1
|
Bodner J, Vadlamani P, Helmin KA, Liu Q, Mendillo ML, Singer BD, Srivastava S, Foltz DR. Distinct Control of histone H1 expression within the Histone Locus body by CRAMP1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631602. [PMID: 39829857 PMCID: PMC11741267 DOI: 10.1101/2025.01.07.631602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Proper histone gene expression is critical to cell viability and maintaining genomic integrity. Multiple histone genes organized into three genomic loci encode for replication coupled core and linker histones. Histone gene expression and transcript processing is orchestrated in the histone locus body (HLB) within the nucleus. We identified human CRAMP1 as a selective regulator of linker histone H1 expression. CRAMP1 is recruited to the HLB in RPE1 hTERT cells. Affinity purification shows that CRAMP1 physically associates the HLB component GON4L (a.k.a. YARP). We show that the PAH domains of GON4L interact with CRAMP1. CRAMP1 disruption results in a loss of histone H1 expression and a reduction in H1 protein. CRAMP1 occupies the unmethylated promoters of the replication coupled linker histone genes that reside within the histone locus body, and the replication independent histone H1 loci, which reside in a region of the genome without other histone genes. Together these data identify CRAMP1 as a novel and selective regulator of histone H1 gene expression.
Collapse
|
2
|
Xu SB, Gao XK, Liang HD, Cong XX, Chen XQ, Zou WK, Tao JL, Pan ZY, Zhao J, Huang M, Bao Z, Zhou YT, Zheng LL. KPNA3 regulates histone locus body formation by modulating condensation and nuclear import of NPAT. J Cell Biol 2025; 224:e202401036. [PMID: 39621428 PMCID: PMC11613458 DOI: 10.1083/jcb.202401036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 12/11/2024] Open
Abstract
The histone locus body (HLB) is a membraneless organelle that determines the transcription of replication-dependent histones. However, the mechanisms underlying the appropriate formation of the HLB in the nucleus but not in the cytoplasm remain unknown. HLB formation is dependent on the scaffold protein NPAT. We identify KPNA3 as a specific importin that drives the nuclear import of NPAT by binding to the nuclear localization signal (NLS) sequence. NPAT undergoes phase separation, which is inhibited by KPNA3-mediated impairment of self-association. In this, a C-terminal self-interaction facilitator (C-SIF) motif, proximal to the NLS, binds the middle 431-1,030 sequence to mediate the self-association of NPAT. Mechanistically, the anchoring of KPNA3 to the NPAT-NLS sterically blocks C-SIF motif-dependent NPAT self-association. This leads to the suppression of aberrant NPAT condensation in the cytoplasm. Collectively, our study reveals a previously unappreciated role of KPNA3 in modulating HLB formation and delineates a steric hindrance mechanism that prevents inappropriate cytoplasmic NPAT condensation.
Collapse
Affiliation(s)
- Shui Bo Xu
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Xiu Kui Gao
- International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Hao Di Liang
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xia Cong
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Qi Chen
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Kai Zou
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Li Tao
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhao Yuan Pan
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiao Zhao
- Department of Endocrinology, Hangzhou First People’s Hospital, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Zhang Bao
- Department of Respiratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Ting Zhou
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Ling Zheng
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Geisler MS, Kemp JP, Duronio RJ. Directed stochasticity: Building biomolecular condensates in the right place. J Cell Biol 2025; 224:e202412035. [PMID: 39718563 DOI: 10.1083/jcb.202412035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Controlling biomolecular condensate formation within the nucleus is critical for genome function. In this issue, Xu et al. (https://doi.org/10.1083/jcb.202401036) report that KPNA3 promotes histone locus body formation and expression of replication-dependent histone genes by both importing NPAT into the nucleus and preventing NPAT condensation from improperly occurring in the cytoplasm.
Collapse
Affiliation(s)
- Mark S Geisler
- Curriculum in Genetics and Molecular Biology, University of North Carolina , Chapel Hill, NC, USA
| | - James P Kemp
- Integrative Program for Biological and Genome Sciences, University of North Carolina , Chapel Hill, NC, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina , Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina , Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina , Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Kemp JP, Geisler MS, Hoover M, Cho CY, O'Farrell PH, Marzluff WF, Duronio RJ. Cell cycle-regulated transcriptional pausing of Drosophila replication-dependent histone genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628706. [PMID: 39763942 PMCID: PMC11702538 DOI: 10.1101/2024.12.16.628706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Coordinated expression of replication-dependent (RD) histones genes occurs within the Histone Locus Body (HLB) during S phase, but the molecular steps in transcription that are cell cycle regulated are unknown. We report that Drosophila RNA Pol II promotes HLB formation and is enriched in the HLB outside of S phase, including G1-arrested cells that do not transcribe RD histone genes. In contrast, the transcription elongation factor Spt6 is enriched in HLBs only during S phase. Proliferating cells in the wing and eye primordium express full-length histone mRNAs during S phase but express only short nascent transcripts in cells in G1 or G2 consistent with these transcripts being paused and then terminated. Full-length transcripts are produced when Cyclin E/Cdk2 is activated as cells enter S phase. Thus, activation of transcription elongation by Cyclin E/Cdk2 and not recruitment of RNA pol II to the HLB is the critical step that links histone gene expression to cell cycle progression in Drosophila.
Collapse
Affiliation(s)
- James P Kemp
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Mark S Geisler
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Mia Hoover
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Chun-Yi Cho
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| | - Patrick H O'Farrell
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| | - William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Robert J Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599 USA
| |
Collapse
|
5
|
Fu Z, Jiang S, Sun Y, Zheng S, Zong L, Li P. Cut&tag: a powerful epigenetic tool for chromatin profiling. Epigenetics 2024; 19:2293411. [PMID: 38105608 PMCID: PMC10730171 DOI: 10.1080/15592294.2023.2293411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
Analysis of transcription factors and chromatin modifications at the genome-wide level provides insights into gene regulatory processes, such as transcription, cell differentiation and cellular response. Chromatin immunoprecipitation is the most popular and powerful approach for mapping chromatin, and other enzyme-tethering techniques have recently become available for living cells. Among these, Cleavage Under Targets and Tagmentation (CUT&Tag) is a relatively novel chromatin profiling method that has rapidly gained popularity in the field of epigenetics since 2019. It has also been widely adapted to map chromatin modifications and TFs in different species, illustrating the association of these chromatin epitopes with various physiological and pathological processes. Scalable single-cell CUT&Tag can be combined with distinct platforms to distinguish cellular identity, epigenetic features and even spatial chromatin profiling. In addition, CUT&Tag has been developed as a strategy for joint profiling of the epigenome, transcriptome or proteome on the same sample. In this review, we will mainly consolidate the applications of CUT&Tag and its derivatives on different platforms, give a detailed explanation of the pros and cons of this technique as well as the potential development trends and applications in the future.
Collapse
Affiliation(s)
- Zhijun Fu
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| | - Sanjie Jiang
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| | - Yiwen Sun
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| | - Shanqiao Zheng
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| | - Liang Zong
- BGI Tech Solutions Co, Ltd. BGI-Wuhan, Wuhan, China
| | - Peipei Li
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
6
|
Garland W, Jensen TH. Nuclear sorting of short RNA polymerase II transcripts. Mol Cell 2024; 84:3644-3655. [PMID: 39366352 DOI: 10.1016/j.molcel.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024]
Abstract
Mammalian genomes produce an abundance of short RNA. This is, to a large extent, due to the genome-wide and spurious activity of RNA polymerase II (RNAPII). However, it is also because the vast majority of initiating RNAPII, regardless of the transcribed DNA unit, terminates within a ∼3-kb early "pausing zone." Given that the resultant RNAs constitute both functional and non-functional species, their proper sorting is critical. One way to think about such quality control (QC) is that transcripts, from their first emergence, are relentlessly targeted by decay factors, which may only be avoided by engaging protective processing pathways. In a molecular materialization of this concept, recent progress has found that both "destructive" and "productive" RNA effectors assemble at the 5' end of capped RNA, orchestrated by the essential arsenite resistance protein 2 (ARS2) protein. Based on this principle, we here discuss early QC mechanisms and how these might sort short RNAs to their final fates.
Collapse
Affiliation(s)
- William Garland
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, Denmark.
| |
Collapse
|
7
|
Qu M, He Q, Bao H, Ji X, Shen T, Barkat MQ, Wu X, Zeng LH. Multiple roles of arsenic compounds in phase separation and membraneless organelles formation determine their therapeutic efficacy in tumors. J Pharm Anal 2024; 14:100957. [PMID: 39253293 PMCID: PMC11381784 DOI: 10.1016/j.jpha.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 09/11/2024] Open
Abstract
Arsenic compounds are widely used for the therapeutic intervention of multiple diseases. Ancient pharmacologists discovered the medicinal utility of these highly toxic substances, and modern pharmacologists have further recognized the specific active ingredients in human diseases. In particular, Arsenic trioxide (ATO), as a main component, has therapeutic effects on various tumors (including leukemia, hepatocellular carcinoma, lung cancer, etc.). However, its toxicity limits its efficacy, and controlling the toxicity has been an important issue. Interestingly, recent evidence has pointed out the pivotal roles of arsenic compounds in phase separation and membraneless organelles formation, which may determine their toxicity and therapeutic efficacy. Here, we summarize the arsenic compounds-regulating phase separation and membraneless organelles formation. We further hypothesize their potential involvement in the therapy and toxicity of arsenic compounds, highlighting potential mechanisms underlying the clinical application of arsenic compounds.
Collapse
Affiliation(s)
- Meiyu Qu
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hangyang Bao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xing Ji
- Department of Pharmacology, Hangzhou City University School of Medicine, Hangzhou, 310015, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Hangzhou City University School of Medicine, Hangzhou, 310015, China
| |
Collapse
|
8
|
Catalanotto M, Vaz JM, Abshire C, Youngblood R, Chu M, Levine H, Jolly MK, Dragoi AM. Dual role of CASP8AP2/FLASH in regulating epithelial-to-mesenchymal transition plasticity (EMP). Transl Oncol 2024; 39:101837. [PMID: 37984255 PMCID: PMC10689956 DOI: 10.1016/j.tranon.2023.101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is a developmental program that consists of the loss of epithelial features concomitant with the acquisition of mesenchymal features. Activation of EMT in cancer facilitates the acquisition of aggressive traits and cancer invasion. EMT plasticity (EMP), the dynamic transition between multiple hybrid states in which cancer cells display both epithelial and mesenchymal markers, confers survival advantages for cancer cells in constantly changing environments during metastasis. METHODS RNAseq analysis was performed to assess genome-wide transcriptional changes in cancer cells depleted for histone regulators FLASH, NPAT, and SLBP. Quantitative PCR and Western blot were used for the detection of mRNA and protein levels. Computational analysis was performed on distinct sets of genes to determine the epithelial and mesenchymal score in cancer cells and to correlate FLASH expression with EMT markers in the CCLE collection. RESULTS We demonstrate that loss of FLASH in cancer cells gives rise to a hybrid E/M phenotype with high epithelial scores even in the presence of TGFβ, as determined by computational methods using expression of predetermined sets of epithelial and mesenchymal genes. Multiple genes involved in cell-cell junction formation are similarly specifically upregulated in FLASH-depleted cells, suggesting that FLASH acts as a repressor of the epithelial phenotype. Further, FLASH expression in cancer lines is inversely correlated with the epithelial score. Nonetheless, subsets of mesenchymal markers were distinctly up-regulated in FLASH, NPAT, or SLBP-depleted cells. CONCLUSIONS The ZEB1low/SNAILhigh/E-cadherinhigh phenotype described in FLASH-depleted cancer cells is driving a hybrid E/M phenotype in which epithelial and mesenchymal markers coexist.
Collapse
Affiliation(s)
| | - Joel Markus Vaz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Reneau Youngblood
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, USA
| | - Min Chu
- Feist-Weiller Cancer Center, INLET Core, LSUHSC, Shreveport, LA, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA; Department of Physics, Northeastern University, Boston, MA, USA; Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, USA; Feist-Weiller Cancer Center, INLET Core, LSUHSC, Shreveport, LA, USA.
| |
Collapse
|
9
|
Geisler MS, Kemp JP, Duronio RJ. Histone locus bodies: a paradigm for how nuclear biomolecular condensates control cell cycle regulated gene expression. Nucleus 2023; 14:2293604. [PMID: 38095604 PMCID: PMC10730174 DOI: 10.1080/19491034.2023.2293604] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
Histone locus bodies (HLBs) are biomolecular condensates that assemble at replication-dependent (RD) histone genes in animal cells. These genes produce unique mRNAs that are not polyadenylated and instead end in a conserved 3' stem loop critical for coordinated production of histone proteins during S phase of the cell cycle. Several evolutionarily conserved factors necessary for synthesis of RD histone mRNAs concentrate only in the HLB. Moreover, because HLBs are present throughout the cell cycle even though RD histone genes are only expressed during S phase, changes in HLB composition during cell cycle progression drive much of the cell cycle regulation of RD histone gene expression. Thus, HLBs provide a powerful opportunity to determine the cause-and-effect relationships between nuclear body formation and cell cycle regulated gene expression. In this review, we focus on progress during the last five years that has advanced our understanding of HLB biology.
Collapse
Affiliation(s)
- Mark S. Geisler
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - James P. Kemp
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Robert J. Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Hodkinson LJ, Smith C, Comstra HS, Ajani BA, Albanese EH, Arsalan K, Daisson AP, Forrest KB, Fox EH, Guerette MR, Khan S, Koenig MP, Lam S, Lewandowski AS, Mahoney LJ, Manai N, Miglay J, Miller BA, Milloway O, Ngo N, Ngo VD, Oey NF, Punjani TA, SiMa H, Zeng H, Schmidt CA, Rieder LE. A bioinformatics screen reveals hox and chromatin remodeling factors at the Drosophila histone locus. BMC Genom Data 2023; 24:54. [PMID: 37735352 PMCID: PMC10515271 DOI: 10.1186/s12863-023-01147-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/07/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Cells orchestrate histone biogenesis with strict temporal and quantitative control. To efficiently regulate histone biogenesis, the repetitive Drosophila melanogaster replication-dependent histone genes are arrayed and clustered at a single locus. Regulatory factors concentrate in a nuclear body known as the histone locus body (HLB), which forms around the locus. Historically, HLB factors are largely discovered by chance, and few are known to interact directly with DNA. It is therefore unclear how the histone genes are specifically targeted for unique and coordinated regulation. RESULTS To expand the list of known HLB factors, we performed a candidate-based screen by mapping 30 publicly available ChIP datasets of 27 unique factors to the Drosophila histone gene array. We identified novel transcription factor candidates, including the Drosophila Hox proteins Ultrabithorax (Ubx), Abdominal-A (Abd-A), and Abdominal-B (Abd-B), suggesting a new pathway for these factors in influencing body plan morphogenesis. Additionally, we identified six other factors that target the histone gene array: JIL-1, hormone-like receptor 78 (Hr78), the long isoform of female sterile homeotic (1) (fs(1)h) as well as the general transcription factors TBP associated factor 1 (TAF-1), Transcription Factor IIB (TFIIB), and Transcription Factor IIF (TFIIF). CONCLUSIONS Our foundational screen provides several candidates for future studies into factors that may influence histone biogenesis. Further, our study emphasizes the powerful reservoir of publicly available datasets, which can be mined as a primary screening technique.
Collapse
Affiliation(s)
- Lauren J Hodkinson
- Genetics and Molecular Biology graduate program, Emory University, Atlanta, GA, 30322, USA
| | - Connor Smith
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - H Skye Comstra
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Bukola A Ajani
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Eric H Albanese
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Kawsar Arsalan
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Alvaro Perez Daisson
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Katherine B Forrest
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Elijah H Fox
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Matthew R Guerette
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Samia Khan
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Madeleine P Koenig
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Shivani Lam
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Ava S Lewandowski
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Lauren J Mahoney
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Nasserallah Manai
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - JonCarlo Miglay
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Blake A Miller
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Olivia Milloway
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Nhi Ngo
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Vu D Ngo
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Nicole F Oey
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Tanya A Punjani
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - HaoMin SiMa
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Hollis Zeng
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Casey A Schmidt
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| | - Leila E Rieder
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Ghule PN, Boyd JR, Kabala F, Fritz AJ, Bouffard NA, Gao C, Bright K, Macfarlane J, Seward DJ, Pegoraro G, Misteli T, Lian JB, Frietze S, Stein JL, van Wijnen AJ, Stein GS. Spatiotemporal higher-order chromatin landscape of human histone gene clusters at histone locus bodies during the cell cycle in breast cancer progression. Gene 2023; 872:147441. [PMID: 37094694 PMCID: PMC10370284 DOI: 10.1016/j.gene.2023.147441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Human Histone Locus Bodies (HLBs) are nuclear subdomains comprised of clustered histone genes that are coordinately regulated throughout the cell cycle. We addressed temporal-spatial higher-order genome organization for time-dependent chromatin remodeling at HLBs that supports control of cell proliferation. Proximity distances of specific genomic contacts within histone gene clusters exhibit subtle changes during the G1 phase in MCF10 breast cancer progression model cell lines. This approach directly demonstrates that the two principal histone gene regulatory proteins, HINFP (H4 gene regulator) and NPAT, localize at chromatin loop anchor-points, denoted by CTCF binding, supporting the stringent requirement for histone biosynthesis to package newly replicated DNA as chromatin. We identified a novel enhancer region located ∼ 2 MB distal to histone gene sub-clusters on chromosome 6 that consistently makes genomic contacts with HLB chromatin and is bound by NPAT. During G1 progression the first DNA loops form between one of three histone gene sub-clusters bound by HINFP and the distal enhancer region. Our findings are consistent with a model that the HINFP/NPAT complex controls the formation and dynamic remodeling of higher-order genomic organization of histone gene clusters at HLBs in early to late G1 phase to support transcription of histone mRNAs in S phase.
Collapse
Affiliation(s)
- Prachi N Ghule
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Joseph R Boyd
- Department of Biomedical and Health Sciences and University of Vermont Cancer Center, College of Nursing and Health Sciences, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Fleur Kabala
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Nicole A Bouffard
- Microscopy Imaging Center, Center for Biomedical Shared Resources at the University of Vermont, 150 Firestone Building, 149 Beaumont Ave, Burlington, VT 05405, USA
| | - Cong Gao
- Department of Biomedical and Health Sciences and University of Vermont Cancer Center, College of Nursing and Health Sciences, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Kathleen Bright
- Department of Biomedical and Health Sciences and University of Vermont Cancer Center, College of Nursing and Health Sciences, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Jill Macfarlane
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - David J Seward
- Department of Pathology and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility (HiTIF), Center for Cancer Research (CCR), National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tom Misteli
- Cell Biology of Genomes, Center for Cancer Research (CCR), National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Seth Frietze
- Department of Biomedical and Health Sciences and University of Vermont Cancer Center, College of Nursing and Health Sciences, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Andre J van Wijnen
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
12
|
Hodkinson LJ, Smith C, Comstra HS, Albanese EH, Ajani BA, Arsalan K, Daisson AP, Forrest KB, Fox EH, Guerette MR, Khan S, Koenig MP, Lam S, Lewandowski AS, Mahoney LJ, Manai N, Miglay J, Miller BA, Milloway O, Ngo VD, Oey NF, Punjani TA, SiMa H, Zeng H, Schmidt CA, Rieder LE. A bioinformatics screen reveals Hox and chromatin remodeling factors at the Drosophila histone locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523008. [PMID: 36711759 PMCID: PMC9881919 DOI: 10.1101/2023.01.06.523008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cells orchestrate histone biogenesis with strict temporal and quantitative control. To efficiently regulate histone biogenesis, the repetitive Drosophila melanogaster replication-dependent histone genes are arrayed and clustered at a single locus. Regulatory factors concentrate in a nuclear body known as the histone locus body (HLB), which forms around the locus. Historically, HLB factors are largely discovered by chance, and few are known to interact directly with DNA. It is therefore unclear how the histone genes are specifically targeted for unique and coordinated regulation. To expand the list of known HLB factors, we performed a candidate-based screen by mapping 30 publicly available ChIP datasets and 27 factors to the Drosophila histone gene array. We identified novel transcription factor candidates, including the Drosophila Hox proteins Ultrabithorax, Abdominal-A and Abdominal-B, suggesting a new pathway for these factors in influencing body plan morphogenesis. Additionally, we identified six other transcription factors that target the histone gene array: JIL-1, Hr78, the long isoform of fs(1)h as well as the generalized transcription factors TAF-1, TFIIB, and TFIIF. Our foundational screen provides several candidates for future studies into factors that may influence histone biogenesis. Further, our study emphasizes the powerful reservoir of publicly available datasets, which can be mined as a primary screening technique.
Collapse
Affiliation(s)
- Lauren J Hodkinson
- Genetics and Molecular Biology graduate program, Emory University, Atlanta, GA 30322, USA
| | - Connor Smith
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - H Skye Comstra
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Eric H Albanese
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Bukola A Ajani
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Kawsar Arsalan
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | | | - Katherine B Forrest
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Elijah H Fox
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Matthew R Guerette
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Samia Khan
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Madeleine P Koenig
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Shivani Lam
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Ava S Lewandowski
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Lauren J Mahoney
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Nasserallah Manai
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - JonCarlo Miglay
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Blake A Miller
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Olivia Milloway
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Vu D Ngo
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Nicole F Oey
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Tanya A Punjani
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - HaoMin SiMa
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Hollis Zeng
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Casey A Schmidt
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Leila E Rieder
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| |
Collapse
|
13
|
Ielasi FS, Ternifi S, Fontaine E, Iuso D, Couté Y, Palencia A. Human histone pre-mRNA assembles histone or canonical mRNA-processing complexes by overlapping 3'-end sequence elements. Nucleic Acids Res 2022; 50:12425-12443. [PMID: 36447390 PMCID: PMC9756948 DOI: 10.1093/nar/gkac878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Human pre-mRNA processing relies on multi-subunit macromolecular complexes, which recognize specific RNA sequence elements essential for assembly and activity. Canonical pre-mRNA processing proceeds via the recognition of a polyadenylation signal (PAS) and a downstream sequence element (DSE), and produces polyadenylated mature mRNAs, while replication-dependent (RD) histone pre-mRNA processing requires association with a stem-loop (SL) motif and a histone downstream element (HDE), and produces cleaved but non-polyadenylated mature mRNAs. H2AC18 mRNA, a specific H2A RD histone pre-mRNA, can be processed to give either a non-polyadenylated mRNA, ending at the histone SL, or a polyadenylated mRNA. Here, we reveal how H2AC18 captures the two human pre-mRNA processing complexes in a mutually exclusive mode by overlapping a canonical PAS (AAUAAA) sequence element with a HDE. Disruption of the PAS sequence on H2AC18 pre-mRNA prevents recruitment of the canonical complex in vitro, without affecting the histone machinery. This shows how the relative position of cis-acting elements in histone pre-mRNAs allows the selective recruitment of distinct human pre-mRNA complexes, thereby expanding the capability to regulate 3' processing and polyadenylation.
Collapse
Affiliation(s)
- Francesco S Ielasi
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Sara Ternifi
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Emeline Fontaine
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Domenico Iuso
- Institute for Advanced Biosciences (IAB), Epigenetics and Cell Signaling, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Andrés Palencia
- To whom correspondence should be addressed. Tel: +33 476 54 95 75;
| |
Collapse
|
14
|
Sang R, Wu C, Xie S, Xu X, Lou Y, Ge W, Xi Y, Yang X. Mxc, a Drosophila homolog of mental retardation-associated gene NPAT, maintains neural stem cell fate. Cell Biosci 2022; 12:78. [PMID: 35642004 PMCID: PMC9153134 DOI: 10.1186/s13578-022-00820-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/22/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Mental retardation is a complex neurodevelopmental disorder. NPAT, a component of the histone locus body (HLB), has been implicated as a candidate gene for mental retardation, with a mechanism yet to be elucidated. RESULTS We identified that mxc, the Drosophila ortholog of NPAT, is required for the development of nervous system. Knockdown of mxc resulted in a massive loss of neurons and locomotion dysfunction in adult flies. In the mxc mutant or RNAi knockdown larval brains, the neuroblast (NB, also known as neural stem cell) cell fate is prematurely terminated and its proliferation potential is impeded concurrent with the blocking of the differentiation process of ganglion mother cells (GMCs). A reduction of transcription levels of histone genes was shown in mxc knockdown larval brains, accompanied by DNA double-strand breaks (DSBs). The subsidence of histone transcription levels leads to prematurely termination of NB cell fate and blockage of the GMC differentiation process. Our data also show that the increase in autophagy induced by mxc knockdown in NBs could be a defense mechanism in response to abnormal HLB assembly and premature termination of NB cell fate. CONCLUSIONS Our study demonstrate that Mxc plays a critical role in maintaining neural stem cell fate and GMC differentiation in the Drosophila larval brain. This discovery may shed light on the understanding of the pathogenesis of NPAT-related mental retardation in humans.
Collapse
Affiliation(s)
- Rong Sang
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cheng Wu
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shanshan Xie
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Xu
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yuhan Lou
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wanzhong Ge
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yongmei Xi
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaohang Yang
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Joint Institute of Genetics and Genomic Medicine, Between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
El Dika M, Fritz AJ, Toor RH, Rodriguez PD, Foley SJ, Ullah R, Nie D, Banerjee B, Lohese D, Glass KC, Frietze S, Ghule PN, Heath JL, Imbalzano AN, van Wijnen A, Gordon J, Lian JB, Stein JL, Stein GS, Stein GS. Epigenetic-Mediated Regulation of Gene Expression for Biological Control and Cancer: Fidelity of Mechanisms Governing the Cell Cycle. Results Probl Cell Differ 2022; 70:375-396. [PMID: 36348115 PMCID: PMC9703624 DOI: 10.1007/978-3-031-06573-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cell cycle is governed by stringent epigenetic mechanisms that, in response to intrinsic and extrinsic regulatory cues, support fidelity of DNA replication and cell division. We will focus on (1) the complex and interdependent processes that are obligatory for control of proliferation and compromised in cancer, (2) epigenetic and topological domains that are associated with distinct phases of the cell cycle that may be altered in cancer initiation and progression, and (3) the requirement for mitotic bookmarking to maintain intranuclear localization of transcriptional regulatory machinery to reinforce cell identity throughout the cell cycle to prevent malignant transformation.
Collapse
Affiliation(s)
- Mohammed El Dika
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Andrew J. Fritz
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rabail H. Toor
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | | - Stephen J. Foley
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rahim Ullah
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Daijing Nie
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Bodhisattwa Banerjee
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Dorcas Lohese
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Karen C. Glass
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Pharmacology, Burlington, VT 05405
| | - Seth Frietze
- University of Vermont, College of Nursing and Health Sciences, Burlington, VT 05405
| | - Prachi N. Ghule
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jessica L. Heath
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405,University of Vermont, Larner College of Medicine, Department of Pediatrics, Burlington, VT 05405
| | - Anthony N. Imbalzano
- UMass Chan Medical School, Department of Biochemistry and Molecular Biotechnology, Worcester, MA 01605
| | - Andre van Wijnen
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jonathan Gordon
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jane B. Lian
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Janet L. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Gary S. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | |
Collapse
|
16
|
Gibert JM, Peronnet F. The Paramount Role of Drosophila melanogaster in the Study of Epigenetics: From Simple Phenotypes to Molecular Dissection and Higher-Order Genome Organization. INSECTS 2021; 12:884. [PMID: 34680653 PMCID: PMC8537509 DOI: 10.3390/insects12100884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 01/06/2023]
Abstract
Drosophila melanogaster has played a paramount role in epigenetics, the study of changes in gene function inherited through mitosis or meiosis that are not due to changes in the DNA sequence. By analyzing simple phenotypes, such as the bristle position or cuticle pigmentation, as read-outs of regulatory processes, the identification of mutated genes led to the discovery of major chromatin regulators. These are often conserved in distantly related organisms such as vertebrates or even plants. Many of them deposit, recognize, or erase post-translational modifications on histones (histone marks). Others are members of chromatin remodeling complexes that move, eject, or exchange nucleosomes. We review the role of D. melanogaster research in three epigenetic fields: Heterochromatin formation and maintenance, the repression of transposable elements by piRNAs, and the regulation of gene expression by the antagonistic Polycomb and Trithorax complexes. We then describe how genetic tools available in D. melanogaster allowed to examine the role of histone marks and show that some histone marks are dispensable for gene regulation, whereas others play essential roles. Next, we describe how D. melanogaster has been particularly important in defining chromatin types, higher-order chromatin structures, and their dynamic changes during development. Lastly, we discuss the role of epigenetics in a changing environment.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement (LBD), Institut de Biologie Paris Seine (IBPS), Sorbonne Université, 75005 Paris, France
| | - Frédérique Peronnet
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement (LBD), Institut de Biologie Paris Seine (IBPS), Sorbonne Université, 75005 Paris, France
| |
Collapse
|
17
|
U7 deciphered: the mechanism that forms the unusual 3' end of metazoan replication-dependent histone mRNAs. Biochem Soc Trans 2021; 49:2229-2240. [PMID: 34351387 DOI: 10.1042/bst20210323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022]
Abstract
In animal cells, replication-dependent histone mRNAs end with a highly conserved stem-loop structure followed by a 4- to 5-nucleotide single-stranded tail. This unique 3' end distinguishes replication-dependent histone mRNAs from all other eukaryotic mRNAs, which end with a poly(A) tail produced by the canonical 3'-end processing mechanism of cleavage and polyadenylation. The pioneering studies of Max Birnstiel's group demonstrated nearly 40 years ago that the unique 3' end of animal replication-dependent histone mRNAs is generated by a distinct processing mechanism, whereby histone mRNA precursors are cleaved downstream of the stem-loop, but this cleavage is not followed by polyadenylation. The key role is played by the U7 snRNP, a complex of a ∼60 nucleotide U7 snRNA and many proteins. Some of these proteins, including the enzymatic component CPSF73, are shared with the canonical cleavage and polyadenylation machinery, justifying the view that the two metazoan pre-mRNA 3'-end processing mechanisms have a common evolutionary origin. The studies on U7 snRNP culminated in the recent breakthrough of reconstituting an entirely recombinant human machinery that is capable of accurately cleaving histone pre-mRNAs, and determining its structure in complex with a pre-mRNA substrate (with 13 proteins and two RNAs) that is poised for the cleavage reaction. The structure uncovered an unanticipated network of interactions within the U7 snRNP and a remarkable mechanism of activating catalytically dormant CPSF73 for the cleavage. This work provides a conceptual framework for understanding other eukaryotic 3'-end processing machineries.
Collapse
|
18
|
Abstract
The current model of replication-dependent (RD) histone biosynthesis posits that RD histone gene expression is coupled to DNA replication, occurring only in S phase of the cell cycle once DNA synthesis has begun. However, several key factors in the RD histone biosynthesis pathway are up-regulated by E2F or phosphorylated by CDK2, suggesting these processes may instead begin much earlier, at the point of cell-cycle commitment. In this study, we use both fixed- and live-cell imaging of human cells to address this question, revealing a hybrid model in which RD histone biosynthesis is first initiated in G1, followed by a strong increase in histone production in S phase of the cell cycle. This suggests a mechanism by which cells that have committed to the cell cycle build up an initial small pool of RD histones to be available for the start of DNA replication, before producing most of the necessary histones required in S phase. Thus, a clear distinction exists at completion of mitosis between cells that are born with the intention of proceeding through the cell cycle and replicating their DNA and cells that have chosen to exit the cell cycle and have no immediate need for histone synthesis.
Collapse
|
19
|
Colgan DF, Goodfellow RX, Colgan JD. The transcriptional regulator GON4L is required for viability and hematopoiesis in mice. Exp Hematol 2021; 98:25-35. [PMID: 33864850 DOI: 10.1016/j.exphem.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
The Gon4l gene encodes a putative transcriptional regulator implicated in the control of both cell differentiation and proliferation. Previously, we described a mutant mouse strain called Justy in which splicing of pre-mRNA generated from Gon4l is disrupted. This defect severely reduces, but does not abolish, GON4L protein expression and blocks the formation of early B-lineage progenitors, suggesting Gon4l is required for B-cell development in vertebrates. Yet, mutations that disable Gon4l in zebrafish impair several facets of embryogenesis that include the initiation of primitive hematopoiesis, arguing this gene is needed for multiple vertebrate developmental pathways. To better understand the importance of Gon4l in mammals, we created mice carrying an engineered version of Gon4l that can be completely inactivated by Cre-mediated recombination. Breeding mice heterozygous for the inactivated Gon4l allele failed to yield any homozygous-null offspring, indicating Gon4l is an essential gene in mammals. Consistent with this finding, as well previously published results, cell culture studies revealed that loss of Gon4l blocks cell proliferation and compromises viability, suggesting a fundamental role in the control of cell division and survival. Studies using mixed bone marrow chimeras confirmed Gon4l is required for B-cell development but also found it is needed to maintain definitive hematopoietic stem/progenitor cells that are the source of all hematopoietic cell lineages. Our findings reveal Gon4l is an essential gene in mammals that is required to form the entire hematopoietic system.
Collapse
Affiliation(s)
- Diana F Colgan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Renee X Goodfellow
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - John D Colgan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA; Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA; Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA.
| |
Collapse
|
20
|
Kemp JP, Yang XC, Dominski Z, Marzluff WF, Duronio RJ. Superresolution light microscopy of the Drosophila histone locus body reveals a core-shell organization associated with expression of replication-dependent histone genes. Mol Biol Cell 2021; 32:942-955. [PMID: 33788585 PMCID: PMC8108526 DOI: 10.1091/mbc.e20-10-0645] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The histone locus body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of replication-dependent (RD) histone mRNAs, which are the only eukaryotic mRNAs lacking a poly-A tail. Many nuclear bodies contain distinct domains, but how internal organization is related to nuclear body function is not fully understood. Here, we demonstrate using structured illumination microscopy that Drosophila HLBs have a “core–shell” organization in which the internal core contains transcriptionally active RD histone genes. The N-terminus of Mxc, which contains a domain required for Mxc oligomerization, HLB assembly, and RD histone gene expression, is enriched in the HLB core. In contrast, the C-terminus of Mxc is enriched in the HLB outer shell as is FLASH, a component of the active U7 snRNP that cotranscriptionally cleaves RD histone pre-mRNA. Consistent with these results, we show biochemically that FLASH binds directly to the Mxc C-terminal region. In the rapid S-M nuclear cycles of syncytial blastoderm Drosophila embryos, the HLB disassembles at mitosis and reassembles the core–shell arrangement as histone gene transcription is activated immediately after mitosis. Thus, the core–shell organization is coupled to zygotic histone gene transcription, revealing a link between HLB internal organization and RD histone gene expression.
Collapse
Affiliation(s)
- James P Kemp
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zbigniew Dominski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Robert J Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
21
|
Tsai SM, Chu KC, Jiang YJ. Newly identified Gon4l/Udu-interacting proteins implicate novel functions. Sci Rep 2020; 10:14213. [PMID: 32848183 PMCID: PMC7449961 DOI: 10.1038/s41598-020-70855-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/28/2020] [Indexed: 12/04/2022] Open
Abstract
Mutations of the Gon4l/udu gene in different organisms give rise to diverse phenotypes. Although the effects of Gon4l/Udu in transcriptional regulation have been demonstrated, they cannot solely explain the observed characteristics among species. To further understand the function of Gon4l/Udu, we used yeast two-hybrid (Y2H) screening to identify interacting proteins in zebrafish and mouse systems, confirmed the interactions by co-immunoprecipitation assay, and found four novel Gon4l-interacting proteins: BRCA1 associated protein-1 (Bap1), DNA methyltransferase 1 (Dnmt1), Tho complex 1 (Thoc1, also known as Tho1 or HPR1), and Cryptochrome circadian regulator 3a (Cry3a). Furthermore, all known Gon4l/Udu-interacting proteins—as found in this study, in previous reports, and in online resources—were investigated by Phenotype Enrichment Analysis. The most enriched phenotypes identified include increased embryonic tissue cell apoptosis, embryonic lethality, increased T cell derived lymphoma incidence, decreased cell proliferation, chromosome instability, and abnormal dopamine level, characteristics that largely resemble those observed in reported Gon4l/udu mutant animals. Similar to the expression pattern of udu, those of bap1, dnmt1, thoc1, and cry3a are also found in the brain region and other tissues. Thus, these findings indicate novel mechanisms of Gon4l/Udu in regulating CpG methylation, histone expression/modification, DNA repair/genomic stability, and RNA binding/processing/export.
Collapse
Affiliation(s)
- Su-Mei Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Kuo-Chang Chu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan. .,Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, Singapore, Singapore. .,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan. .,Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan. .,Department of Life Science, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
22
|
Pandey A, Stawiski EW, Durinck S, Gowda H, Goldstein LD, Barbhuiya MA, Schröder MS, Sreenivasamurthy SK, Kim SW, Phalke S, Suryamohan K, Lee K, Chakraborty P, Kode V, Shi X, Chatterjee A, Datta K, Khan AA, Subbannayya T, Wang J, Chaudhuri S, Gupta S, Shrivastav BR, Jaiswal BS, Poojary SS, Bhunia S, Garcia P, Bizama C, Rosa L, Kwon W, Kim H, Han Y, Yadav TD, Ramprasad VL, Chaudhuri A, Modrusan Z, Roa JC, Tiwari PK, Jang JY, Seshagiri S. Integrated genomic analysis reveals mutated ELF3 as a potential gallbladder cancer vaccine candidate. Nat Commun 2020; 11:4225. [PMID: 32839463 PMCID: PMC7445288 DOI: 10.1038/s41467-020-17880-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/23/2020] [Indexed: 02/08/2023] Open
Abstract
Gallbladder cancer (GBC) is an aggressive gastrointestinal malignancy with no approved targeted therapy. Here, we analyze exomes (n = 160), transcriptomes (n = 115), and low pass whole genomes (n = 146) from 167 gallbladder cancers (GBCs) from patients in Korea, India and Chile. In addition, we also sequence samples from 39 GBC high-risk patients and detect evidence of early cancer-related genomic lesions. Among the several significantly mutated genes not previously linked to GBC are ETS domain genes ELF3 and EHF, CTNNB1, APC, NSD1, KAT8, STK11 and NFE2L2. A majority of ELF3 alterations are frame-shift mutations that result in several cancer-specific neoantigens that activate T-cells indicating that they are cancer vaccine candidates. In addition, we identify recurrent alterations in KEAP1/NFE2L2 and WNT pathway in GBC. Taken together, these define multiple targetable therapeutic interventions opportunities for GBC treatment and management.
Collapse
Affiliation(s)
- Akhilesh Pandey
- Institute of Bioinformatics, Bangalore, Karnataka, 560066, India.
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
- Center for Individualized Medicine and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Eric W Stawiski
- Bioinformatics and Computational Biology Department, Genentech Inc, South San Francisco, CA, 94080, USA.
- Molecular Biology Department, Genentech Inc., South San Francisco, CA, 94080, USA.
- Research and Development Department, MedGenome Inc, Foster City, CA, 94404, USA.
| | - Steffen Durinck
- Bioinformatics and Computational Biology Department, Genentech Inc, South San Francisco, CA, 94080, USA
- Molecular Biology Department, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Harsha Gowda
- Institute of Bioinformatics, Bangalore, Karnataka, 560066, India
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Leonard D Goldstein
- Bioinformatics and Computational Biology Department, Genentech Inc, South San Francisco, CA, 94080, USA
- Molecular Biology Department, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Mustafa A Barbhuiya
- Institute of Bioinformatics, Bangalore, Karnataka, 560066, India
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Markus S Schröder
- Molecular Biology Department, Genentech Inc., South San Francisco, CA, 94080, USA
- SciGenom Labs, Cochin, Kerala, 682037, India
| | | | - Sun-Whe Kim
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 08826, South Korea
| | - Sameer Phalke
- Research and Development Department, MedGenome Labs Pvt. Ltd., Bangalore, Karnataka, 560099, India
| | - Kushal Suryamohan
- Research and Development Department, MedGenome Inc, Foster City, CA, 94404, USA
| | - Kayla Lee
- Research and Development Department, MedGenome Inc, Foster City, CA, 94404, USA
| | - Papia Chakraborty
- Research and Development Department, MedGenome Inc, Foster City, CA, 94404, USA
| | - Vasumathi Kode
- Research and Development Department, MedGenome Inc, Foster City, CA, 94404, USA
| | - Xiaoshan Shi
- Research and Development Department, MedGenome Inc, Foster City, CA, 94404, USA
| | - Aditi Chatterjee
- Institute of Bioinformatics, Bangalore, Karnataka, 560066, India
| | - Keshava Datta
- Institute of Bioinformatics, Bangalore, Karnataka, 560066, India
| | - Aafaque A Khan
- Institute of Bioinformatics, Bangalore, Karnataka, 560066, India
| | | | - Jing Wang
- Research and Development Department, MedGenome Inc, Foster City, CA, 94404, USA
| | - Subhra Chaudhuri
- Molecular Biology Department, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Sanjiv Gupta
- Department of Pathology, Cancer Hospital and Research Institute, Gwalior, Madhya Pradesh, 474009, India
| | - Braj Raj Shrivastav
- Department of Surgical Oncology, Cancer Hospital and Research Institute, Gwalior, Madhya Pradesh, 474009, India
| | - Bijay S Jaiswal
- Molecular Biology Department, Genentech Inc., South San Francisco, CA, 94080, USA
| | | | | | - Patricia Garcia
- Department of Pathology, Millennium Institute on Immunology and Immunotherapy, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Bizama
- Department of Pathology, Millennium Institute on Immunology and Immunotherapy, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lorena Rosa
- Applied Molecular and Cellular Biology PhD Program Universidad De la Frontera, Temuco, Chile
| | - Wooil Kwon
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 08826, South Korea
| | - Hongbeom Kim
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 08826, South Korea
| | - Youngmin Han
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 08826, South Korea
| | - Thakur Deen Yadav
- Department of Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Vedam L Ramprasad
- Research and Development Department, MedGenome Labs Pvt. Ltd., Bangalore, Karnataka, 560099, India
| | - Amitabha Chaudhuri
- Research and Development Department, MedGenome Inc, Foster City, CA, 94404, USA
| | - Zora Modrusan
- Molecular Biology Department, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Juan Carlos Roa
- Department of Pathology, Millennium Institute on Immunology and Immunotherapy, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Jin-Young Jang
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 08826, South Korea.
| | - Somasekar Seshagiri
- Molecular Biology Department, Genentech Inc., South San Francisco, CA, 94080, USA.
- SciGenom Research Foundation, 3rd Floor, Narayana Nethralaya Building, Narayana Health City, #258/A, Bommasandra, Hosur Road, Bangalore, Karnataka, 560099, India.
| |
Collapse
|
23
|
Bucholc K, Skrajna A, Adamska K, Yang XC, Krajewski K, Poznański J, Dadlez M, Domiński Z, Zhukov I. Structural Analysis of the SANT/Myb Domain of FLASH and YARP Proteins and Their Complex with the C-Terminal Fragment of NPAT by NMR Spectroscopy and Computer Simulations. Int J Mol Sci 2020; 21:ijms21155268. [PMID: 32722282 PMCID: PMC7432317 DOI: 10.3390/ijms21155268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022] Open
Abstract
FLICE-associated huge protein (FLASH), Yin Yang 1-Associated Protein-Related Protein (YARP) and Nuclear Protein, Ataxia-Telangiectasia Locus (NPAT) localize to discrete nuclear structures called histone locus bodies (HLBs) where they control various steps in histone gene expression. Near the C-terminus, FLASH and YARP contain a highly homologous domain that interacts with the C-terminal region of NPAT. Structural aspects of the FLASH-NPAT and YARP-NPAT complexes and their role in histone gene expression remain largely unknown. In this study, we used multidimensional NMR spectroscopy and in silico modeling to analyze the C-terminal domain in FLASH and YARP in an unbound form and in a complex with the last 31 amino acids of NPAT. Our results demonstrate that FLASH and YARP domains share the same fold of a triple α -helical bundle that resembles the DNA binding domain of Myb transcriptional factors and the SANT domain found in chromatin-modifying and remodeling complexes. The NPAT peptide contains a single α -helix that makes multiple contacts with α -helices I and III of the FLASH and YARP domains. Surprisingly, in spite of sharing a significant amino acid similarity, each domain likely binds NPAT using a unique network of interactions, yielding two distinct complexes. In silico modeling suggests that both complexes are structurally compatible with DNA binding, raising the possibility that they may function in identifying specific sequences within histone gene clusters, hence initiating the assembly of HLBs and regulating histone gene expression during cell cycle progression.
Collapse
Affiliation(s)
- Katarzyna Bucholc
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
| | - Aleksandra Skrajna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Kinga Adamska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
| | - Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
| | - Zbigniew Domiński
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Correspondence: (Z.D.); (I.Z.); Tel.: +48-22-592-2038 (I.Z.)
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
- Correspondence: (Z.D.); (I.Z.); Tel.: +48-22-592-2038 (I.Z.)
| |
Collapse
|
24
|
Ghule PN, Seward DJ, Fritz AJ, Boyd JR, van Wijnen AJ, Lian JB, Stein JL, Stein GS. Higher order genomic organization and regulatory compartmentalization for cell cycle control at the G1/S-phase transition. J Cell Physiol 2018; 233:6406-6413. [PMID: 29744889 DOI: 10.1002/jcp.26741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/19/2023]
Abstract
Fidelity of histone gene regulation, and ultimately of histone protein biosynthesis, is obligatory for packaging of newly replicated DNA into chromatin. Control of histone gene expression within the 3-dimensional context of nuclear organization is reflected by two well documented observations. DNA replication-dependent histone mRNAs are synthesized at specialized subnuclear domains designated histone locus bodies (HLBs), in response to activation of the growth factor dependent Cyclin E/CDK2/HINFP/NPAT pathway at the G1/S transition in mammalian cells. Complete loss of the histone gene regulatory factors HINFP or NPAT disrupts HLB integrity that is necessary for coordinate control of DNA replication and histone gene transcription. Here we review the molecular histone-related requirements for G1/S-phase progression during the cell cycle. Recently developed experimental strategies, now enable us to explore mechanisms involved in dynamic control of histone gene expression in the context of the temporal (cell cycle) and spatial (HLBs) remodeling of the histone gene loci.
Collapse
Affiliation(s)
- Prachi N Ghule
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - David J Seward
- Department of Pathology, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Joseph R Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Andre J van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| |
Collapse
|
25
|
Aik WS, Lin MH, Tan D, Tripathy A, Marzluff WF, Dominski Z, Chou CY, Tong L. The N-terminal domains of FLASH and Lsm11 form a 2:1 heterotrimer for histone pre-mRNA 3'-end processing. PLoS One 2017; 12:e0186034. [PMID: 29020104 PMCID: PMC5636114 DOI: 10.1371/journal.pone.0186034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/23/2017] [Indexed: 11/18/2022] Open
Abstract
Unlike canonical pre-mRNAs, animal replication-dependent histone pre-mRNAs lack introns and are processed at the 3'-end by a mechanism distinct from cleavage and polyadenylation. They have a 3' stem loop and histone downstream element (HDE) that are recognized by stem-loop binding protein (SLBP) and U7 snRNP, respectively. The N-terminal domain (NTD) of Lsm11, a component of U7 snRNP, interacts with FLASH NTD and these two proteins recruit the histone cleavage complex containing the CPSF-73 endonuclease for the cleavage reaction. Here, we determined crystal structures of FLASH NTD and found that it forms a coiled-coil dimer. Using solution light scattering, we characterized the stoichiometry of the FLASH NTD-Lsm11 NTD complex and found that it is a 2:1 heterotrimer, which is supported by observations from analytical ultracentrifugation and crosslinking.
Collapse
Affiliation(s)
- Wei Shen Aik
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Min-Han Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Dazhi Tan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Ashutosh Tripathy
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - William F. Marzluff
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Chi-Yuan Chou
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Marzluff WF, Koreski KP. Birth and Death of Histone mRNAs. Trends Genet 2017; 33:745-759. [PMID: 28867047 DOI: 10.1016/j.tig.2017.07.014] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022]
Abstract
In metazoans, histone mRNAs are not polyadenylated but end in a conserved stem-loop. Stem-loop binding protein (SLBP) binds to the stem-loop and is required for all steps in histone mRNA metabolism. The genes for the five histone proteins are linked. A histone locus body (HLB) forms at each histone gene locus. It contains factors essential for transcription and processing of histone mRNAs, and couples transcription and processing. The active form of U7 snRNP contains the HLB component FLASH (FLICE-associated huge protein), the histone cleavage complex (HCC), and a subset of polyadenylation factors including the endonuclease CPSF73. Histone mRNAs are rapidly degraded when DNA replication is inhibited by a 3' to 5' pathway that requires extensive uridylation of mRNA decay intermediates.
Collapse
Affiliation(s)
- William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Kaitlin P Koreski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
27
|
Rieder LE, Koreski KP, Boltz KA, Kuzu G, Urban JA, Bowman SK, Zeidman A, Jordan WT, Tolstorukov MY, Marzluff WF, Duronio RJ, Larschan EN. Histone locus regulation by the Drosophila dosage compensation adaptor protein CLAMP. Genes Dev 2017; 31:1494-1508. [PMID: 28838946 PMCID: PMC5588930 DOI: 10.1101/gad.300855.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/25/2017] [Indexed: 01/13/2023]
Abstract
Rieder et al. report that conserved GA repeat cis elements within the bidirectional histone3–histone4 promoter direct histone locus body (HLB) formation in Drosophila. In addition, the CLAMP zinc finger protein binds these GA repeat motifs, increases chromatin accessibility, enhances histone gene transcription, and promotes HLB formation. The conserved histone locus body (HLB) assembles prior to zygotic gene activation early during development and concentrates factors into a nuclear domain of coordinated histone gene regulation. Although HLBs form specifically at replication-dependent histone loci, the cis and trans factors that target HLB components to histone genes remained unknown. Here we report that conserved GA repeat cis elements within the bidirectional histone3–histone4 promoter direct HLB formation in Drosophila. In addition, the CLAMP (chromatin-linked adaptor for male-specific lethal [MSL] proteins) zinc finger protein binds these GA repeat motifs, increases chromatin accessibility, enhances histone gene transcription, and promotes HLB formation. We demonstrated previously that CLAMP also promotes the formation of another domain of coordinated gene regulation: the dosage-compensated male X chromosome. Therefore, CLAMP binding to GA repeat motifs promotes the formation of two distinct domains of coordinated gene activation located at different places in the genome.
Collapse
Affiliation(s)
- Leila E Rieder
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Kaitlin P Koreski
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Kara A Boltz
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Guray Kuzu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Jennifer A Urban
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Sarah K Bowman
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Anna Zeidman
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - William T Jordan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Michael Y Tolstorukov
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biology, University of North Carolina at Chapel Hill, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biology, University of North Carolina at Chapel Hill, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
28
|
Fritz AJ, Ghule PN, Boyd JR, Tye CE, Page NA, Hong D, Shirley DJ, Weinheimer AS, Barutcu AR, Gerrard DL, Frietze S, van Wijnen AJ, Zaidi SK, Imbalzano AN, Lian JB, Stein JL, Stein GS. Intranuclear and higher-order chromatin organization of the major histone gene cluster in breast cancer. J Cell Physiol 2017; 233:1278-1290. [PMID: 28504305 DOI: 10.1002/jcp.25996] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
Abstract
Alterations in nuclear morphology are common in cancer progression. However, the degree to which gross morphological abnormalities translate into compromised higher-order chromatin organization is poorly understood. To explore the functional links between gene expression and chromatin structure in breast cancer, we performed RNA-seq gene expression analysis on the basal breast cancer progression model based on human MCF10A cells. Positional gene enrichment identified the major histone gene cluster at chromosome 6p22 as one of the most significantly upregulated (and not amplified) clusters of genes from the normal-like MCF10A to premalignant MCF10AT1 and metastatic MCF10CA1a cells. This cluster is subdivided into three sub-clusters of histone genes that are organized into hierarchical topologically associating domains (TADs). Interestingly, the sub-clusters of histone genes are located at TAD boundaries and interact more frequently with each other than the regions in-between them, suggesting that the histone sub-clusters form an active chromatin hub. The anchor sites of loops within this hub are occupied by CTCF, a known chromatin organizer. These histone genes are transcribed and processed at a specific sub-nuclear microenvironment termed the major histone locus body (HLB). While the overall chromatin structure of the major HLB is maintained across breast cancer progression, we detected alterations in its structure that may relate to gene expression. Importantly, breast tumor specimens also exhibit a coordinate pattern of upregulation across the major histone gene cluster. Our results provide a novel insight into the connection between the higher-order chromatin organization of the major HLB and its regulation during breast cancer progression.
Collapse
Affiliation(s)
- Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Prachi N Ghule
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Joseph R Boyd
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Natalie A Page
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Deli Hong
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont.,Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - David J Shirley
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont
| | - Adam S Weinheimer
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Ahmet R Barutcu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Diana L Gerrard
- Medical Laboratory and Radiation Sciences, University of Vermont College of Nursing and Health Sciences, Burlington, Vermont
| | - Seth Frietze
- Medical Laboratory and Radiation Sciences, University of Vermont College of Nursing and Health Sciences, Burlington, Vermont
| | - Andre J van Wijnen
- Department of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Anthony N Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| |
Collapse
|
29
|
Barr JY, Goodfellow RX, Colgan DF, Colgan JD. Early B Cell Progenitors Deficient for GON4L Fail To Differentiate Due to a Block in Mitotic Cell Division. THE JOURNAL OF IMMUNOLOGY 2017; 198:3978-3988. [PMID: 28381640 DOI: 10.4049/jimmunol.1602054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/14/2017] [Indexed: 11/19/2022]
Abstract
B cell development in Justy mutant mice is blocked due to a precursor mRNA splicing defect that depletes the protein GON4-like (GON4L) in B cell progenitors. Genetic and biochemical studies have suggested that GON4L is a transcriptional regulator that coordinates cell division with differentiation, but its role in B cell development is unknown. To understand the function of GON4L, we characterized B cell differentiation, cell cycle control, and mitotic gene expression in GON4L-deficient B cell progenitors from Justy mice. We found that these cells established key aspects of the transcription factor network that guides B cell development and proliferation and rearranged the IgH gene locus. However, despite intact IL-7 signaling, GON4L-deficient pro-B cell stage precursors failed to undergo a characteristic IL-7-dependent proliferative burst. These cells also failed to upregulate genes required for mitotic division, including those encoding the G1/S cyclin D3 and E2F transcription factors and their targets. Additionally, GON4L-deficient B cell progenitors displayed defects in DNA synthesis and passage through the G1/S transition, contained fragmented DNA, and underwent apoptosis. These phenotypes were not suppressed by transgenic expression of prosurvival factors. However, transgenic expression of cyclin D3 or other regulators of the G1/S transition restored pro-B cell development from Justy progenitor cells, suggesting that GON4L acts at the beginning of the cell cycle. Together, our findings indicate that GON4L is essential for cell cycle progression and division during the early stages of B cell development.
Collapse
Affiliation(s)
- Jennifer Y Barr
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Renee X Goodfellow
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; and
| | - Diana F Colgan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; and
| | - John D Colgan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; .,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; and.,Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
30
|
Duronio RJ, Marzluff WF. Coordinating cell cycle-regulated histone gene expression through assembly and function of the Histone Locus Body. RNA Biol 2017; 14:726-738. [PMID: 28059623 DOI: 10.1080/15476286.2016.1265198] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Metazoan replication-dependent (RD) histone genes encode the only known cellular mRNAs that are not polyadenylated. These mRNAs end instead in a conserved stem-loop, which is formed by an endonucleolytic cleavage of the pre-mRNA. The genes for all 5 histone proteins are clustered in all metazoans and coordinately regulated with high levels of expression during S phase. Production of histone mRNAs occurs in a nuclear body called the Histone Locus Body (HLB), a subdomain of the nucleus defined by a concentration of factors necessary for histone gene transcription and pre-mRNA processing. These factors include the scaffolding protein NPAT, essential for histone gene transcription, and FLASH and U7 snRNP, both essential for histone pre-mRNA processing. Histone gene expression is activated by Cyclin E/Cdk2-mediated phosphorylation of NPAT at the G1-S transition. The concentration of factors within the HLB couples transcription with pre-mRNA processing, enhancing the efficiency of histone mRNA biosynthesis.
Collapse
Affiliation(s)
- Robert J Duronio
- a Department of Biology , University of North Carolina , Chapel Hill , NC , USA.,b Department of Genetics , University of North Carolina , Chapel Hill , NC , USA.,c Integrative Program for Biological and Genome Sciences , University of North Carolina , Chapel Hill , NC , USA.,d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| | - William F Marzluff
- a Department of Biology , University of North Carolina , Chapel Hill , NC , USA.,c Integrative Program for Biological and Genome Sciences , University of North Carolina , Chapel Hill , NC , USA.,d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA.,e Department of Biochemistry and Biophysics , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
31
|
Sokolova M, Turunen M, Mortusewicz O, Kivioja T, Herr P, Vähärautio A, Björklund M, Taipale M, Helleday T, Taipale J. Genome-wide screen of cell-cycle regulators in normal and tumor cells identifies a differential response to nucleosome depletion. Cell Cycle 2016; 16:189-199. [PMID: 27929715 PMCID: PMC5283814 DOI: 10.1080/15384101.2016.1261765] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
To identify cell cycle regulators that enable cancer cells to replicate DNA and divide in an unrestricted manner, we performed a parallel genome-wide RNAi screen in normal and cancer cell lines. In addition to many shared regulators, we found that tumor and normal cells are differentially sensitive to loss of the histone genes transcriptional regulator CASP8AP2. In cancer cells, loss of CASP8AP2 leads to a failure to synthesize sufficient amount of histones in the S-phase of the cell cycle, resulting in slowing of individual replication forks. Despite this, DNA replication fails to arrest, and tumor cells progress in an elongated S-phase that lasts several days, finally resulting in death of most of the affected cells. In contrast, depletion of CASP8AP2 in normal cells triggers a response that arrests viable cells in S-phase. The arrest is dependent on p53, and preceded by accumulation of markers of DNA damage, indicating that nucleosome depletion is sensed in normal cells via a DNA-damage -like response that is defective in tumor cells.
Collapse
Affiliation(s)
- Maria Sokolova
- a Genome-Scale Biology Program, University of Helsinki , Helsinki , Finland
| | - Mikko Turunen
- a Genome-Scale Biology Program, University of Helsinki , Helsinki , Finland
| | - Oliver Mortusewicz
- b Science for Life laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm , Sweden
| | - Teemu Kivioja
- a Genome-Scale Biology Program, University of Helsinki , Helsinki , Finland
| | - Patrick Herr
- b Science for Life laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm , Sweden
| | - Anna Vähärautio
- a Genome-Scale Biology Program, University of Helsinki , Helsinki , Finland
| | - Mikael Björklund
- a Genome-Scale Biology Program, University of Helsinki , Helsinki , Finland
| | - Minna Taipale
- c Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm , Sweden
| | - Thomas Helleday
- b Science for Life laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm , Sweden
| | - Jussi Taipale
- a Genome-Scale Biology Program, University of Helsinki , Helsinki , Finland.,c Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
32
|
Maternal expression and early induction of histone gene transcription factor Hinfp sustains development in pre-implantation embryos. Dev Biol 2016; 419:311-320. [PMID: 27609454 DOI: 10.1016/j.ydbio.2016.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 01/06/2023]
Abstract
Fidelity of histone gene expression is important for normal cell growth and differentiation that is stringently controlled during development but is compromised during tumorigenesis. Efficient production of histones for packaging newly replicated DNA is particularly important for proper cell division and epigenetic control during the initial pre-implantation stages of embryonic development. Here, we addressed the unresolved question of when the machinery for histone gene transcription is activated in the developing zygote to accommodate temporal demands for histone gene expression. We examined induction of Histone Nuclear Factor P (HINFP), the only known transcription factor required for histone H4 gene expression, that binds directly to a unique H4 promoter-specific element to regulate histone H4 transcription. We show that Hinfp gene transcripts are stored in oocytes and maternally transmitted to the zygote. Transcripts from the paternal Hinfp gene, which reflect induction of zygotic gene expression, are apparent at the 4- to 8-cell stage, when most maternal mRNA pools are depleted. Loss of Hinfp expression due to gene ablation reduces cell numbers in E3.5 stage embryos and compromises implantation. Reduced cell proliferation is attributable to severe reduction in histone mRNA levels accompanied by reduced cell survival and genomic damage as measured by cleaved Caspase 3 and phospho-H2AX staining, respectively. We conclude that transmission of maternal Hinfp transcripts and zygotic activation of the Hinfp gene together are necessary to control H4 gene expression in early pre-implantation embryos in order to support normal embryonic development.
Collapse
|
33
|
Tatomer DC, Terzo E, Curry KP, Salzler H, Sabath I, Zapotoczny G, McKay DJ, Dominski Z, Marzluff WF, Duronio RJ. Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis. J Cell Biol 2016; 213:557-70. [PMID: 27241916 PMCID: PMC4896052 DOI: 10.1083/jcb.201504043] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/27/2016] [Indexed: 11/22/2022] Open
Abstract
The histone locus body (HLB) assembles at replication-dependent histone genes and concentrates factors required for histone messenger RNA (mRNA) biosynthesis. FLASH (Flice-associated huge protein) and U7 small nuclear RNP (snRNP) are HLB components that participate in 3' processing of the nonpolyadenylated histone mRNAs by recruiting the endonuclease CPSF-73 to histone pre-mRNA. Using transgenes to complement a FLASH mutant, we show that distinct domains of FLASH involved in U7 snRNP binding, histone pre-mRNA cleavage, and HLB localization are all required for proper FLASH function in vivo. By genetically manipulating HLB composition using mutations in FLASH, mutations in the HLB assembly factor Mxc, or depletion of the variant histone H2aV, we find that failure to concentrate FLASH and/or U7 snRNP in the HLB impairs histone pre-mRNA processing. This failure results in accumulation of small amounts of polyadenylated histone mRNA and nascent read-through transcripts at the histone locus. Thus, the HLB concentrates FLASH and U7 snRNP, promoting efficient histone mRNA biosynthesis and coupling 3' end processing with transcription termination.
Collapse
Affiliation(s)
- Deirdre C Tatomer
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Esteban Terzo
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Kaitlin P Curry
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Harmony Salzler
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Ivan Sabath
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Grzegorz Zapotoczny
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Daniel J McKay
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| | - Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - William F Marzluff
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J Duronio
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599 Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
34
|
Skrajna A, Yang XC, Tarnowski K, Fituch K, Marzluff WF, Dominski Z, Dadlez M. Mapping the Interaction Network of Key Proteins Involved in Histone mRNA Generation: A Hydrogen/Deuterium Exchange Study. J Mol Biol 2016; 428:1180-1196. [PMID: 26860583 DOI: 10.1016/j.jmb.2016.01.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/27/2016] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
Abstract
Histone pre-mRNAs are cleaved at the 3' end by a complex that contains U7 snRNP, the FLICE-associated huge protein (FLASH) and histone pre-mRNA cleavage complex (HCC) consisting of several polyadenylation factors. Within the complex, the N terminus of FLASH interacts with the N terminus of the U7 snRNP protein Lsm11, and together they recruit the HCC. FLASH through its distant C terminus independently interacts with the C-terminal SANT/Myb-like domain of nuclear protein, ataxia-telangiectasia locus (NPAT), a transcriptional co-activator required for expression of histone genes in S phase. To gain structural information on these interactions, we used mass spectrometry to monitor hydrogen/deuterium exchange in various regions of FLASH, Lsm11 and NPAT alone or in the presence of their respective binding partners. Our results indicate that the FLASH-interacting domain in Lsm11 is highly dynamic, while the more downstream region required for recruiting the HCC exchanges deuterium slowly and likely folds into a stable structure. In FLASH, a stable structure is adopted by the domain that interacts with Lsm11 and this domain is further stabilized by binding Lsm11. Notably, both hydrogen/deuterium exchange experiments and in vitro binding assays demonstrate that Lsm11, in addition to interacting with the N-terminal region of FLASH, also contacts the C-terminal SANT/Myb-like domain of FLASH, the same region that binds NPAT. However, while NPAT stabilizes this domain, Lsm11 causes its partial relaxation. These competing reactions may play a role in regulating histone gene expression in vivo.
Collapse
Affiliation(s)
- Aleksandra Skrajna
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiao-Cui Yang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Krzysztof Tarnowski
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Kinga Fituch
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - William F Marzluff
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Michał Dadlez
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|