1
|
Gharaee N, Wegrzyn-Woltosz J, Jiang J, Akhade VS, Bridgers J, Stubbins RJ, Hiwase D, Kutyna MM, Chan O, Komrokji R, Padron E, Deng Y, Cole G, Umlandt P, Fuller M, Kim A, Karsan A. Haploinsufficiency of miR-143 and miR-145 reveal targetable dependencies in resistant del(5q) myelodysplastic neoplasm. Leukemia 2025; 39:917-928. [PMID: 40000845 PMCID: PMC11976265 DOI: 10.1038/s41375-025-02537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 12/21/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Myelodysplastic neoplasms (MDS) are stem cell disorders characterized by ineffective hematopoiesis and risk of transformation to acute myeloid leukemia (AML). Chromosomal alterations are frequent in MDS, with interstitial deletion of chromosome 5q (del(5q)) being the most common. Lenalidomide is the current first-line treatment for del(5q) MDS and its efficacy relies on degradation of CK1α which is encoded by the CSNK1A1 gene located in the commonly deleted region (CDR) of chromosome 5q. However, lenalidomide-resistance is common, often secondary to loss-of-function mutations in TP53 or RUNX1. The CDR in del(5q) harbors several genes, including noncoding miRNAs, the loss of which contribute to disease phenotypes. miR-143 and miR-145 are located within the del(5q) CDR, but precise understanding of their role in human hematopoiesis and in the pathogenesis of del(5q) MDS is lacking. Here we provide evidence that deficiency of miR-143 and miR-145 plays a role in clonal expansion of del(5q) MDS. We show that insulin-like growth factor 1 receptor (IGF-1R) is a direct target of both miR-143 and miR-145. Our data demonstrate that IGF-1R inhibition reduces proliferation and viability of del(5q) cells in vitro and in vivo, and that lenalidomide-resistant del(5q) MDS cells depleted of either TP53 or RUNX1 are sensitive to IGF-1R inhibition. Resistant del(5q) MDS-L cells, as well as primary MDS marrow cells, are also sensitive to targeting of IGF-1R-related dependencies in del(5q) MDS, which include the Abl and MAPK signaling pathways. This work thus provides potential new therapeutic avenues for lenalidomide-resistant del(5q) MDS.
Collapse
Affiliation(s)
- Nadia Gharaee
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joanna Wegrzyn-Woltosz
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jihong Jiang
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Vijay Suresh Akhade
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Joshua Bridgers
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Ryan J Stubbins
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Leukemia/BMT Program of BC, BC Cancer and Vancouver Coastal Health, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Devendra Hiwase
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Monika M Kutyna
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | | | | | - Yu Deng
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gary Cole
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Patricia Umlandt
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Megan Fuller
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Ada Kim
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada.
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Khan MZ, Zugaza JL, Torres Aleman I. The signaling landscape of insulin-like growth factor 1. J Biol Chem 2025; 301:108047. [PMID: 39638246 PMCID: PMC11748690 DOI: 10.1016/j.jbc.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The sheer amplitude of biological actions of insulin-like growth factor I (IGF-1) affecting all types of cells in all tissues suggests a vast signaling landscape for this ubiquitous humoral signal. While the canonical signaling pathways primarily involve the Ras/MAPK and PI3K/AKT cascades, the evolutionary conservation of insulin-like peptides (ILPs) and their pathways hints at the potential for novel functions to emerge over time. Indeed, the evolutionary trajectory of ILPs opens the possibility of either novel functions for these two pathways, novel downstream routes, or both. Evidence supporting this notion includes observations of neofunctionalization in bony fishes or crustaceans, and the involvement of ILPs pathways in invertebrate eusociality or in vertebrate bone physiology, respectively. Such evolutionary processes likely contribute to the rich diversity of ILPs signaling observed today. Moreover, the interplay between conserved signaling pathways, such as those implicated in aging (predominantly involving the PI3K-AKT route), and lesser known pathways, such as those mediated by biased G-protein coupled receptors and others even less known, may underpin the context-dependent actions characteristic of ILPs signaling. While canonical IGF-1 signaling is often assumed to account for the intracellular pathways utilized by this growth factor, a comprehensive analysis of all the pathways mediated by the IGF-1 receptor (IGF-1R) remains lacking. This review aims to explore both canonical and non-canonical routes of IGF-1R action across various cell types, offering a detailed examination of the mechanisms underlying IGF-1 signaling and highlighting the significant gaps in our current understanding.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain
| | - Jose Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque Science Foundation, Bilbao, Spain
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain; Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
3
|
Bao Q, Wang A, Hong W, Wang Y, Li B, He L, Yuan X, Ma G. The c-Abl-RACK1-FAK signaling axis promotes renal fibrosis in mice through regulating fibroblast-myofibroblast transition. Cell Commun Signal 2024; 22:247. [PMID: 38689280 PMCID: PMC11059681 DOI: 10.1186/s12964-024-01603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Renal fibrosis is a prevalent manifestation of chronic kidney disease (CKD), and effective treatments for this disease are currently lacking. Myofibroblasts, which originate from interstitial fibroblasts, aggregate in the renal interstitium, leading to significant accumulation of extracellular matrix and impairment of renal function. The nonreceptor tyrosine kinase c-Abl (encoded by the Abl1 gene) has been implicated in the development of renal fibrosis. However, the precise role of c-Abl in this process and its involvement in fibroblast-myofibroblast transition (FMT) remain poorly understood. METHODS To investigate the effect of c-Abl in FMT during renal fibrosis, we investigated the expression of c-Abl in fibrotic renal tissues of patients with CKD and mouse models. We studied the phenotypic changes in fibroblast or myofibroblast-specific c-Abl conditional knockout mice. We explored the potential targets of c-Abl in NRK-49F fibroblasts. RESULTS In this study, fibrotic mouse and cell models demonstrated that c-Abl deficiency in fibroblasts mitigated fibrosis by suppressing fibroblast activation, fibroblast-myofibroblast transition, and extracellular matrix deposition. Mechanistically, c-Abl maintains the stability of the RACK1 protein, which serves as a scaffold for proteins such as c-Abl and focal adhesion kinase at focal adhesions, driving fibroblast activation and differentiation during renal fibrosis. Moreover, specifically targeting c-Abl deletion in renal myofibroblasts could prove beneficial in established kidney fibrosis by reducing RACK1 expression and diminishing the extent of fibrosis. CONCLUSIONS Our findings suggest that c-Abl plays a pathogenic role in interstitial fibrosis through the regulation of RACK1 protein stabilization and myofibroblast differentiation, suggesting a promising strategy for the treatment of CKD.
Collapse
Affiliation(s)
- Qianyi Bao
- School of Medicine, Southeast University, 87 Ding Jiaqiao Rd, Nanjing, 210009, P.R. China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Anyu Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Wenxuan Hong
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Yushu Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lin He
- School of Medicine, Southeast University, 87 Ding Jiaqiao Rd, Nanjing, 210009, P.R. China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiaodong Yuan
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, P.R. China.
| | - Gang Ma
- School of Medicine, Southeast University, 87 Ding Jiaqiao Rd, Nanjing, 210009, P.R. China.
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China.
| |
Collapse
|
4
|
Zhou Y, Yan F, Han X, Huang X, Cheng X, Geng Y, Jiang X, Han Y, Zhao M, Zhu L. NB-3 expression in endothelial cells contributes to the maintenance of blood brain barrier integrity in a mouse high-altitude cerebral edema model. Exp Neurol 2022; 354:114116. [PMID: 35584741 DOI: 10.1016/j.expneurol.2022.114116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
NB-3, a member of the contactin/F3 subgroup in the immunoglobulin superfamily, plays an important role in neural development and injury recovery. The blood brain barrier (BBB) is typically involved in the pathophysiology of neural disorders, such as hypoxic-ischemic brain injury. Our previous research found that NB-3 protects against brain damage in a mouse stroke model. However, its role in high-altitude disorders caused by hypobaric hypoxia exposure remains unknown. In the present study, we found that NB-3 was expressed in brain microvascular endothelial cells (BMECs) and responded to hypoxia stimulation. Conditional knockout of NB-3 in endothelial cells increased BBB leakage and downregulated tight junction proteins in vivo. NB-3 deficiency promoted the downregulation of tight junction proteins under Lipopolysaccharide (LPS)/hypoxia stimulation. Conversely, overexpression or supplementation with NB-3 alleviated endothelial barrier injuries. Transcriptome sequencing showed that NB-3 regulated various cell attachment genomic changes, including the Notch signaling pathway. Blocking the Notch signaling pathway increased VEGF/VEGFR2 pathway activation induced by LPS/hypoxia. Collectively, we present evidence that NB-3 plays key roles in maintaining BBB integrity under high-altitude cerebral edema conditions.
Collapse
Affiliation(s)
- Yanzhao Zhou
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Feng Yan
- Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xue Han
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xin Huang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiang Cheng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yanan Geng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiufang Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ying Han
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ming Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Lingling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; College of Life Sciences, Anhui Medical University, Hefei 230032, China; School of Pharmaceutical Sciences, University of South China, Hengyang 421001, China.
| |
Collapse
|
5
|
Fei L, Ma Y, Zhang M, Liu X, Luo Y, Wang C, Zhang H, Zhang W, Han Y. RACK1 promotes lung cancer cell growth via an MCM7/RACK1/ Akt signaling complex. Oncotarget 2018; 8:40501-40513. [PMID: 28465488 PMCID: PMC5522230 DOI: 10.18632/oncotarget.17120] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/03/2017] [Indexed: 12/17/2022] Open
Abstract
MCM7, a member of the miniature chromosome maintenance (MCM) protein family, is crucial for the initiation of DNA replication and proliferation in eukaryotic cells. In this report, we demonstrate that RACK1 regulates cell growth and cell cycle progression in human non-small-cell lung cancer by mediating MCM7 phosphorylation through an MCM7/RACK1/Akt signaling complex. RACK1 functions as a central scaffold that brings Akt into physical proximity with MCM7. Overexpression of RACK1 increases interactions between Akt and MCM7 and promotes Akt-dependent MCM7 phosphorylation, which in turn increases MCM7 binding to chromatin and MCM complex formation. Together, these changes promote DNA replication and cell proliferation. Our findings reveal a novel signaling pathway that regulates growth in non-small cell lung cancer.
Collapse
Affiliation(s)
- Liangru Fei
- Department of Pathology, School of Basic Medical Sciences, China Medical University, Shenyang 110000, China
| | - Yinan Ma
- Department of Pathology, School of Basic Medical Sciences, China Medical University, Shenyang 110000, China
| | - Meiyu Zhang
- Department of Pathology, School of Basic Medical Sciences, China Medical University, Shenyang 110000, China
| | - Xiaofang Liu
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Yuan Luo
- Department of Pathology, School of Basic Medical Sciences, China Medical University, Shenyang 110000, China
| | - Congcong Wang
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Haiyan Zhang
- Department of Pathology, The First People's Hospital of Jining, Shandong 272000, China
| | - Wenzhu Zhang
- Department of Pathology, School of Basic Medical Sciences, China Medical University, Shenyang 110000, China
| | - Yuchen Han
- Department of Pathology, School of Basic Medical Sciences, China Medical University, Shenyang 110000, China.,Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
6
|
Ly PTT, Stewart C, Pallen CJ. PTPα is required for laminin-2-induced Fyn-Akt signaling to drive oligodendrocyte differentiation. J Cell Sci 2018; 131:jcs.212076. [DOI: 10.1242/jcs.212076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 06/08/2018] [Indexed: 12/18/2022] Open
Abstract
Extrinsic signals that regulate oligodendrocyte maturation and subsequent myelination are essential for central nervous system development and regeneration. Deficiency in the extracellular factor laminin-2 (Lm2), as occurs in congenital muscular dystrophy, can lead to impaired oligodendroglial development and aberrant myelination, but many aspects of Lm2-regulated oligodendroglial signaling and differentiation remain undefined. We show that receptor-like protein tyrosine phosphatase alpha (PTPα) is essential for myelin basic protein expression and cell spreading during Lm2-induced oligodendrocyte differentiation. PTPα complexes with the Lm2 receptors α6β1 integrin and dystroglycan to transduce Fyn activation upon Lm2 engagement. In this way, PTPα mediates a subset of Lm2-induced signals required for differentiation that includes mTOR-dependent Akt activation but not Erk activation. We identify N-myc downstream regulated gene-1 (NDRG1) as a PTPα-regulated molecule during oligodendrocyte differentiation and distinguish Lm2 receptor-specific modes of Fyn-Akt-dependent and -independent NDRG1 phosphorylation. Altogether, this reveals a Lm2-regulated PTPα-Fyn-Akt signaling axis that is critical for key aspects of the gene expression and morphological changes that mark oligodendrocyte maturation.
Collapse
Affiliation(s)
- Philip T. T. Ly
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Craig Stewart
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Catherine J. Pallen
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| |
Collapse
|
7
|
Recent Advances in ADAM17 Research: A Promising Target for Cancer and Inflammation. Mediators Inflamm 2017; 2017:9673537. [PMID: 29230082 PMCID: PMC5688260 DOI: 10.1155/2017/9673537] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/15/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
Since its discovery, ADAM17, also known as TNFα converting enzyme or TACE, is now known to process over 80 different substrates. Many of these substrates are mediators of cancer and inflammation. The field of ADAM metalloproteinases is at a crossroad with many of the new potential therapeutic agents for ADAM17 advancing into the clinic. Researchers have now developed potential drugs for ADAM17 that are selective and do not have the side effects which were seen in earlier chemical entities that targeted this enzyme. ADAM17 inhibitors have broad therapeutic potential, with properties ranging from tumor immunosurveillance and overcoming drug and radiation resistance in cancer, as treatments for cardiac hypertrophy and inflammatory conditions such as inflammatory bowel disease and rheumatoid arthritis. This review focuses on substrates and inhibitors identified more recently for ADAM17 and their role in cancer and inflammation.
Collapse
|
8
|
β1,6 GlcNAc branches-modified protein tyrosine phosphatase alpha enhances its stability and promotes focal adhesion formation in MCF-7 cells. Biochem Biophys Res Commun 2017; 482:1455-1461. [DOI: 10.1016/j.bbrc.2016.12.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/08/2016] [Indexed: 11/19/2022]
|