1
|
Falnes PØ. Closing in on human methylation-the versatile family of seven-β-strand (METTL) methyltransferases. Nucleic Acids Res 2024; 52:11423-11441. [PMID: 39351878 PMCID: PMC11514484 DOI: 10.1093/nar/gkae816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Methylation is a common biochemical reaction, and a number of methyltransferase (MTase) enzymes mediate the various methylation events occurring in living cells. Almost all MTases use the methyl donor S-adenosylmethionine (AdoMet), and, in humans, the largest group of AdoMet-dependent MTases are the so-called seven-β-strand (7BS) MTases. Collectively, the 7BS MTases target a wide range of biomolecules, i.e. nucleic acids and proteins, as well as several small metabolites and signaling molecules. They play essential roles in key processes such as gene regulation, protein synthesis and metabolism, as well as neurotransmitter synthesis and clearance. A decade ago, roughly half of the human 7BS MTases had been characterized experimentally, whereas the remaining ones merely represented hypothetical enzymes predicted from bioinformatics analysis, many of which were denoted METTLs (METhylTransferase-Like). Since then, considerable progress has been made, and the function of > 80% of the human 7BS MTases has been uncovered. In this review, I provide an overview of the (estimated) 120 human 7BS MTases, grouping them according to substrate specificities and sequence similarity. I also elaborate on the challenges faced when studying these enzymes and describe recent major advances in the field.
Collapse
Affiliation(s)
- Pål Ø Falnes
- Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316Oslo, Norway
- CRESCO - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Wang Z, Liu H. Roles of Lysine Methylation in Glucose and Lipid Metabolism: Functions, Regulatory Mechanisms, and Therapeutic Implications. Biomolecules 2024; 14:862. [PMID: 39062577 PMCID: PMC11274642 DOI: 10.3390/biom14070862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Glucose and lipid metabolism are essential energy sources for the body. Dysregulation in these metabolic pathways is a significant risk factor for numerous acute and chronic diseases, including type 2 diabetes (T2DM), Alzheimer's disease (AD), obesity, and cancer. Post-translational modifications (PTMs), which regulate protein structure, localization, function, and activity, play a crucial role in managing cellular glucose and lipid metabolism. Among these PTMs, lysine methylation stands out as a key dynamic modification vital for the epigenetic regulation of gene transcription. Emerging evidence indicates that lysine methylation significantly impacts glucose and lipid metabolism by modifying key enzymes and proteins. This review summarizes the current understanding of lysine methylation's role and regulatory mechanisms in glucose and lipid metabolism. We highlight the involvement of methyltransferases (KMTs) and demethylases (KDMs) in generating abnormal methylation signals affecting these metabolic pathways. Additionally, we discuss the chemical biology and pharmacology of KMT and KDM inhibitors and targeted protein degraders, emphasizing their clinical implications for diseases such as diabetes, obesity, neurodegenerative disorders, and cancers. This review suggests that targeting lysine methylation in glucose and lipid metabolism could be an ideal therapeutic strategy for treating these diseases.
Collapse
Affiliation(s)
| | - Huadong Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China;
| |
Collapse
|
3
|
Schnee P, Pleiss J, Jeltsch A. Approaching the catalytic mechanism of protein lysine methyltransferases by biochemical and simulation techniques. Crit Rev Biochem Mol Biol 2024; 59:20-68. [PMID: 38449437 DOI: 10.1080/10409238.2024.2318547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
Protein lysine methyltransferases (PKMTs) transfer up to three methyl groups to the side chains of lysine residues in proteins and fulfill important regulatory functions by controlling protein stability, localization and protein/protein interactions. The methylation reactions are highly regulated, and aberrant methylation of proteins is associated with several types of diseases including neurologic disorders, cardiovascular diseases, and various types of cancer. This review describes novel insights into the catalytic machinery of various PKMTs achieved by the combined application of biochemical experiments and simulation approaches during the last years, focusing on clinically relevant and well-studied enzymes of this group like DOT1L, SMYD1-3, SET7/9, G9a/GLP, SETD2, SUV420H2, NSD1/2, different MLLs and EZH2. Biochemical experiments have unraveled many mechanistic features of PKMTs concerning their substrate and product specificity, processivity and the effects of somatic mutations observed in PKMTs in cancer cells. Structural data additionally provided information about the substrate recognition, enzyme-substrate complex formation, and allowed for simulations of the substrate peptide interaction and mechanism of PKMTs with atomistic resolution by molecular dynamics and hybrid quantum mechanics/molecular mechanics methods. These simulation technologies uncovered important mechanistic details of the PKMT reaction mechanism including the processes responsible for the deprotonation of the target lysine residue, essential conformational changes of the PKMT upon substrate binding, but also rationalized regulatory principles like PKMT autoinhibition. Further developments are discussed that could bring us closer to a mechanistic understanding of catalysis of this important class of enzymes in the near future. The results described here illustrate the power of the investigation of enzyme mechanisms by the combined application of biochemical experiments and simulation technologies.
Collapse
Affiliation(s)
- Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Qi YN, Liu Z, Hong LL, Li P, Ling ZQ. Methyltransferase-like proteins in cancer biology and potential therapeutic targeting. J Hematol Oncol 2023; 16:89. [PMID: 37533128 PMCID: PMC10394802 DOI: 10.1186/s13045-023-01477-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
RNA modification has recently become a significant process of gene regulation, and the methyltransferase-like (METTL) family of proteins plays a critical role in RNA modification, methylating various types of RNAs, including mRNA, tRNA, microRNA, rRNA, and mitochondrial RNAs. METTL proteins consist of a unique seven-beta-strand domain, which binds to the methyl donor SAM to catalyze methyl transfer. The most typical family member METTL3/METTL14 forms a methyltransferase complex involved in N6-methyladenosine (m6A) modification of RNA, regulating tumor proliferation, metastasis and invasion, immunotherapy resistance, and metabolic reprogramming of tumor cells. METTL1, METTL4, METTL5, and METTL16 have also been recently identified to have some regulatory ability in tumorigenesis, and the rest of the METTL family members rely on their methyltransferase activity for methylation of different nucleotides, proteins, and small molecules, which regulate translation and affect processes such as cell differentiation and development. Herein, we summarize the literature on METTLs in the last three years to elucidate their roles in human cancers and provide a theoretical basis for their future use as potential therapeutic targets.
Collapse
Affiliation(s)
- Ya-Nan Qi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zhu Liu
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Lian-Lian Hong
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Pei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China.
| | - Zhi-Qiang Ling
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China.
| |
Collapse
|
5
|
Falnes PØ, Małecki JM, Herrera MC, Bengtsen M, Davydova E. Human seven-β-strand (METTL) methyltransferases - conquering the universe of protein lysine methylation. J Biol Chem 2023; 299:104661. [PMID: 36997089 DOI: 10.1016/j.jbc.2023.104661] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
|
6
|
Murtaza N, Cheng AA, Brown CO, Meka DP, Hong S, Uy JA, El-Hajjar J, Pipko N, Unda BK, Schwanke B, Xing S, Thiruvahindrapuram B, Engchuan W, Trost B, Deneault E, Calderon de Anda F, Doble BW, Ellis J, Anagnostou E, Bader GD, Scherer SW, Lu Y, Singh KK. Neuron-specific protein network mapping of autism risk genes identifies shared biological mechanisms and disease-relevant pathologies. Cell Rep 2022; 41:111678. [DOI: 10.1016/j.celrep.2022.111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
|
7
|
Monné M, Marobbio CMT, Agrimi G, Palmieri L, Palmieri F. Mitochondrial transport and metabolism of the major methyl donor and versatile cofactor S-adenosylmethionine, and related diseases: A review †. IUBMB Life 2022; 74:573-591. [PMID: 35730628 DOI: 10.1002/iub.2658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 11/08/2022]
Abstract
S-adenosyl-L-methionine (SAM) is a coenzyme and the most commonly used methyl-group donor for the modification of metabolites, DNA, RNA and proteins. SAM biosynthesis and SAM regeneration from the methylation reaction product S-adenosyl-L-homocysteine (SAH) take place in the cytoplasm. Therefore, the intramitochondrial SAM-dependent methyltransferases require the import of SAM and export of SAH for recycling. Orthologous mitochondrial transporters belonging to the mitochondrial carrier family have been identified to catalyze this antiport transport step: Sam5p in yeast, SLC25A26 (SAMC) in humans, and SAMC1-2 in plants. In mitochondria SAM is used by a vast number of enzymes implicated in the following processes: the regulation of replication, transcription, translation, and enzymatic activities; the maturation and assembly of mitochondrial tRNAs, ribosomes and protein complexes; and the biosynthesis of cofactors, such as ubiquinone, lipoate, and molybdopterin. Mutations in SLC25A26 and mitochondrial SAM-dependent enzymes have been found to cause human diseases, which emphasizes the physiological importance of these proteins.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,Department of Sciences, University of Basilicata, Potenza, Italy
| | - Carlo M T Marobbio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| |
Collapse
|
8
|
Chen F, Ni C, Wang X, Cheng R, Pan C, Wang Y, Liang J, Zhang J, Cheng J, Chin YE, Zhou Y, Wang Z, Guo Y, Chen S, Htun S, Mathes EF, de Alba Campomanes AG, Slavotinek AM, Zhang S, Li M, Yao Z. S1P defects cause a new entity of cataract, alopecia, oral mucosal disorder, and psoriasis-like syndrome. EMBO Mol Med 2022; 14:e14904. [PMID: 35362222 PMCID: PMC9081911 DOI: 10.15252/emmm.202114904] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
In this report, we discovered a new entity named cataract, alopecia, oral mucosal disorder, and psoriasis‐like (CAOP) syndrome in two unrelated and ethnically diverse patients. Furthermore, patient 1 failed to respond to regular treatment. We found that CAOP syndrome was caused by an autosomal recessive defect in the mitochondrial membrane‐bound transcription factor peptidase/site‐1 protease (MBTPS1, S1P). Mitochondrial abnormalities were observed in patient 1 with CAOP syndrome. Furthermore, we found that S1P is a novel mitochondrial protein that forms a trimeric complex with ETFA/ETFB. S1P enhances ETFA/ETFB flavination and maintains its stability. Patient S1P variants destabilize ETFA/ETFB, impair mitochondrial respiration, decrease fatty acid β‐oxidation activity, and shift mitochondrial oxidative phosphorylation (OXPHOS) to glycolysis. Mitochondrial dysfunction and inflammatory lesions in patient 1 were significantly ameliorated by riboflavin supplementation, which restored the stability of ETFA/ETFB. Our study discovered that mutations in MBTPS1 resulted in a new entity of CAOP syndrome and elucidated the mechanism of the mutations in the new disease.
Collapse
Affiliation(s)
- Fuying Chen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cheng Ni
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoxiao Wang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruhong Cheng
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chaolan Pan
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yumeng Wang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianying Liang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jia Zhang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinke Cheng
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Eugene Chin
- Instituteof Health Sciences, Chinese Academy of Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi Zhou
- Department of gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhen Wang
- Department of Dermatology, Children's Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Yiran Guo
- Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, PA, USA
| | - She Chen
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Stephanie Htun
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Erin F Mathes
- Departments of Dermatology and Pediatrics, University California, San Francisco, CA, USA
| | | | - Anne M Slavotinek
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Małecki JM, Davydova E, Falnes PØ. Protein methylation in mitochondria. J Biol Chem 2022; 298:101791. [PMID: 35247388 PMCID: PMC9006661 DOI: 10.1016/j.jbc.2022.101791] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Many proteins are modified by posttranslational methylation, introduced by a number of methyltransferases (MTases). Protein methylation plays important roles in modulating protein function and thus in optimizing and regulating cellular and physiological processes. Research has mainly focused on nuclear and cytosolic protein methylation, but it has been known for many years that also mitochondrial proteins are methylated. During the last decade, significant progress has been made on identifying the MTases responsible for mitochondrial protein methylation and addressing its functional significance. In particular, several novel human MTases have been uncovered that methylate lysine, arginine, histidine, and glutamine residues in various mitochondrial substrates. Several of these substrates are key components of the bioenergetics machinery, e.g., respiratory Complex I, citrate synthase, and the ATP synthase. In the present review, we report the status of the field of mitochondrial protein methylation, with a particular emphasis on recently discovered human MTases. We also discuss evolutionary aspects and functional significance of mitochondrial protein methylation and present an outlook for this emergent research field.
Collapse
Affiliation(s)
- Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway.
| | - Erna Davydova
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
10
|
Li J, Feng S, Ma X, Yuan S, Wang X. METTL21A, a Non-Histone Methyltransferase, Is Dispensable for Spermatogenesis and Male Fertility in Mice. Int J Mol Sci 2022; 23:ijms23041942. [PMID: 35216057 PMCID: PMC8879998 DOI: 10.3390/ijms23041942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/24/2022] Open
Abstract
Protein methyltransferases play various physiological and pathological roles through methylating histone and non-histone targets. Many histone methyltransferases have been reported to regulate the development of spermatogenic cells. However, the specific function of non-histone methyltransferases during spermatogenesis remains unclear. In this study, we found that METTL21A, a non-histone methyltransferase, is highly expressed in mouse testes. In order to elucidate the role of METTL21A in spermatogenesis, we generated a Mettl21a global knockout mouse model using CRISPR/Cas9 technology. Unexpectedly, our results showed that knockout males are fertile without apparent defects in the processes of male germ cell development, including spermatogonial differentiation, meiosis, and sperm maturation. Furthermore, the ablation of METTL21A does not affect the expression and localization of its known targeting proteins in testes. Together, our data demonstrated that METTL21A is not essential for mouse spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Jinmei Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.); (S.F.); (X.M.)
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.); (S.F.); (X.M.)
| | - Xixiang Ma
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.); (S.F.); (X.M.)
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.); (S.F.); (X.M.)
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518057, China
- Correspondence: (S.Y.); (X.W.); Fax: +86-027-83692651 (S.Y & X.W.)
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.); (S.F.); (X.M.)
- Correspondence: (S.Y.); (X.W.); Fax: +86-027-83692651 (S.Y & X.W.)
| |
Collapse
|
11
|
Bataglia L, Simões ZLP, Nunes FMF. Active genic machinery for epigenetic RNA modifications in bees. INSECT MOLECULAR BIOLOGY 2021; 30:566-579. [PMID: 34291855 DOI: 10.1111/imb.12726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Epitranscriptomics is an emerging field of investigation dedicated to the study of post-transcriptional RNA modifications. RNA methylations regulate RNA metabolism and processing, including changes in response to environmental cues. Although RNA modifications are conserved from bacteria to eukaryotes, there is little evidence of an epitranscriptomic pathway in insects. Here we identified genes related to RNA m6 A (N6-methyladenine) and m5 C (5-methylcytosine) methylation machinery in seven bee genomes (Apis mellifera, Melipona quadrifasciata, Frieseomelitta varia, Eufriesea mexicana, Bombus terrestris, Megachile rotundata and Dufourea novaeangliae). In A. mellifera, we validated the expression of methyltransferase genes and found that the global levels of m6 A and m5 C measured in the fat body and brain of adult workers differ significantly. Also, m6 A levels were differed significantly mainly between the fourth larval instar of queens and workers. Moreover, we found a conserved m5 C site in the honeybee 28S rRNA. Taken together, we confirm the existence of epitranscriptomic machinery acting in bees and open avenues for future investigations on RNA epigenetics in a wide spectrum of hymenopteran species.
Collapse
Affiliation(s)
- L Bataglia
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Z L P Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - F M F Nunes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
12
|
Wong JM, Eirin-Lopez JM. Evolution of methyltransferase like (METTL) proteins in Metazoa: A complex gene family involved in epitranscriptomic regulation and other epigenetic processes. Mol Biol Evol 2021; 38:5309-5327. [PMID: 34480573 PMCID: PMC8662637 DOI: 10.1093/molbev/msab267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The methyltransferase-like (METTL) proteins constitute a family of seven-beta-strand methyltransferases with S-adenosyl methionine-binding domains that modify DNA, RNA, and proteins. Methylation by METTL proteins contributes to the epigenetic, and in the case of RNA modifications, epitranscriptomic regulation of a variety of biological processes. Despite their functional importance, most investigations of the substrates and functions of METTLs within metazoans have been restricted to model vertebrate taxa. In the present work, we explore the evolutionary mechanisms driving the diversification and functional differentiation of 33 individual METTL proteins across Metazoa. Our results show that METTLs are nearly ubiquitous across the animal kingdom, with most having arisen early in metazoan evolution (i.e., occur in basal metazoan phyla). Individual METTL lineages each originated from single independent ancestors, constituting monophyletic clades, which suggests that each METTL was subject to strong selective constraints driving its structural and/or functional specialization. Interestingly, a similar process did not extend to the differentiation of nucleoside-modifying and protein-modifying METTLs (i.e., each METTL type did not form a unique monophyletic clade). The members of these two types of METTLs also exhibited differences in their rates of evolution. Overall, we provide evidence that the long-term evolution of METTL family members was driven by strong purifying selection, which in combination with adaptive selection episodes, led to the functional specialization of individual METTL lineages. This work contributes useful information regarding the evolution of a gene family that fulfills a variety of epigenetic functions, and can have profound influences on molecular processes and phenotypic traits.
Collapse
Affiliation(s)
- Juliet M Wong
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, United States
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, United States
| |
Collapse
|
13
|
Małecki JM, Odonohue MF, Kim Y, Jakobsson ME, Gessa L, Pinto R, Wu J, Davydova E, Moen A, Olsen JV, Thiede B, Gleizes PE, Leidel SA, Falnes PØ. Human METTL18 is a histidine-specific methyltransferase that targets RPL3 and affects ribosome biogenesis and function. Nucleic Acids Res 2021; 49:3185-3203. [PMID: 33693809 PMCID: PMC8034639 DOI: 10.1093/nar/gkab088] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 01/11/2023] Open
Abstract
Protein methylation occurs primarily on lysine and arginine, but also on some other residues, such as histidine. METTL18 is the last uncharacterized member of a group of human methyltransferases (MTases) that mainly exert lysine methylation, and here we set out to elucidate its function. We found METTL18 to be a nuclear protein that contains a functional nuclear localization signal and accumulates in nucleoli. Recombinant METTL18 methylated a single protein in nuclear extracts and in isolated ribosomes from METTL18 knockout (KO) cells, identified as 60S ribosomal protein L3 (RPL3). We also performed an RPL3 interactomics screen and identified METTL18 as the most significantly enriched MTase. We found that His-245 in RPL3 carries a 3-methylhistidine (3MH; τ-methylhistidine) modification, which was absent in METTL18 KO cells. In addition, both recombinant and endogenous METTL18 were found to be automethylated at His-154, thus further corroborating METTL18 as a histidine-specific MTase. Finally, METTL18 KO cells displayed altered pre-rRNA processing, decreased polysome formation and codon-specific changes in mRNA translation, indicating that METTL18-mediated methylation of RPL3 is important for optimal ribosome biogenesis and function. In conclusion, we have here established METTL18 as the second human histidine-specific protein MTase, and demonstrated its functional relevance.
Collapse
Affiliation(s)
- Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Marie-Francoise Odonohue
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Yeji Kim
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Magnus E Jakobsson
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation, Center for Protein Research (NNF-CPR), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Luca Gessa
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Rita Pinto
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Jie Wu
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Erna Davydova
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Anders Moen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Jesper V Olsen
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation, Center for Protein Research (NNF-CPR), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Bernd Thiede
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Pierre-Emmanuel Gleizes
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Sebastian A Leidel
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
14
|
Yao L, Yin H, Hong M, Wang Y, Yu T, Teng Y, Li T, Wu Q. RNA methylation in hematological malignancies and its interactions with other epigenetic modifications. Leukemia 2021; 35:1243-1257. [PMID: 33767371 DOI: 10.1038/s41375-021-01225-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/12/2021] [Accepted: 03/11/2021] [Indexed: 01/18/2023]
Abstract
Hematological malignancies are a class of malignant neoplasms attributed to abnormal differentiation of hematopoietic stem cells (HSCs). The systemic involvement, poor prognosis, chemotherapy resistance, and recurrence common in hematological malignancies urge researchers to look for novel treatment targets and mechanisms. In recent years, epigenetic abnormalities have been shown to play a vital role in tumorigenesis and progression in hematological malignancies. In addition to DNA methylation and histone modifications, which are most studied, RNA methylation has become increasingly significant. In this review, we elaborate recent advances in the understanding of RNA modification in the pathogenesis, diagnosis and molecular targeted therapies of hematological malignancies and discuss its intricate interactions with other epigenetic modifications, including DNA methylation, histone modifications and noncoding RNAs.
Collapse
Affiliation(s)
- Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Hong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yajun Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Yu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Teng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Lukinović V, Casanova AG, Roth GS, Chuffart F, Reynoird N. Lysine Methyltransferases Signaling: Histones are Just the Tip of the Iceberg. Curr Protein Pept Sci 2021; 21:655-674. [PMID: 31894745 DOI: 10.2174/1871527319666200102101608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022]
Abstract
Protein lysine methylation is a functionally diverse post-translational modification involved in various major cellular processes. Lysine methylation can modulate proteins activity, stability, localization, and/or interaction, resulting in specific downstream signaling and biological outcomes. Lysine methylation is a dynamic and fine-tuned process, deregulation of which often leads to human pathologies. In particular, the lysine methylome and its associated signaling network can be linked to carcinogenesis and cancer progression. Histone modifications and chromatin regulation is a major aspect of lysine methylation importance, but increasing evidence suggests that a high relevance and impact of non-histone lysine methylation signaling has emerged in recent years. In this review, we draw an updated picture of the current scientific knowledge regarding non-histone lysine methylation signaling and its implication in physiological and pathological processes. We aim to demonstrate the significance of lysine methylation as a major and yet underestimated posttranslational modification, and to raise the importance of this modification in both epigenetic and cellular signaling by focusing on the observed activities of SET- and 7β-strandcontaining human lysine methyltransferases. Recent evidence suggests that what has been observed so far regarding lysine methylation's implication in human pathologies is only the tip of the iceberg. Therefore, the exploration of the "methylome network" raises the possibility to use these enzymes and their substrates as promising new therapeutic targets for the development of future epigenetic and methyllysine signaling cancer treatments.
Collapse
Affiliation(s)
- Valentina Lukinović
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Alexandre G Casanova
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Gael S Roth
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Florent Chuffart
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Nicolas Reynoird
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| |
Collapse
|
16
|
Rosenberger FA, Moore D, Atanassov I, Moedas MF, Clemente P, Végvári Á, Fissi NE, Filograna R, Bucher AL, Hinze Y, The M, Hedman E, Chernogubova E, Begzati A, Wibom R, Jain M, Nilsson R, Käll L, Wedell A, Freyer C, Wredenberg A. The one-carbon pool controls mitochondrial energy metabolism via complex I and iron-sulfur clusters. SCIENCE ADVANCES 2021; 7:eabf0717. [PMID: 33608280 PMCID: PMC7895438 DOI: 10.1126/sciadv.abf0717] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/04/2021] [Indexed: 05/15/2023]
Abstract
Induction of the one-carbon cycle is an early hallmark of mitochondrial dysfunction and cancer metabolism. Vital intermediary steps are localized to mitochondria, but it remains unclear how one-carbon availability connects to mitochondrial function. Here, we show that the one-carbon metabolite and methyl group donor S-adenosylmethionine (SAM) is pivotal for energy metabolism. A gradual decline in mitochondrial SAM (mitoSAM) causes hierarchical defects in fly and mouse, comprising loss of mitoSAM-dependent metabolites and impaired assembly of the oxidative phosphorylation system. Complex I stability and iron-sulfur cluster biosynthesis are directly controlled by mitoSAM levels, while other protein targets are predominantly methylated outside of the organelle before import. The mitoSAM pool follows its cytosolic production, establishing mitochondria as responsive receivers of one-carbon units. Thus, we demonstrate that cellular methylation potential is required for energy metabolism, with direct relevance for pathophysiology, aging, and cancer.
Collapse
Affiliation(s)
- Florian A Rosenberger
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - David Moore
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ilian Atanassov
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Marco F Moedas
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Paula Clemente
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ákos Végvári
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Najla El Fissi
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Roberta Filograna
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Anna-Lena Bucher
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Yvonne Hinze
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Matthew The
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171 65 Stockholm, Sweden
| | - Erik Hedman
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Ekaterina Chernogubova
- Cardiovascular Medicine Unit, Department of Medicine (Solna), Karolinska Institutet, 171 65 Stockholm, Sweden
- Division of Cardiovascular Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arjana Begzati
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Rolf Wibom
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Mohit Jain
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Roland Nilsson
- Cardiovascular Medicine Unit, Department of Medicine (Solna), Karolinska Institutet, 171 65 Stockholm, Sweden
- Division of Cardiovascular Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lukas Käll
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171 65 Stockholm, Sweden
| | - Anna Wedell
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 65 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Christoph Freyer
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Anna Wredenberg
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
17
|
Henriques BJ, Katrine Jentoft Olsen R, Gomes CM, Bross P. Electron transfer flavoprotein and its role in mitochondrial energy metabolism in health and disease. Gene 2021; 776:145407. [PMID: 33450351 DOI: 10.1016/j.gene.2021.145407] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Electron transfer flavoprotein (ETF) is an enzyme with orthologs from bacteria to humans. Human ETF is nuclear encoded by two separate genes, ETFA and ETFB, respectively. After translation, the two subunits are imported to the mitochondrial matrix space and assemble into a heterodimer containing one FAD and one AMP as cofactors. ETF functions as a hub taking up electrons from at least 14 flavoenzymes, feeding them into the respiratory chain. This represents a major source of reducing power for the electron transport chain from fatty acid oxidation and amino acid degradation. Transfer of electrons from the donor enzymes to ETF occurs by direct transfer between the enzyme bound flavins, a process that is tightly regulated by the polypeptide chain and by protein:protein interactions. ETF, in turn relays electrons to the iron sulfur cluster of the inner membrane protein ETF:QO, from where they travel via the FAD in ETF:QO to ubiquinone, entering the respiratory chain at the level of complex III. ETF recognizes its dehydrogenase partners via a recognition loop that anchors the protein on its partner followed by dynamic movements of the ETF flavin domain that bring redox cofactors in close proximity, thus promoting electron transfer. Genetic mutations in the ETFA or ETFB genes cause the Mendelian disorder multiple acyl-CoA dehydrogenase deficiency (MADD; OMIM #231680). We here review the knowledge on human ETF and investigations of the effects of disease-associated missense mutations in this protein that have promoted the understanding of the essential role that ETF plays in cellular metabolism and human disease.
Collapse
Affiliation(s)
- Bárbara J Henriques
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Rikke Katrine Jentoft Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark.
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark.
| |
Collapse
|
18
|
Pinto R, Vågbø CB, Jakobsson ME, Kim Y, Baltissen MP, O'Donohue MF, Guzmán UH, Małecki JM, Wu J, Kirpekar F, Olsen JV, Gleizes PE, Vermeulen M, Leidel SA, Slupphaug G, Falnes PØ. The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA. Nucleic Acids Res 2020; 48:830-846. [PMID: 31799605 PMCID: PMC6954407 DOI: 10.1093/nar/gkz1147] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 01/06/2023] Open
Abstract
RNA methylations are essential both for RNA structure and function, and are introduced by a number of distinct methyltransferases (MTases). In recent years, N6-methyladenosine (m6A) modification of eukaryotic mRNA has been subject to intense studies, and it has been demonstrated that m6A is a reversible modification that regulates several aspects of mRNA function. However, m6A is also found in other RNAs, such as mammalian 18S and 28S ribosomal RNAs (rRNAs), but the responsible MTases have remained elusive. 28S rRNA carries a single m6A modification, found at position A4220 (alternatively referred to as A4190) within a stem–loop structure, and here we show that the MTase ZCCHC4 is the enzyme responsible for introducing this modification. Accordingly, we found that ZCCHC4 localises to nucleoli, the site of ribosome assembly, and that proteins involved in RNA metabolism are overrepresented in the ZCCHC4 interactome. Interestingly, the absence of m6A4220 perturbs codon-specific translation dynamics and shifts gene expression at the translational level. In summary, we establish ZCCHC4 as the enzyme responsible for m6A modification of human 28S rRNA, and demonstrate its functional significance in mRNA translation.
Collapse
Affiliation(s)
- Rita Pinto
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| | - Cathrine B Vågbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, NO-7491 Trondheim, Norway.,Proteomics and Modomics Experimental Core (PROMEC), NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Magnus E Jakobsson
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research (NNF-CPR), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Yeji Kim
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany.,Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Marijke P Baltissen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen 6500 HB, The Netherlands
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ulises H Guzmán
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research (NNF-CPR), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| | - Jie Wu
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany.,Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jesper V Olsen
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research (NNF-CPR), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen 6500 HB, The Netherlands
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany.,Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, NO-7491 Trondheim, Norway.,Proteomics and Modomics Experimental Core (PROMEC), NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| |
Collapse
|
19
|
Urulangodi M, Mohanty A. DNA damage response and repair pathway modulation by non-histone protein methylation: implications in neurodegeneration. J Cell Commun Signal 2020; 14:31-45. [PMID: 31749026 PMCID: PMC7176765 DOI: 10.1007/s12079-019-00538-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Protein post-translational modifications (PTMs) have emerged to be combinatorial, essential mechanisms used by eukaryotic cells to regulate local chromatin structure, diversify and extend their protein functions and dynamically coordinate complex intracellular signalling processes. Most common types of PTMs include enzymatic addition of small chemical groups resulting in phosphorylation, glycosylation, poly(ADP-ribosyl)ation, nitrosylation, methylation, acetylation or covalent attachment of complete proteins such as ubiquitin and SUMO. Protein arginine methyltransferases (PRMTs) and protein lysine methyltransferases (PKMTs) enzymes catalyse the methylation of arginine and lysine residues in target proteins, respectively. Rapid progress in quantitative proteomic analysis and functional assays have not only documented the methylation of histone proteins post-translationally but also identified their occurrence in non-histone proteins which dynamically regulate a plethora of cellular functions including DNA damage response and repair. Emerging advances have now revealed the role of both histone and non-histone methylations in the regulating the DNA damage response (DDR) proteins, thereby modulating the DNA repair pathways both in proliferating and post-mitotic neuronal cells. Defects in many cellular DNA repair processes have been found primarily manifested in neuronal tissues. Moreover, fine tuning of the dynamicity of methylation of non-histone proteins as well as the perturbations in this dynamic methylation processes have recently been implicated in neuronal genomic stability maintenance. Considering the impact of methylation on chromatin associated pathways, in this review we attempt to link the evidences in non-histone protein methylation and DDR with neurodegenerative research.
Collapse
Affiliation(s)
- Madhusoodanan Urulangodi
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, PIN-695011, India.
| | - Abhishek Mohanty
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, PIN-110085, India.
| |
Collapse
|
20
|
Kim YW, Kim YJ, Cheong HS, Shiga Y, Hashimoto K, Song YJ, Kim SH, Choi HJ, Nishiguchi KM, Kawai Y, Nagasaki M, Nakazawa T, Park KH, Kim DM, Jeoung JW. Exploring the Novel Susceptibility Gene Variants for Primary Open-Angle Glaucoma in East Asian Cohorts: The GLAU-GENDISK Study. Sci Rep 2020; 10:221. [PMID: 31937794 PMCID: PMC6959350 DOI: 10.1038/s41598-019-57066-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/19/2019] [Indexed: 12/19/2022] Open
Abstract
Primary open-angle glaucoma (POAG) can develop even within normal ranges of intraocular pressure, and this type of glaucoma (so-called ‘normal-tension glaucoma [NTG]’) is highly prevalent in East Asia including Korea and Japan. We conducted exome chip analysis to identify low-frequency and rare variants associated with POAG from the primary cohort (309 POAG patients and 5,400 control, all Koreans). For replication, Korean (310 POAG patients and 5,612 controls) and Japanese (565 POAG patients and 1,104 controls) cohorts were further investigated by targeted genotyping. SNP rs116121322 in LRRC27 showed nominally significant association with POAG in the discovery cohort (OR = 29.85, P = 2E–06). This SNP was validated in the Korean replication cohort but only in the NTG subgroups (OR = 9.86, P = 0.007). Japanese replication cohort did not show significant association with POAG (P .00.44). However, the meta-analysis in the entire cohort revealed significant association of rs116121322 with POAG (ORcombined = 10.28, Pcombined = 1.4E–07). The LRRC27 protein expression was confirmed from human trabecular meshwork cells. For gene-based testing, METTL20 showed a significant association in POAG (Pcombined = 0.002) and in the subgroup of NTG (Pcombined = 0.02), whereas ZNF677 were significantly associated with only in the subgroup of high-tension glaucoma (Pcombined = 1.5E–06). Our findings may provide further genetic backgrounds into the pathogenesis of POAG, especially for the patients who have lower baseline intraocular pressures.
Collapse
Affiliation(s)
- Yong Woo Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Yu Jeong Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul, Korea
| | - Yukihiro Shiga
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kazuki Hashimoto
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yong Ju Song
- Department of Ophthalmology, Chosun University College of Medicine, Gwangju, Korea
| | - Seok Hwan Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Department of Ophthalmology, Seoul National University Boramae Hospital, Seoul, Korea
| | - Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yosuke Kawai
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan.,Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan.,Graduate School of Information Sciences, Tohoku University, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Ki Ho Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Dong Myung Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Wook Jeoung
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea. .,Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
21
|
Shi Z, Xu S, Xing S, Yao K, Zhang L, Xue L, Zhou P, Wang M, Yan G, Yang P, Liu J, Hu Z, Lan F. Mettl17, a regulator of mitochondrial ribosomal RNA modifications, is required for the translation of mitochondrial coding genes. FASEB J 2019; 33:13040-13050. [PMID: 31487196 DOI: 10.1096/fj.201901331r] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Embryonic stem cells (ESCs) are pluripotent stem cells with the ability to self-renew and to differentiate into any cell types of the 3 germ layers. Recent studies have demonstrated that there is a strong connection between mitochondrial function and pluripotency. Here, we report that methyltransferase like (Mettl) 17, identified from the clustered regularly interspaced short palindromic repeats knockout screen, is required for proper differentiation of mouse embryonic stem cells (mESCs). Mettl17 is located in mitochondria through its N-terminal targeting sequence and specifically interacts with 12S mitochondrial ribosomal RNA (mt-rRNA) as well as small subunits of mitochondrial ribosome (MSSUs). Loss of Mettl17 affects the stability of both 12S mt-rRNA and its associated proteins of MSSUs. We further showed that Mettl17 is an S-adenosyl methionine (SAM)-binding protein and regulates mitochondrial ribosome function in a SAM-binding-dependent manner. Loss of Mettl17 leads to around 70% reduction of m4C840 and 50% reduction of m5C842 of 12S mt-rRNA, revealing the first regulator of the m4C840 and indicating a crosstalk between the 2 nearby modifications. The defects of mitochondrial ribosome caused by deletion of Mettl17 lead to the impaired translation of mitochondrial protein-coding genes, resulting in significant changes in mitochondrial oxidative phosphorylation and cellular metabolome, which are important for mESC pluripotency.-Shi, Z., Xu, S., Xing, S., Yao, K., Zhang, L., Xue, L., Zhou, P., Wang, M., Yan, G., Yang, P., Liu, J., Hu, Z., Lan, F. Mettl17, a regulator of mitochondrial ribosomal RNA modifications, is required for the translation of mitochondrial coding genes.
Collapse
Affiliation(s)
- Zhennan Shi
- Key Laboratory of Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Siyuan Xu
- Key Laboratory of Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shenghui Xing
- Key Laboratory of Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Lei Zhang
- Institutes of Biomedical Sciences and Department of Systems Biology for Medicine, Basic Medical College, Fudan University, Shanghai, China
| | - Luxi Xue
- Key Laboratory of Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Zhou
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ming Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guoquan Yan
- Institutes of Biomedical Sciences and Department of Systems Biology for Medicine, Basic Medical College, Fudan University, Shanghai, China
| | - Pengyuan Yang
- Institutes of Biomedical Sciences and Department of Systems Biology for Medicine, Basic Medical College, Fudan University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Fei Lan
- Key Laboratory of Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
McGlaughon JL, Pasquali M, Wallace K, Ross J, Senol-Cosar O, Shen W, Weaver MA, Feigenbaum A, Lyon E, Enns GM, Mao R, Baudet HG. Assessing the strength of evidence for genes implicated in fatty acid oxidation disorders using the ClinGen clinical validity framework. Mol Genet Metab 2019; 128:122-128. [PMID: 31399326 DOI: 10.1016/j.ymgme.2019.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/30/2022]
Abstract
Newborn screening is an incredibly useful tool for the early identification of many metabolic disorders, including fatty acid oxidation (FAO) disorders. In many cases, molecular tests are necessary to reach a final diagnosis, highlighting the need for a thorough evaluation of genes implicated in FAO disorders. Using the ClinGen (Clinical Genome Resource) clinical validity framework, thirty genes were analyzed for the strength of evidence supporting their association with FAO disorders. Evidence was gathered from the literature by biocurators and presented to disease experts for review in order to assign a clinical validity classification of Definitive, Strong, Moderate, Limited, Disputed, Refuted, or No Reported Evidence. Of the gene-disease relationships evaluated, 22/30 were classified as Definitive, three as Moderate, one as Limited, three as No Reported Evidence and one as Disputed. Gene-disease relationships with a Limited, Disputed, and No Reported Evidence were found on two, six, and up to four panels out of 30 FAO disorder-specific panels, respectively, in the National Institute of Health Genetic Testing Registry, while over 70% of the genes on panels are definitively associated with an FAO disorder. These results highlight the need to systematically assess the clinical relevance of genes implicated in fatty acid oxidation disorders in order to improve the interpretation of genetic testing results and diagnosis of patients with these disorders.
Collapse
Affiliation(s)
- Jennifer L McGlaughon
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Marzia Pasquali
- University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Kathleen Wallace
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Justyne Ross
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Ozlem Senol-Cosar
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, MA, USA; Department of Pathology, Harvard Medical School/Brigham and Women's Hospital, Boston, MA, USA
| | - Wei Shen
- University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Meredith A Weaver
- American College of Medical Genetics and Genomics, Bethesda, MD, USA
| | - Annette Feigenbaum
- Department of Pediatrics, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Elaine Lyon
- University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Gregory M Enns
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Stanford, CA, USA
| | - Rong Mao
- University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Heather G Baudet
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
23
|
Małecki JM, Willemen HLDM, Pinto R, Ho AYY, Moen A, Eijkelkamp N, Falnes PØ. Human FAM173A is a mitochondrial lysine-specific methyltransferase that targets adenine nucleotide translocase and affects mitochondrial respiration. J Biol Chem 2019; 294:11654-11664. [PMID: 31213526 DOI: 10.1074/jbc.ra119.009045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/17/2019] [Indexed: 01/14/2023] Open
Abstract
Lysine methylation is a common posttranslational modification of nuclear and cytoplasmic proteins but is also present in mitochondria. The human protein denoted "family with sequence similarity 173 member B" (FAM173B) was recently uncovered as a mitochondrial lysine (K)-specific methyltransferase (KMT) targeting the c-subunit of mitochondrial ATP synthase (ATPSc), and was therefore renamed ATPSc-KMT. We here set out to investigate the biochemical function of its yet uncharacterized paralogue FAM173A. We demonstrate that FAM173A localizes to mitochondria, mediated by a noncanonical targeting sequence that is partially retained in the mature protein. Immunoblotting analysis using methyllysine-specific antibodies revealed that FAM173A knock-out (KO) abrogates lysine methylation of a single mitochondrial protein in human cells. Mass spectrometry analysis identified this protein as adenine nucleotide translocase (ANT), represented by two highly similar isoforms ANT2 and ANT3. We found that methylation occurs at Lys-52 of ANT, which was previously reported to be trimethylated. Complementation of KO cells with WT or enzyme-dead FAM173A indicated that the enzymatic activity of FAM173A is required for ANT methylation at Lys-52 to occur. Both in human cells and in rat organs, Lys-52 was exclusively trimethylated, indicating that this modification is constitutive, rather than regulatory and dynamic. Moreover, FAM173A-deficient cells displayed increased mitochondrial respiration compared with FAM173A-proficient cells. In summary, we demonstrate that FAM173A is the long-sought KMT responsible for ANT methylation at Lys-52, and point out the functional significance of Lys-52 methylation in ANT. Based on the established naming nomenclature for KMTs, we propose to rename FAM173A to ANT-KMT (gene name ANTKMT).
Collapse
Affiliation(s)
- Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Hanneke L D M Willemen
- Laboratory of Translational Immunology (LTI), University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Rita Pinto
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Angela Y Y Ho
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Anders Moen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Niels Eijkelkamp
- Laboratory of Translational Immunology (LTI), University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
24
|
Rocheleau AD, Melrose AR, Cunliffe JM, Klimek J, Babur Ö, Yunga ST, Ngo AT, Pang J, David LL, McCarty OJ, Aslan JE. Identification, Quantification, and System Analysis of Protein N-ε Lysine Methylation in Anucleate Blood Platelets. Proteomics 2019; 19:e1900001. [PMID: 30977292 PMCID: PMC7062300 DOI: 10.1002/pmic.201900001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/16/2019] [Indexed: 01/26/2023]
Abstract
Protein posttranslational modifications critically regulate a range of physiological and disease processes. In addition to tyrosine, serine, and threonine phosphorylation, reversible N-ε acylation and alkylation of protein lysine residues also modulate diverse aspects of cellular function. Studies of lysine acyl and alkyl modifications have focused on nuclear proteins in epigenetic regulation; however, lysine modifications are also prevalent on cytosolic proteins to serve increasingly apparent, although less understood roles in cell regulation. Here, the methyl-lysine (meK) proteome of anucleate blood platelets is characterized. With high-resolution, multiplex MS methods, 190 mono-, di-, and tri-meK modifications are identified on 150 different platelet proteins-including 28 meK modifications quantified by tandem mass tag (TMT) labeling. In addition to identifying meK modifications on calmodulin (CaM), GRP78 (HSPA5, BiP), and EF1A1 that have been previously characterized in other cell types, more novel modifications are also uncovered on cofilin, drebin-like protein (DBNL, Hip-55), DOCK8, TRIM25, and numerous other cytoplasmic proteins. Together, the results and analyses support roles for lysine methylation in mediating cytoskeletal, translational, secretory, and other cellular processes. MS data for this study have been deposited into the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD012217.
Collapse
Affiliation(s)
- Anne D. Rocheleau
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Alexander R. Melrose
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Jennifer M. Cunliffe
- Proteomics Shared Resource, Oregon Health & Science University, Portland, Oregon, USA
| | - John Klimek
- Proteomics Shared Resource, Oregon Health & Science University, Portland, Oregon, USA
| | - Özgün Babur
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Samuel Tassi Yunga
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Cancer Early Detection & Advanced Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Anh T.P. Ngo
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Jiaqing Pang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Larry L. David
- Proteomics Shared Resource, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Owen J.T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph E. Aslan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
25
|
Małecki JM, Willemen HLDM, Pinto R, Ho AYY, Moen A, Kjønstad IF, Burgering BMT, Zwartkruis F, Eijkelkamp N, Falnes PØ. Lysine methylation by the mitochondrial methyltransferase FAM173B optimizes the function of mitochondrial ATP synthase. J Biol Chem 2018; 294:1128-1141. [PMID: 30530489 DOI: 10.1074/jbc.ra118.005473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/05/2018] [Indexed: 01/23/2023] Open
Abstract
Lysine methylation is an important post-translational modification that is also present on mitochondrial proteins, but the mitochondrial lysine-specific methyltransferases (KMTs) responsible for modification are in most cases unknown. Here, we set out to determine the function of human family with sequence similarity 173 member B (FAM173B), a mitochondrial methyltransferase (MTase) reported to promote chronic pain. Using bioinformatics analyses and biochemical assays, we found that FAM173B contains an atypical, noncleavable mitochondrial targeting sequence responsible for its localization to mitochondria. Interestingly, CRISPR/Cas9-mediated KO of FAM173B in mammalian cells abrogated trimethylation of Lys-43 in ATP synthase c-subunit (ATPSc), a modification previously reported as ubiquitous among metazoans. ATPSc methylation was restored by complementing the KO cells with enzymatically active human FAM173B or with a putative FAM173B orthologue from the nematode Caenorhabditis elegans Interestingly, lack of Lys-43 methylation caused aberrant incorporation of ATPSc into the ATP synthase complex and resulted in decreased ATP-generating ability of the complex, as well as decreased mitochondrial respiration. In summary, we have identified FAM173B as the long-sought KMT responsible for methylation of ATPSc, a key protein in cellular ATP production, and have demonstrated functional significance of ATPSc methylation. We suggest renaming FAM173B to ATPSc-KMT (gene name ATPSCKMT).
Collapse
Affiliation(s)
- Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway.
| | | | - Rita Pinto
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Angela Y Y Ho
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Anders Moen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Ingrid F Kjønstad
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Fried Zwartkruis
- Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Laboratory of Translational Immunology (LTI), 3584 EA Utrecht, The Netherlands
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
26
|
Serre NBC, Alban C, Bourguignon J, Ravanel S. An outlook on lysine methylation of non-histone proteins in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4569-4581. [PMID: 29931361 DOI: 10.1093/jxb/ery231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein methylation is a very diverse, widespread, and important post-translational modification affecting all aspects of cellular biology in eukaryotes. Methylation on the side-chain of lysine residues in histones has received considerable attention due to its major role in determining chromatin structure and the epigenetic regulation of gene expression. Over the last 20 years, lysine methylation of non-histone proteins has been recognized as a very common modification that contributes to the fine-tuned regulation of protein function. In plants, our knowledge in this field is much more fragmentary than in yeast and animal cells. In this review, we describe the plant enzymes involved in the methylation of non-histone substrates, and we consider historical and recent advances in the identification of non-histone lysine-methylated proteins in photosynthetic organisms. Finally, we discuss our current knowledge about the role of protein lysine methylation in regulating molecular and cellular functions in plants, and consider challenges for future research.
Collapse
Affiliation(s)
- Nelson B C Serre
- Univ. Grenoble Alpes, INRA, CEA, CNRS, BIG, PCV, Grenoble, France
| | - Claude Alban
- Univ. Grenoble Alpes, INRA, CEA, CNRS, BIG, PCV, Grenoble, France
| | | | - Stéphane Ravanel
- Univ. Grenoble Alpes, INRA, CEA, CNRS, BIG, PCV, Grenoble, France
| |
Collapse
|
27
|
Jakobsson ME, Małecki JM, Halabelian L, Nilges BS, Pinto R, Kudithipudi S, Munk S, Davydova E, Zuhairi FR, Arrowsmith CH, Jeltsch A, Leidel SA, Olsen JV, Falnes PØ. The dual methyltransferase METTL13 targets N terminus and Lys55 of eEF1A and modulates codon-specific translation rates. Nat Commun 2018; 9:3411. [PMID: 30143613 PMCID: PMC6109062 DOI: 10.1038/s41467-018-05646-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/16/2018] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic elongation factor 1 alpha (eEF1A) delivers aminoacyl-tRNA to the ribosome and thereby plays a key role in protein synthesis. Human eEF1A is subject to extensive post-translational methylation, but several of the responsible enzymes remain unknown. Using a wide range of experimental approaches, we here show that human methyltransferase (MTase)-like protein 13 (METTL13) contains two distinct MTase domains targeting the N terminus and Lys55 of eEF1A, respectively. Our biochemical and structural analyses provide detailed mechanistic insights into recognition of the eEF1A N terminus by METTL13. Moreover, through ribosome profiling, we demonstrate that loss of METTL13 function alters translation dynamics and results in changed translation rates of specific codons. In summary, we here unravel the function of a human MTase, showing that it methylates eEF1A and modulates mRNA translation in a codon-specific manner. Eukaryotic elongation factor 1 alpha (eEF1A) is subject to extensive post-translational methylation but not all responsible enzymes are known. Here, the authors identify METTL13 as an eEF1A methyltransferase with dual specificity, which is involved in the codon-specific modulation of mRNA translation.
Collapse
Affiliation(s)
- Magnus E Jakobsson
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway. .,Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research (NNF-CPR), University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| | - Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Levon Halabelian
- Structural Genomics Consortium, and Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Benedikt S Nilges
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, 48149, Muenster, Germany
| | - Rita Pinto
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Srikanth Kudithipudi
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Stephanie Munk
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research (NNF-CPR), University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Erna Davydova
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Fawzi R Zuhairi
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, and Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, 48149, Muenster, Germany
| | - Jesper V Olsen
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research (NNF-CPR), University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway.
| |
Collapse
|
28
|
Abstract
Protein lysine methylation is a distinct posttranslational modification that causes minimal changes in the size and electrostatic status of lysine residues. Lysine methylation plays essential roles in regulating fates and functions of target proteins in an epigenetic manner. As a result, substrates and degrees (free versus mono/di/tri) of protein lysine methylation are orchestrated within cells by balanced activities of protein lysine methyltransferases (PKMTs) and demethylases (KDMs). Their dysregulation is often associated with neurological disorders, developmental abnormalities, or cancer. Methyllysine-containing proteins can be recognized by downstream effector proteins, which contain methyllysine reader domains, to relay their biological functions. While numerous efforts have been made to annotate biological roles of protein lysine methylation, limited work has been done to uncover mechanisms associated with this modification at a molecular or atomic level. Given distinct biophysical and biochemical properties of methyllysine, this review will focus on chemical and biochemical aspects in addition, recognition, and removal of this posttranslational mark. Chemical and biophysical methods to profile PKMT substrates will be discussed along with classification of PKMT inhibitors for accurate perturbation of methyltransferase activities. Semisynthesis of methyllysine-containing proteins will also be covered given the critical need for these reagents to unambiguously define functional roles of protein lysine methylation.
Collapse
Affiliation(s)
- Minkui Luo
- Chemical Biology Program , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.,Program of Pharmacology, Weill Graduate School of Medical Science , Cornell University , New York , New York 10021 , United States
| |
Collapse
|
29
|
Mitochondrial β-oxidation of saturated fatty acids in humans. Mitochondrion 2018; 46:73-90. [PMID: 29551309 DOI: 10.1016/j.mito.2018.02.009] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/04/2017] [Accepted: 02/27/2018] [Indexed: 12/30/2022]
Abstract
Mitochondrial β-oxidation of fatty acids generates acetyl-coA, NADH and FADH2. Acyl-coA synthetases catalyze the binding of fatty acids to coenzyme A to form fatty acyl-coA thioesters, the first step in the intracellular metabolism of fatty acids. l-carnitine system facilitates the transport of fatty acyl-coA esters across the mitochondrial membrane. Carnitine palmitoyltransferase-1 transfers acyl groups from coenzyme A to l-carnitine, forming acyl-carnitine esters at the outer mitochondrial membrane. Carnitine acyl-carnitine translocase exchanges acyl-carnitine esters that enter the mitochondria, by free l-carnitine. Carnitine palmitoyltransferase-2 converts acyl-carnitine esters back to acyl-coA esters at the inner mitochondrial membrane. The β-oxidation pathway of fatty acyl-coA esters includes four reactions. Fatty acyl-coA dehydrogenases catalyze the introduction of a double bond at the C2 position, producing 2-enoyl-coA esters and reducing equivalents that are transferred to the respiratory chain via electron transferring flavoprotein. Enoyl-coA hydratase catalyzes the hydration of the double bond to generate a 3-l-hydroxyacyl-coA derivative. 3-l-hydroxyacyl-coA dehydrogenase catalyzes the formation of a 3-ketoacyl-coA intermediate. Finally, 3-ketoacyl-coA thiolase catalyzes the cleavage of the chain, generating acetyl-coA and a fatty acyl-coA ester two carbons shorter. Mitochondrial trifunctional protein catalyzes the three last steps in the β-oxidation of long-chain and medium-chain fatty acyl-coA esters while individual enzymes catalyze the β-oxidation of short-chain fatty acyl-coA esters. Clinical phenotype of fatty acid oxidation disorders usually includes hypoketotic hypoglycemia triggered by fasting or infections, skeletal muscle weakness, cardiomyopathy, hepatopathy, and neurological manifestations. Accumulation of non-oxidized fatty acids promotes their conjugation with glycine and l-carnitine and alternate ways of oxidation, such as ω-oxidation.
Collapse
|
30
|
Willemen HLDM, Kavelaars A, Prado J, Maas M, Versteeg S, Nellissen LJJ, Tromp J, Gonzalez Cano R, Zhou W, Jakobsson ME, Małecki J, Posthuma G, Habib AM, Heijnen CJ, Falnes PØ, Eijkelkamp N. Identification of FAM173B as a protein methyltransferase promoting chronic pain. PLoS Biol 2018; 16:e2003452. [PMID: 29444090 PMCID: PMC5828452 DOI: 10.1371/journal.pbio.2003452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 02/27/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
Chronic pain is a debilitating problem, and insights in the neurobiology of chronic pain are needed for the development of novel pain therapies. A genome-wide association study implicated the 5p15.2 region in chronic widespread pain. This region includes the coding region for FAM173B, a functionally uncharacterized protein. We demonstrate here that FAM173B is a mitochondrial lysine methyltransferase that promotes chronic pain. Knockdown and sensory neuron overexpression strategies showed that FAM173B is involved in persistent inflammatory and neuropathic pain via a pathway dependent on its methyltransferase activity. FAM173B methyltransferase activity in sensory neurons hyperpolarized mitochondria and promoted macrophage/microglia activation through a reactive oxygen species–dependent pathway. In summary, we uncover a role for methyltransferase activity of FAM173B in the neurobiology of pain. These results also highlight FAM173B methyltransferase activity as a potential therapeutic target to treat debilitating chronic pain conditions. Pain is an evolutionarily conserved physiological phenomenon necessary for survival. Yet, pain can become pathological when it occurs independently of noxious stimuli. The molecular mechanisms of pathological pain are still poorly understood, limiting the development of highly needed novel analgesics. Recently, genetic variations in the genomic region encoding FAM173B—a functionally uncharacterized protein—have been linked to chronic pain in humans. In this study, we identify the role and function of FAM173B in the development of pathological pain. We used genetic, biochemical, and behavioral approaches in mice to show that FAM173B is a mitochondrial lysine methyltransferase—a protein that transfers methyl group to donor proteins. By genetically silencing or overexpressing FAM173B in sensory neurons, we showed that FAM173B methyltransferase activity promotes the development of chronic pain. In addition, we discovered that FAM173B methyltransferase activity in the mitochondria of sensory neurons promotes chronic pain via a pathway that depends on the production of reactive oxygen species and on the engagement of spinal cord microglia—engulfing cells of the central nervous system. These data point to an essential role of FAM173B in the regulation of pathological pain.
Collapse
Affiliation(s)
- Hanneke L. D. M. Willemen
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Annemieke Kavelaars
- Laboratory of Neuroimmunology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Judith Prado
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Mirjam Maas
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sabine Versteeg
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lara J. J. Nellissen
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jeshua Tromp
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Rafael Gonzalez Cano
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Pharmacology and Institute of Neuroscience, University of Granada, Granada, Spain
| | - Wenjun Zhou
- Laboratory of Neuroimmunology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Magnus E. Jakobsson
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Jędrzej Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - George Posthuma
- Department of Cell Biology and Institute of Biomembranes, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Abdella M. Habib
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
- College of Medicine, Member of Qatar Health, Qatar University, Doha, Qatar
| | - Cobi J. Heijnen
- Laboratory of Neuroimmunology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Pål Ø. Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Niels Eijkelkamp
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
31
|
Shimazu T, Furuse T, Balan S, Yamada I, Okuno S, Iwanari H, Suzuki T, Hamakubo T, Dohmae N, Yoshikawa T, Wakana S, Shinkai Y. Role of METTL20 in regulating β-oxidation and heat production in mice under fasting or ketogenic conditions. Sci Rep 2018; 8:1179. [PMID: 29352221 PMCID: PMC5775328 DOI: 10.1038/s41598-018-19615-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/04/2018] [Indexed: 12/18/2022] Open
Abstract
METTL20 is a seven-β-strand methyltransferase that is localised to the mitochondria and tri-methylates the electron transfer flavoprotein (ETF) β subunit (ETFB) at lysines 200 and 203. It has been shown that METTL20 decreases the ability of ETF to extract electrons from medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) and glutaryl-CoA dehydrogenase in vitro. METTL20-mediated methylation of ETFB influences the oxygen consumption rate in permeabilised mitochondria, suggesting that METTL20-mediated ETFB methylation may also play a regulatory role in mitochondrial metabolism. In this study, we generated Mettl20 knockout (KO) mice to uncover the in vivo functions of METTL20. The KO mice were viable, and a loss of ETFB methylation was confirmed. In vitro enzymatic assays revealed that mitochondrial ETF activity was higher in the KO mice than in wild-type mice, suggesting that the KO mice had higher β-oxidation capacity. Calorimetric analysis showed that the KO mice fed a ketogenic diet had higher oxygen consumption and heat production. A subsequent cold tolerance test conducted after 24 h of fasting indicated that the KO mice had a better ability to maintain their body temperature in cold environments. Thus, METTL20 regulates ETF activity and heat production through lysine methylation when β-oxidation is highly activated.
Collapse
Affiliation(s)
- Tadahiro Shimazu
- Cellular Memory Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tamio Furuse
- Japan Mouse Clinic, RIKEN BRC, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shabeesh Balan
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Ikuko Yamada
- Japan Mouse Clinic, RIKEN BRC, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shuzo Okuno
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8507, Japan
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Shigeharu Wakana
- Japan Mouse Clinic, RIKEN BRC, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
32
|
Regulation of glutamate dehydrogenase (GDH) in response to whole body freezing in wood frog liver linked to differential acetylation and ADP-ribosylation. Arch Biochem Biophys 2017; 636:90-99. [DOI: 10.1016/j.abb.2017.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/11/2017] [Accepted: 10/14/2017] [Indexed: 12/31/2022]
|
33
|
Jakobsson ME, Malecki J, Nilges BS, Moen A, Leidel SA, Falnes PØ. Methylation of human eukaryotic elongation factor alpha (eEF1A) by a member of a novel protein lysine methyltransferase family modulates mRNA translation. Nucleic Acids Res 2017; 45:8239-8254. [PMID: 28520920 PMCID: PMC5737405 DOI: 10.1093/nar/gkx432] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/03/2017] [Indexed: 02/04/2023] Open
Abstract
Many cellular proteins are methylated on lysine residues and this has been most intensively studied for histone proteins. Lysine methylations on non-histone proteins are also frequent, but in most cases the functional significance of the methylation event, as well as the identity of the responsible lysine (K) specific methyltransferase (KMT), remain unknown. Several recently discovered KMTs belong to the so-called seven-β-strand (7BS) class of MTases and we have here investigated an uncharacterized human 7BS MTase currently annotated as part of the endothelin converting enzyme 2, but which should be considered a separate enzyme. Combining in vitro enzymology and analyzes of knockout cells, we demonstrate that this MTase efficiently methylates K36 in eukaryotic translation elongation factor 1 alpha (eEF1A) in vitro and in vivo. We suggest that this novel KMT is named eEF1A-KMT4 (gene name EEF1AKMT4), in agreement with the recently established nomenclature. Furthermore, by ribosome profiling we show that the absence of K36 methylation affects translation dynamics and changes translation speed of distinct codons. Finally, we show that eEF1A-KMT4 is part of a novel family of human KMTs, defined by a shared sequence motif in the active site and we demonstrate the importance of this motif for catalytic activity.
Collapse
Affiliation(s)
- Magnus E Jakobsson
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| | - Jedrzej Malecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| | - Benedikt S Nilges
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Anders Moen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| |
Collapse
|
34
|
Malecki J, Aileni VK, Ho AYY, Schwarz J, Moen A, Sørensen V, Nilges BS, Jakobsson ME, Leidel SA, Falnes PØ. The novel lysine specific methyltransferase METTL21B affects mRNA translation through inducible and dynamic methylation of Lys-165 in human eukaryotic elongation factor 1 alpha (eEF1A). Nucleic Acids Res 2017; 45:4370-4389. [PMID: 28108655 PMCID: PMC5416902 DOI: 10.1093/nar/gkx002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/02/2017] [Indexed: 12/25/2022] Open
Abstract
Lysine methylation is abundant on histone proteins, representing a dynamic regulator of chromatin state and gene activity, but is also frequent on many non-histone proteins, including eukaryotic elongation factor 1 alpha (eEF1A). However, the functional significance of eEF1A methylation remains obscure and it has remained unclear whether eEF1A methylation is dynamic and subject to active regulation. We here demonstrate, using a wide range of in vitro and in vivo approaches, that the previously uncharacterized human methyltransferase METTL21B specifically targets Lys-165 in eEF1A in an aminoacyl-tRNA- and GTP-dependent manner. Interestingly, METTL21B-mediated eEF1A methylation showed strong variation across different tissues and cell lines, and was induced by altering growth conditions or by treatment with certain ER-stress-inducing drugs, concomitant with an increase in METTL21B gene expression. Moreover, genetic ablation of METTL21B function in mammalian cells caused substantial alterations in mRNA translation, as measured by ribosomal profiling. A non-canonical function for eEF1A in organization of the cellular cytoskeleton has been reported, and interestingly, METTL21B accumulated in centrosomes, in addition to the expected cytosolic localization. In summary, the present study identifies METTL21B as the enzyme responsible for methylation of eEF1A on Lys-165 and shows that this modification is dynamic, inducible and likely of regulatory importance.
Collapse
Affiliation(s)
- Jedrzej Malecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Vinay Kumar Aileni
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Angela Y Y Ho
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Juliane Schwarz
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Anders Moen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Vigdis Sørensen
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway
| | - Benedikt S Nilges
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Magnus E Jakobsson
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
35
|
Małecki J, Jakobsson ME, Ho AYY, Moen A, Rustan AC, Falnes PØ. Uncovering human METTL12 as a mitochondrial methyltransferase that modulates citrate synthase activity through metabolite-sensitive lysine methylation. J Biol Chem 2017; 292:17950-17962. [PMID: 28887308 DOI: 10.1074/jbc.m117.808451] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/28/2017] [Indexed: 01/23/2023] Open
Abstract
Lysine methylation is an important and much-studied posttranslational modification of nuclear and cytosolic proteins but is present also in mitochondria. However, the responsible mitochondrial lysine-specific methyltransferases (KMTs) remain largely elusive. Here, we investigated METTL12, a mitochondrial human S-adenosylmethionine (AdoMet)-dependent methyltransferase and found it to methylate a single protein in mitochondrial extracts, identified as citrate synthase (CS). Using several in vitro and in vivo approaches, we demonstrated that METTL12 methylates CS on Lys-395, which is localized in the CS active site. Interestingly, the METTL12-mediated methylation inhibited CS activity and was blocked by the CS substrate oxaloacetate. Moreover, METTL12 was strongly inhibited by the reaction product S-adenosylhomocysteine (AdoHcy). In summary, we have uncovered a novel human mitochondrial KMT that introduces a methyl modification into a metabolic enzyme and whose activity can be modulated by metabolic cues. Based on the established naming nomenclature for similar enzymes, we suggest that METTL12 be renamed CS-KMT (gene name CSKMT).
Collapse
Affiliation(s)
| | | | | | | | - Arild C Rustan
- School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | | |
Collapse
|
36
|
Feusier J, Witherspoon DJ, Scott Watkins W, Goubert C, Sasani TA, Jorde LB. Discovery of rare, diagnostic AluYb8/9 elements in diverse human populations. Mob DNA 2017; 8:9. [PMID: 28770012 PMCID: PMC5531096 DOI: 10.1186/s13100-017-0093-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/17/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Polymorphic human Alu elements are excellent tools for assessing population structure, and new retrotransposition events can contribute to disease. Next-generation sequencing has greatly increased the potential to discover Alu elements in human populations, and various sequencing and bioinformatics methods have been designed to tackle the problem of detecting these highly repetitive elements. However, current techniques for Alu discovery may miss rare, polymorphic Alu elements. Combining multiple discovery approaches may provide a better profile of the polymorphic Alu mobilome. AluYb8/9 elements have been a focus of our recent studies as they are young subfamilies (~2.3 million years old) that contribute ~30% of recent polymorphic Alu retrotransposition events. Here, we update our ME-Scan methods for detecting Alu elements and apply these methods to discover new insertions in a large set of individuals with diverse ancestral backgrounds. RESULTS We identified 5,288 putative Alu insertion events, including several hundred novel AluYb8/9 elements from 213 individuals from 18 diverse human populations. Hundreds of these loci were specific to continental populations, and 23 non-reference population-specific loci were validated by PCR. We provide high-quality sequence information for 68 rare AluYb8/9 elements, of which 11 have hallmarks of an active source element. Our subfamily distribution of rare AluYb8/9 elements is consistent with previous datasets, and may be representative of rare loci. We also find that while ME-Scan and low-coverage, whole-genome sequencing (WGS) detect different Alu elements in 41 1000 Genomes individuals, the two methods yield similar population structure results. CONCLUSION Current in-silico methods for Alu discovery may miss rare, polymorphic Alu elements. Therefore, using multiple techniques can provide a more accurate profile of Alu elements in individuals and populations. We improved our false-negative rate as an indicator of sample quality for future ME-Scan experiments. In conclusion, we demonstrate that ME-Scan is a good supplement for next-generation sequencing methods and is well-suited for population-level analyses.
Collapse
Affiliation(s)
- Julie Feusier
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - David J. Witherspoon
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - W. Scott Watkins
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Clément Goubert
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Thomas A. Sasani
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Lynn B. Jorde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| |
Collapse
|
37
|
Hamey JJ, Wienert B, Quinlan KGR, Wilkins MR. METTL21B Is a Novel Human Lysine Methyltransferase of Translation Elongation Factor 1A: Discovery by CRISPR/Cas9 Knockout. Mol Cell Proteomics 2017; 16:2229-2242. [PMID: 28663172 DOI: 10.1074/mcp.m116.066308] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/28/2017] [Indexed: 02/03/2023] Open
Abstract
Lysine methylation is widespread on human proteins, however the enzymes that catalyze its addition remain largely unknown. This limits our capacity to study the function and regulation of this modification. Here we used the CRISPR/Cas9 system to knockout putative protein methyltransferases METTL21B and METTL23 in K562 cells, to determine if they methylate elongation factor eEF1A. The known eEF1A methyltransferase EEF1AKMT1 was also knocked out as a control. Targeted mass spectrometry revealed the loss of lysine 165 methylation upon knockout of METTL21B, and the expected loss of lysine 79 methylation on knockout of EEF1AKMT1 No loss of eEF1A methylation was seen in the METTL23 knockout. Recombinant METTL21B was shown in vitro to catalyze methylation on lysine 165 in eEF1A1 and eEF1A2, confirming it as the methyltransferase responsible for this methylation site. Proteomic analysis by SILAC revealed specific upregulation of large ribosomal subunit proteins in the METTL21B knockout, and changes to further processes related to eEF1A function in knockouts of both METTL21B and EEF1AKMT1 This indicates that the methylation of lysine 165 in human eEF1A has a very specific role. METTL21B exists only in vertebrates, with its target lysine showing similar evolutionary conservation. We suggest METTL21B be renamed eEF1A-KMT3. This is the first study to specifically generate CRISPR/Cas9 knockouts of putative protein methyltransferase genes, for substrate discovery and site mapping. Our approach should prove useful for the discovery of further novel methyltransferases, and more generally for the discovery of sites for other protein-modifying enzymes.
Collapse
Affiliation(s)
- Joshua J Hamey
- From the ‡School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Beeke Wienert
- From the ‡School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Kate G R Quinlan
- From the ‡School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Marc R Wilkins
- From the ‡School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| |
Collapse
|
38
|
Finkemeier I. Identification of the missing mitochondrial methyltransferase of citrate synthase. FEBS Lett 2017; 591:1653-1656. [DOI: 10.1002/1873-3468.12692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Iris Finkemeier
- Institute of Plant Biology and Biotechnology; University of Muenster; Germany
| |
Collapse
|
39
|
Rhein VF, Carroll J, Ding S, Fearnley IM, Walker JE. Human METTL12 is a mitochondrial methyltransferase that modifies citrate synthase. FEBS Lett 2017; 591:1641-1652. [PMID: 28391595 PMCID: PMC5518231 DOI: 10.1002/1873-3468.12649] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 01/13/2023]
Abstract
The protein methylome in mammalian mitochondria has been little studied until recently. Here, we describe that lysine-368 of human citrate synthase is methylated and that the modifying enzyme, localized in the mitochondrial matrix, is methyltransferase-like protein 12 (METTL12), a member of the family of 7β-strand methyltransferases. Lysine-368 is near the active site of citrate synthase, but removal of methylation has no effect on its activity. In mitochondria, it is possible that some or all of the enzymes of the citric acid cycle, including citrate synthase, are organized in metabolons to facilitate the channelling of substrates between participating enzymes. Thus, possible roles for the methylation of Lys-368 are in controlling substrate channelling itself, or in influencing protein-protein interactions in the metabolon.
Collapse
Affiliation(s)
- Virginie F. Rhein
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeUK
| | - Joe Carroll
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeUK
| | - Shujing Ding
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeUK
| | - Ian M. Fearnley
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeUK
| | - John E. Walker
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeUK
| |
Collapse
|
40
|
Protein lysine methylation by seven-β-strand methyltransferases. Biochem J 2017; 473:1995-2009. [PMID: 27407169 DOI: 10.1042/bcj20160117] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/24/2016] [Indexed: 11/17/2022]
Abstract
Methylation of biomolecules is a frequent biochemical reaction within the cell, and a plethora of highly specific methyltransferases (MTases) catalyse the transfer of a methyl group from S-adenosylmethionine (AdoMet) to various substrates. The posttranslational methylation of lysine residues, catalysed by numerous lysine (K)-specific protein MTases (KMTs), is a very common and important protein modification, which recently has been subject to intense studies, particularly in the case of histone proteins. The majority of KMTs belong to a class of MTases that share a defining 'SET domain', and these enzymes mostly target lysines in the flexible tails of histones. However, the so-called seven-β-strand (7BS) MTases, characterized by a twisted beta-sheet structure and certain conserved sequence motifs, represent the largest MTase class, and these enzymes methylate a wide range of substrates, including small metabolites, lipids, nucleic acids and proteins. Until recently, the histone-specific Dot1/DOT1L was the only identified eukaryotic 7BS KMT. However, a number of novel 7BS KMTs have now been discovered, and, in particular, several recently characterized human and yeast members of MTase family 16 (MTF16) have been found to methylate lysines in non-histone proteins. Here, we review the status and recent progress on the 7BS KMTs, and discuss these enzymes at the levels of sequence/structure, catalytic mechanism, substrate recognition and biological significance.
Collapse
|
41
|
Aileni V, Davydova E, Moen A, Falnes PØ. A System for Enzymatic Lysine Methylation in a Desired Sequence Context. ACS OMEGA 2017; 2:462-469. [PMID: 28357416 PMCID: PMC5365176 DOI: 10.1021/acsomega.6b00486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
A number of lysine-specific methyltransferases (KMTs) are responsible for the post-translational modification of cellular proteins on lysine residues. Most KMTs typically recognize specific motifs in unstructured, short peptide sequences. However, we have recently discovered a novel KMT that appeared to have a more relaxed sequence specificity, namely, valosin-containing protein (VCP)-KMT, which trimethylates Lys-315 in the molecular chaperone VCP. On the basis of this, here, we explored the possibility of using the VCP-KMT/VCP system to obtain specific lysine methylation of desired sequences grafted onto a VCP-derived scaffold. We generated VCP-derived proteins in which three amino acid residues on each side of Lys-315 had been replaced by various sequences representing lysine methylation sites in histone H3. We found that all of these chimeric proteins were subject to efficient VCP-KMT-mediated methylation in vitro, and methylation was also observed in mammalian cells. Thus, we here describe a versatile system for introducing lysine methylation into a desired peptide sequence, and the approach should be readily expandable for generating combinatorial libraries of methylated sequences.
Collapse
|
42
|
Hamey JJ, Hart-Smith G, Erce MA, Wilkins MR. The activity of a yeast Family 16 methyltransferase, Efm2, is affected by a conserved tryptophan and its N-terminal region. FEBS Open Bio 2016; 6:1320-1330. [PMID: 28255539 PMCID: PMC5324768 DOI: 10.1002/2211-5463.12153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/24/2016] [Accepted: 11/01/2016] [Indexed: 12/17/2022] Open
Abstract
The Family 16 methyltransferases are a group of eukaryotic nonhistone protein methyltransferases. Sixteen of these have recently been described in yeast and human, but little is known about their sequence and structural features. Here we investigate one of these methyltransferases, Saccharomyces cerevisiae elongation factor methyltransferase 2 (Efm2), by site-directed mutagenesis and truncation. We show that an active site-associated tryptophan, invariant in Family 16 methyltransferases and at position 222 in Efm2, is important for methyltransferase activity. A second highly conserved tryptophan, at position 318 in Efm2, is likely involved in S-adenosyl methionine binding but is of lesser consequence for catalysis. By truncation analysis, we show that the N-terminal 50-200 amino acids of Efm2 are critical for its methyltransferase activity. As N-terminal regions are variable among Family 16 methyltransferases, this suggests a possible role in determining substrate specificity. This is consistent with recently solved structures that show the core of Family 16 methyltransferases to be near-identical but the N termini to be structurally quite different. Finally, we show that Efm2 can exist as an oligomer but that its N terminus is not necessary for oligomerisation to occur.
Collapse
Affiliation(s)
- Joshua J Hamey
- Systems Biology Initiative School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney Australia
| | - Gene Hart-Smith
- Systems Biology Initiative School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney Australia
| | - Melissa A Erce
- Systems Biology Initiative School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney Australia
| | - Marc R Wilkins
- Systems Biology Initiative School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney Australia
| |
Collapse
|
43
|
Carlson SM, Gozani O. Nonhistone Lysine Methylation in the Regulation of Cancer Pathways. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026435. [PMID: 27580749 DOI: 10.1101/cshperspect.a026435] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Proteins are regulated by an incredible array of posttranslational modifications (PTMs). Methylation of lysine residues on histone proteins is a PTM with well-established roles in regulating chromatin and epigenetic processes. The recent discovery that hundreds and likely thousands of nonhistone proteins are also methylated at lysine has opened a tremendous new area of research. Major cellular pathways involved in cancer, such as growth signaling and the DNA damage response, are regulated by lysine methylation. Although the field has developed quickly in recent years many fundamental questions remain to be addressed. We review the history and molecular functions of lysine methylation. We then discuss the enzymes that catalyze methylation of lysine residues, the enzymes that remove lysine methylation, and the cancer pathways known to be regulated by lysine methylation. The rest of the article focuses on two open questions that we suggest as a roadmap for future research. First is understanding the large number of candidate methyltransferase and demethylation enzymes whose enzymatic activity is not yet defined and which are potentially associated with cancer through genetic studies. Second is investigating the biological processes and cancer mechanisms potentially regulated by the multitude of lysine methylation sites that have been recently discovered.
Collapse
Affiliation(s)
- Scott M Carlson
- Department of Biology, Stanford University, Stanford, California 94305
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
44
|
Kudithipudi S, Jeltsch A. Approaches and Guidelines for the Identification of Novel Substrates of Protein Lysine Methyltransferases. Cell Chem Biol 2016; 23:1049-1055. [PMID: 27569752 DOI: 10.1016/j.chembiol.2016.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 06/11/2016] [Accepted: 07/03/2016] [Indexed: 12/18/2022]
Abstract
Protein lysine methylation is emerging as a general post-translational modification (PTM) with essential functions regulating protein stability, activity, and protein-protein interactions. One of the outstanding challenges in this field is linking protein lysine methyltransferases (PKMTs) with specific substrates and lysine methylation events in a systematic manner. Inability to validate reported PKMT substrates delayed progress in the field and cast unnecessary doubt about protein lysine methylation as a truly general PTM. Here, we aim to provide a concise guide to help avoid some of the most common pitfalls in studies searching for new PKMT substrates and propose a set of seven basic biochemical rules: (1) include positive controls; (2) use target lysine mutations of substrate proteins as negative controls; (3) use inactive enzyme variants as negative controls; (4) report quantitative methylation data; (5) consider PKMT specificity; (6) validate methyl lysine antibodies; and (7) connect cellular and in vitro results. We explain the logic behind them and discuss how they should be implemented in the experimental work.
Collapse
Affiliation(s)
- Srikanth Kudithipudi
- Faculty of Chemistry, Institute of Biochemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Faculty of Chemistry, Institute of Biochemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| |
Collapse
|
45
|
Ritter A, Rauschert T, Oertli M, Piehlmaier D, Mantas P, Kuntzelmann G, Lageyre N, Brannetti B, Voedisch B, Geisse S, Jostock T, Laux H. Disruption of the gene C12orf35
leads to increased productivities in recombinant CHO cell lines. Biotechnol Bioeng 2016; 113:2433-42. [DOI: 10.1002/bit.26009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/08/2016] [Accepted: 05/09/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Anett Ritter
- Novartis Institutes for BioMedical Research; Basel Switzerland
- Novartis Pharma AG; Integrated Biologics Profiling Unit, Werk Klybeck Postfach CH-4002; Basel Switzerland
| | | | - Mevion Oertli
- Novartis Institutes for BioMedical Research; Basel Switzerland
- Novartis Pharma AG; Integrated Biologics Profiling Unit, Werk Klybeck Postfach CH-4002; Basel Switzerland
| | - Daniel Piehlmaier
- Novartis Pharma AG; Integrated Biologics Profiling Unit, Werk Klybeck Postfach CH-4002; Basel Switzerland
| | - Panagiotis Mantas
- Novartis Pharma AG; Integrated Biologics Profiling Unit, Werk Klybeck Postfach CH-4002; Basel Switzerland
| | | | - Nadine Lageyre
- Novartis Institutes for BioMedical Research; Basel Switzerland
| | | | - Bernd Voedisch
- Novartis Institutes for BioMedical Research; Basel Switzerland
| | - Sabine Geisse
- Novartis Institutes for BioMedical Research; Basel Switzerland
| | - Thomas Jostock
- Novartis Pharma AG; Integrated Biologics Profiling Unit, Werk Klybeck Postfach CH-4002; Basel Switzerland
| | - Holger Laux
- Novartis Pharma AG; Integrated Biologics Profiling Unit, Werk Klybeck Postfach CH-4002; Basel Switzerland
| |
Collapse
|
46
|
Małecki J, Dahl HA, Moen A, Davydova E, Falnes PØ. The METTL20 Homologue from Agrobacterium tumefaciens Is a Dual Specificity Protein-lysine Methyltransferase That Targets Ribosomal Protein L7/L12 and the β Subunit of Electron Transfer Flavoprotein (ETFβ). J Biol Chem 2016; 291:9581-95. [PMID: 26929405 DOI: 10.1074/jbc.m115.709261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 12/31/2022] Open
Abstract
Human METTL20 is a mitochondrial, lysine-specific methyltransferase that methylates the β-subunit of electron transfer flavoprotein (ETFβ). Interestingly, putative METTL20 orthologues are found in a subset of α-proteobacteria, including Agrobacterium tumefaciens Using an activity-based approach, we identified in bacterial extracts two substrates of recombinant METTL20 from A. tumefaciens (AtMETTL20), namely ETFβ and the ribosomal protein RpL7/L12. We show that AtMETTL20, analogous to the human enzyme, methylates ETFβ on Lys-193 and Lys-196 both in vitro and in vivo ETF plays a key role in mediating electron transfer from various dehydrogenases, and we found that its electron transferring ability was diminished by AtMETTL20-mediated methylation of ETFβ. Somewhat surprisingly, AtMETTL20 also catalyzed monomethylation of RpL7/L12 on Lys-86, a common modification also found in many bacteria that lack METTL20. Thus, we here identify AtMETTL20 as the first enzyme catalyzing RpL7/L12 methylation. In summary, here we have identified and characterized a novel bacterial lysine-specific methyltransferase with unprecedented dual substrate specificity within the seven β-strand class of lysine-specific methyltransferases, as it targets two apparently unrelated substrates, ETFβ and RpL7/L12. Moreover, the present work establishes METTL20-mediated methylation of ETFβ as the first lysine methylation event occurring in both bacteria and humans.
Collapse
Affiliation(s)
- Jędrzej Małecki
- From the Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| | - Helge-André Dahl
- From the Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| | - Anders Moen
- From the Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| | - Erna Davydova
- From the Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| | - Pål Ø Falnes
- From the Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| |
Collapse
|
47
|
Fusser M, Kernstock S, Aileni VK, Egge-Jacobsen W, Falnes PØ, Klungland A. Lysine Methylation of the Valosin-Containing Protein (VCP) Is Dispensable for Development and Survival of Mice. PLoS One 2015; 10:e0141472. [PMID: 26544960 PMCID: PMC4636187 DOI: 10.1371/journal.pone.0141472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 10/08/2015] [Indexed: 01/02/2023] Open
Abstract
Valosin-containing protein (VCP) is a homohexameric ATPase involved in a multitude cellular processes and it was recently shown that VCP is trimethylated at lysine 315 by the VCP lysine methyltransferase (VCPKMT). Here, we generated and validated a constitutive knockout mouse by targeting exon 1-4 of the Vcpkmt gene. We show that Vcpkmt is ubiquitously expressed in all tissues examined and confirm the sub-cellular localization to the cytoplasm. We show by (I) mass spectrometric analysis, (II) VCPKMT-mediated in vitro methylation of VCP in cell extracts and (III) immunostaining with a methylation specific antibody, that in Vcpkmt-/- mice the methylation of lysine 315 in VCP is completely abolished. In contrast, VCP is almost exclusively trimethylated in wild-type mice. Furthermore, we investigated the specificity of VCPKMT with in vitro methylation assays using as source of substrate protein extracts from Vcpkmt-/- mouse organs or three human Vcpkmt-/- cell lines. The results show that VCPKMT is a highly specific enzyme, and suggest that VCP is its sole substrate. The Vcpkmt-/- mice were viable, fertile and had no obvious pathological phenotype. Their body weight, life span and acute endurance capacity were comparable to wild-type controls. Overall the results show that VCPKMT is an enzyme required for methylation of K315 of VCP in vivo, but VCPKMT is not essential for development or survival under unstressed conditions.
Collapse
Affiliation(s)
- Markus Fusser
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Stefan Kernstock
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Vinay Kumar Aileni
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Wolfgang Egge-Jacobsen
- Glyconor Mass Spectrometry, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Pål Ø. Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Arne Klungland
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
48
|
Jakobsson ME, Moen A, Davidson B, Falnes PØ. Hsp70 (HSPA1) Lysine Methylation Status as a Potential Prognostic Factor in Metastatic High-Grade Serous Carcinoma. PLoS One 2015; 10:e0140168. [PMID: 26448330 PMCID: PMC4598032 DOI: 10.1371/journal.pone.0140168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/22/2015] [Indexed: 11/18/2022] Open
Abstract
Cellular proteins are subject to frequent methylation on lysine residues, introduced by specific methyltransferases, and each lysine residue can receive up to three methyl groups. Histone methylations, which are key determinants of chromatin state and transcriptional status, have been subject to particularly intense studies, but methylations on non-histone protein substrates are also abundant and biologically significant. Numerous studies have addressed lysine methylation in the realm of cancer biology. A recent study used an antibody-based approach to investigate the methylation of Lys-561 of the stress-inducible Hsp70 protein HSPA1, focusing exclusively on dimethylated HSPA1, concluding that it was elevated in cancer [Cho et al. (2012), Nat. Commun.,3, 1072]. In the present study, we have performed a more extensive analysis of HSPA1 methylation status in cancer samples, using protein mass spectrometry. We found that the four methylation states of Lys561 on HSPA1 (un-, mono-, di- and trimethylated) could be measured accurately and reproducibly in samples from carcinomas. We investigated HSPA1 methylation in 70 effusions, representing 53 high-grade serous ovarian carcinomas and 17 breast carcinomas. Notably, we found the trimethylated form of HSPA1 to be predominant in the cancer samples. HSPA1 methylation was studied for association with clinicopathologic parameters, including chemotherapy response and survival. The trimethylated form was more prevalent in breast carcinoma effusions (p = 0.014), whereas the dimethylated (p = 0.025), monomethylated (p = 0.004) and unmethylated (p = 0.021) forms were overrepresented in the ovarian carcinomas. For the ovarian carcinomas, the monomethylated (p = 0.028) and unmethylated (p = 0.007) forms were significantly related to the presence of higher residual disease volume, while the unmethylated form was significantly associated with poor overall (p = 0.015) and progression-free (p = 0.012) survival. In conclusion, lysine methylation of HSPA1 differs between metastatic breast and ovarian carcinoma, and unmethylated HSPA1 shows potential as a prognostic marker in high-grade serous carcinoma.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Female
- HSP70 Heat-Shock Proteins/metabolism
- Humans
- Kaplan-Meier Estimate
- Lysine/metabolism
- Methylation
- Middle Aged
- Neoplasm Grading
- Neoplasms, Cystic, Mucinous, and Serous/metabolism
- Neoplasms, Cystic, Mucinous, and Serous/mortality
- Neoplasms, Cystic, Mucinous, and Serous/secondary
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/pathology
- Prognosis
- Proportional Hazards Models
- Protein Processing, Post-Translational
Collapse
Affiliation(s)
| | - Anders Moen
- Department of Biosciences, University of Oslo, N-0316, Oslo, Norway
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0424, Oslo, Norway
- University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-0316, Oslo, Norway
- * E-mail: (PØF); (BD)
| | - Pål Ø. Falnes
- Department of Biosciences, University of Oslo, N-0316, Oslo, Norway
- * E-mail: (PØF); (BD)
| |
Collapse
|
49
|
Jakobsson ME, Davydova E, Małecki J, Moen A, Falnes PØ. Saccharomyces cerevisiae Eukaryotic Elongation Factor 1A (eEF1A) Is Methylated at Lys-390 by a METTL21-Like Methyltransferase. PLoS One 2015; 10:e0131426. [PMID: 26115316 PMCID: PMC4482628 DOI: 10.1371/journal.pone.0131426] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/01/2015] [Indexed: 01/08/2023] Open
Abstract
The human methyltransferases (MTases) METTL21A and VCP-KMT (METTL21D) were recently shown to methylate single lysine residues in Hsp70 proteins and in VCP, respectively. The yet uncharacterized MTase encoded by the YNL024C gene in Saccharomyces cerevisiae shows high sequence similarity to METTL21A and VCP-KMT, as well as to their uncharacterized paralogues METTL21B and METTL21C. Despite being most similar to METTL21A, the Ynl024c protein does not methylate yeast Hsp70 proteins, which were found to be unmethylated on the relevant lysine residue. Eukaryotic translation elongation factor eEF1A in yeast has been reported to contain four methylated lysine residues (Lys30, Lys79, Lys318 and Lys390), and we here show that the YNL024C gene is required for methylation of eEF1A at Lys390, the only of these methylations for which the responsible MTase has not yet been identified. Lys390 was found in a partially monomethylated state in wild-type yeast cells but was exclusively unmethylated in a ynl024cΔ strain, and over-expression of Ynl024c caused a dramatic increase in Lys390 methylation, with trimethylation becoming the predominant state. Our results demonstrate that Ynl024c is the enzyme responsible for methylation of eEF1A at Lys390, and in accordance with prior naming of similar enzymes, we suggest that Ynl024c is renamed to Efm6 (Elongation factor MTase 6).
Collapse
Affiliation(s)
- Magnus E. Jakobsson
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 0316, Norway
- * E-mail: (MEJ); (PØF)
| | - Erna Davydova
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 0316, Norway
| | - Jędrzej Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 0316, Norway
| | - Anders Moen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 0316, Norway
| | - Pål Ø. Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 0316, Norway
- * E-mail: (MEJ); (PØF)
| |
Collapse
|