| |
Collapse
|
9
|
Heine V, Boesveld S, Pelantová H, Křen V, Trautwein C, Strnad P, Elling L. Identifying Efficient Clostridium difficile Toxin A Binders with a Multivalent Neo-Glycoprotein Glycan Library. Bioconjug Chem 2019; 30:2373-2383. [PMID: 31479241 DOI: 10.1021/acs.bioconjchem.9b00486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Clostridium difficile infections cause gastrointestinal disorders and can lead to life-threatening conditions. The symptoms can vary from severe diarrhea to the formation of pseudomembranous colitis and therefore trigger a need for new therapies. The initial step of disease is the binding of the bacterial enterotoxins toxin A and B to the cell surface of epithelial intestinal cells. Scavenging of the toxins is crucial to inhibit their fatal effect in the human body and circumvent the administration of antibiotics. Cell surface glycans are common as ligands for TcdA. Although crucial for carbohydrate-protein interactions, a multivalent presentation of glycans for binding has been hardly considered. Here, we establish a neo-glycoprotein-based glycan library to identify an effective multivalent glycan ligand for TcdA. It comprises 40 different glycan epitopes based on N-acetyllactosamine precursors. Nine structures exhibit strong binding of the receptor domain. Among them, the Lewisy-Lewisx-epitope shows the best performance for binding both the receptor domain and the holotoxin. Therefore, the glycan was synthesized de novo and coupled to BSA as a scaffold for multivalent presentation. The corresponding neo-glycoprotein facilitates the proper scavenging of TcdA in vitro and effectively protects HT29 cells from TcdA-induced cell damage.
Collapse
Affiliation(s)
- Viktoria Heine
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering , RWTH Aachen University , Pauwelsstrasse 20 , 52074 Aachen , Germany
| | - Sarah Boesveld
- Department of Internal Medicine III, University Hospital , RWTH Aachen University , Pauwelsstrasse 30 , 52074 Aachen , Germany
| | - Helena Pelantová
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , 14220 Prague , Czech Republic
| | - Vladimír Křen
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , 14220 Prague , Czech Republic
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital , RWTH Aachen University , Pauwelsstrasse 30 , 52074 Aachen , Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital , RWTH Aachen University , Pauwelsstrasse 30 , 52074 Aachen , Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering , RWTH Aachen University , Pauwelsstrasse 20 , 52074 Aachen , Germany
| |
Collapse
|
10
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
11
|
The Double Face of Mucin-Type O-Glycans in Lectin-Mediated Infection and Immunity. Molecules 2018; 23:molecules23051151. [PMID: 29751628 PMCID: PMC6100456 DOI: 10.3390/molecules23051151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023] Open
Abstract
Epithelial human blood group antigens (HBGAs) on O-glycans play roles in pathogen binding and the initiation of infection, while similar structures on secretory mucins exert protective functions. These double-faced features of O-glycans in infection and innate immunity are reviewed based on two instructive examples of bacterial and viral pathogens. Helicobacter pylori represents a class 1 carcinogen in the human stomach. By expressing blood group antigen-binding adhesin (BabA) and LabA adhesins that bind to Lewis-b and LacdiNAc, respectively, H. pylori colocalizes with the mucin MUC5AC in gastric surface epithelia, but not with MUC6, which is cosecreted with trefoil factor family 2 (TFF2) by deep gastric glands. Both components of the glandular secretome are concertedly up-regulated upon infection. While MUC6 expresses GlcNAc-capped glycans as natural antibiotics for H. pylori growth control, TFF2 may function as a probiotic lectin. In viral infection human noroviruses of the GII genogroup interact with HBGAs via their major capsid protein, VP1. HBGAs on human milk oligosaccharides (HMOs) may exert protective functions by binding to the P2 domain pocket on the capsid. We discuss structural details of the P2 carbohydrate-binding pocket in interaction with blood group H/Lewis-b HMOs and fucoidan-derived oligofucoses as effective interactors for the most prevalent norovirus strains, GII.4 and GII.17.
Collapse
|
12
|
Functional Analysis of the Glucuronyltransferases GlcAT-P and GlcAT-S of Drosophila melanogaster: Distinct Activities towards the O-linked T-antigen. Biomolecules 2016; 6:8. [PMID: 26751495 PMCID: PMC4808802 DOI: 10.3390/biom6010008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/21/2015] [Accepted: 11/22/2015] [Indexed: 01/14/2023] Open
Abstract
The Drosophila melanogaster glucuronyltransferases dGlcAT-S and dGlcAT-P were reported to be expressed ubiquitously and results of in vitro activity assays indicate a functional redundancy. We analyzed both transferases in vivo and in vitro and could show significant differences in their activity towards N-and O-glycoproteins in vivo. While GlcAT-P is able to use N-linked N-acetyllactosamine chains and the O-linked T-antigen as a substrate to form non-sulfated HNK1- (GlcAβ1-3Galβ1-4GlcNAcβ1-) and glucuronyl-T-antigens in vivo, GlcAT-S adds glucuronic acid only to N-linked chains, thereby synthesizing only the non-sulfated HNK1-antigen.
Collapse
|