1
|
Zhao Z, Vercellino I, Knoppová J, Sobotka R, Murray JW, Nixon PJ, Sazanov LA, Komenda J. The Ycf48 accessory factor occupies the site of the oxygen-evolving manganese cluster during photosystem II biogenesis. Nat Commun 2023; 14:4681. [PMID: 37542031 PMCID: PMC10403576 DOI: 10.1038/s41467-023-40388-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
Robust oxygenic photosynthesis requires a suite of accessory factors to ensure efficient assembly and repair of the oxygen-evolving photosystem two (PSII) complex. The highly conserved Ycf48 assembly factor binds to the newly synthesized D1 reaction center polypeptide and promotes the initial steps of PSII assembly, but its binding site is unclear. Here we use cryo-electron microscopy to determine the structure of a cyanobacterial PSII D1/D2 reaction center assembly complex with Ycf48 attached. Ycf48, a 7-bladed beta propeller, binds to the amino-acid residues of D1 that ultimately ligate the water-oxidising Mn4CaO5 cluster, thereby preventing the premature binding of Mn2+ and Ca2+ ions and protecting the site from damage. Interactions with D2 help explain how Ycf48 promotes assembly of the D1/D2 complex. Overall, our work provides valuable insights into the early stages of PSII assembly and the structural changes that create the binding site for the Mn4CaO5 cluster.
Collapse
Affiliation(s)
- Ziyu Zhao
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, S. Kensington Campus, London, SW7 2AZ, UK
| | - Irene Vercellino
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
- Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Jana Knoppová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, Třeboň, 379 81, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, Třeboň, 379 81, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budĕjovice, 37005, Czech Republic
| | - James W Murray
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, S. Kensington Campus, London, SW7 2AZ, UK
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, S. Kensington Campus, London, SW7 2AZ, UK.
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria.
| | - Josef Komenda
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, Třeboň, 379 81, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budĕjovice, 37005, Czech Republic.
| |
Collapse
|
2
|
Abstract
The nodes of Ranvier have clustered Na+ and K+ channels necessary for rapid and efficient axonal action potential conduction. However, detailed mechanisms of channel clustering have only recently been identified: they include two independent axon-glia interactions that converge on distinct axonal cytoskeletons. Here, we discuss how glial cell adhesion molecules and the extracellular matrix molecules that bind them assemble combinations of ankyrins, spectrins and other cytoskeletal scaffolding proteins, which cluster ion channels. We present a detailed molecular model, incorporating these overlapping mechanisms, to explain how the nodes of Ranvier are assembled in both the peripheral and central nervous systems.
Collapse
|
3
|
Tang S, Wang T, Zhang X, Guo Y, Xu P, Zeng J, Luo Z, Li D, Zheng Y, Luo Y, Yu C, Xu Z. Olfactomedin-3 Enhances Seizure Activity by Interacting With AMPA Receptors in Epilepsy Models. Front Cell Dev Biol 2020; 8:722. [PMID: 32850838 PMCID: PMC7431667 DOI: 10.3389/fcell.2020.00722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/14/2020] [Indexed: 11/22/2022] Open
Abstract
Background: OLFM3 (olfactomedin-3) is a member of the olfactomedin domain family, which has been found to stimulate the formation and adhesion of tight cell connections and to regulate cytoskeleton formation and cell migration. Differences in the gene coding for OLFM3 have been found between patients with epilepsy and controls. However, the exact role of OLFM3 in epilepsy has not been thoroughly investigated. Methods: Biochemical methods were used to assess OLFM3 expression and localization in the cortex of patients with temporal lobe epilepsy and in the hippocampus and cortex of epileptic mice. Electrophysiological recordings were used to measure the role of OLFM3 in regulating hippocampal excitability in a model of magnesium-free-induced seizure in vitro. Behavioral experiments were performed in a pentylenetetrazol (PTZ)-induced seizure model, and electroencephalograms (EEGs) were recorded in the chronic phase of the kainic acid (KA)-induced epilepsy model in vivo. OLFM3 and its interaction with AMPAR (α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor) subunits were analyzed by co-immunoprecipitation. Results: The expression of OLFM3 was increased in the cortex of patients with temporal lobe epilepsy and in the hippocampus and cortex of epileptic mice compared with controls. Interestingly, lentivirus-mediated overexpression of OLFM3 in the hippocampus increased the susceptibility of mice to PTZ-induced seizures, and OLFM3 knockdown had the opposite effect. OLFM3 affected AMPAR currents in a brain-slice model of epileptiform activity induced by Mg2+-free medium. We found that OLFM3 co-immunoprecipitation with GluA1 and GluA2. Furthermore, downregulation or overexpression of OLFM3 in the hippocampus affected the membrane expression of GluA1 and GluA2 in epileptic mice. Conclusion: These findings reveal that OLFM3 may enhance seizure activity by interacting with GluA1 and GluA2, potentially indicating a molecular mechanism for new therapeutic strategies.
Collapse
Affiliation(s)
- Shirong Tang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Neurology, The Thirteenth People's Hospital of Chongqing, Chongqing, China
| | - Tiancheng Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaogang Zhang
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yi Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Xu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical University, Zunyi, China
| | - Zhong Luo
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dongxu Li
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongsu Zheng
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuemei Luo
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Ghallab A, Myllys M, H. Holland C, Zaza A, Murad W, Hassan R, A. Ahmed Y, Abbas T, A. Abdelrahim E, Schneider KM, Matz-Soja M, Reinders J, Gebhardt R, Berres ML, Hatting M, Drasdo D, Saez-Rodriguez J, Trautwein C, G. Hengstler J. Influence of Liver Fibrosis on Lobular Zonation. Cells 2019; 8:E1556. [PMID: 31810365 PMCID: PMC6953125 DOI: 10.3390/cells8121556] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022] Open
Abstract
Little is known about how liver fibrosis influences lobular zonation. To address this question, we used three mouse models of liver fibrosis, repeated CCl4 administration for 2, 6 and 12 months to induce pericentral damage, as well as bile duct ligation (21 days) and mdr2-/- mice to study periportal fibrosis. Analyses were performed by RNA-sequencing, immunostaining of zonated proteins and image analysis. RNA-sequencing demonstrated a significant enrichment of pericentral genes among genes downregulated by CCl4; vice versa, periportal genes were enriched among the upregulated genes. Immunostaining showed an almost complete loss of pericentral proteins, such as cytochrome P450 enzymes and glutamine synthetase, while periportal proteins, such as arginase 1 and CPS1 became expressed also in pericentral hepatocytes. This pattern of fibrosis-associated 'periportalization' was consistently observed in all three mouse models and led to complete resistance to hepatotoxic doses of acetaminophen (200 mg/kg). Characterization of the expression response identified the inflammatory pathways TGFβ, NFκB, TNFα, and transcription factors NFKb1, Stat1, Hif1a, Trp53, and Atf1 among those activated, while estrogen-associated pathways, Hnf4a and Hnf1a, were decreased. In conclusion, liver fibrosis leads to strong alterations of lobular zonation, where the pericentral region adopts periportal features. Beside adverse consequences, periportalization supports adaptation to repeated doses of hepatotoxic compounds.
Collapse
Affiliation(s)
- Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany, (A.Z.); , (J.R.); (D.D.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany, (A.Z.); , (J.R.); (D.D.)
| | - Christian H. Holland
- Faculty of Medicine, Institute of Computational Biomedicine, Heidelberg University, Bioquant—Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; (C.H.H.); (J.S.-R.)
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Pauwelsstrasse 19, 52074 Aachen, Germany
| | - Ayham Zaza
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany, (A.Z.); , (J.R.); (D.D.)
| | - Walaa Murad
- Histology Department, Faculty of Medicine, South Valley University, Qena 83523, Egypt; (W.M.); (T.A.); (E.A.A.)
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany, (A.Z.); , (J.R.); (D.D.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Yasser A. Ahmed
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Tahany Abbas
- Histology Department, Faculty of Medicine, South Valley University, Qena 83523, Egypt; (W.M.); (T.A.); (E.A.A.)
| | - Eman A. Abdelrahim
- Histology Department, Faculty of Medicine, South Valley University, Qena 83523, Egypt; (W.M.); (T.A.); (E.A.A.)
| | - Kai Markus Schneider
- Department of Medicine III, University Hospital RWTH Aachen, Aachen University, 52074 Aachen, Germany; (K.M.S.); (M.-L.B.); (M.H.); (C.T.)
| | - Madlen Matz-Soja
- Faculty of Medicine, Rudolf-Schönheimer-Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany; (M.M.-S.); (R.G.)
| | - Jörg Reinders
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany, (A.Z.); , (J.R.); (D.D.)
| | - Rolf Gebhardt
- Faculty of Medicine, Rudolf-Schönheimer-Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany; (M.M.-S.); (R.G.)
| | - Marie-Luise Berres
- Department of Medicine III, University Hospital RWTH Aachen, Aachen University, 52074 Aachen, Germany; (K.M.S.); (M.-L.B.); (M.H.); (C.T.)
| | - Maximilian Hatting
- Department of Medicine III, University Hospital RWTH Aachen, Aachen University, 52074 Aachen, Germany; (K.M.S.); (M.-L.B.); (M.H.); (C.T.)
| | - Dirk Drasdo
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany, (A.Z.); , (J.R.); (D.D.)
- Modelling and Analysis for Medical and Biological Applications (MAMBA), Inria Paris & Sorbonne Université LJLL, 2 Rue Simone IFF, 75012 Paris, France
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Institute of Computational Biomedicine, Heidelberg University, Bioquant—Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; (C.H.H.); (J.S.-R.)
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Pauwelsstrasse 19, 52074 Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen University, 52074 Aachen, Germany; (K.M.S.); (M.-L.B.); (M.H.); (C.T.)
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany, (A.Z.); , (J.R.); (D.D.)
| |
Collapse
|
5
|
Pronker MF, van den Hoek H, Janssen BJC. Design and structural characterisation of olfactomedin-1 variants as tools for functional studies. BMC Mol Cell Biol 2019; 20:50. [PMID: 31726976 PMCID: PMC6857237 DOI: 10.1186/s12860-019-0232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Olfactomedin-1 (Olfm1; also known as Noelin or Pancortin) is a highly-expressed secreted brain and retina protein and its four isoforms have different roles in nervous system development and function. Structural studies showed that the long Olfm1 isoform BMZ forms a disulfide-linked tetramer with a V-shaped architecture. The tips of the Olfm1 "V" each consist of two C-terminal β-propeller domains that enclose a calcium binding site. Functional characterisation of Olfm1 may be aided by new biochemical tools derived from these core structural elements. RESULTS Here we present the production, purification and structural analysis of three novel monomeric, dimeric and tetrameric forms of mammalian Olfm1 for functional studies. We characterise these constructs structurally by high-resolution X-ray crystallography and small-angle X-ray scattering. The crystal structure of the Olfm1 β-propeller domain (to 1.25 Å) represents the highest-resolution structure of an olfactomedin family member to date, revealing features such as a hydrophilic tunnel containing water molecules running into the core of the domain where the calcium binding site resides. The shorter Olfactomedin-1 isoform BMY is a disulfide-linked tetramer with a shape similar to the corresponding region in the longer BMZ isoform. CONCLUSIONS These recombinantly-expressed protein tools should assist future studies, for example of biophysical, electrophysiological or morphological nature, to help elucidate the functions of Olfm1 in the mature mammalian brain. The control over the oligomeric state of Olfm1 provides a firm basis to better understand the role of Olfm1 in the (trans-synaptic) tethering or avidity-mediated clustering of synaptic receptors such as post-synaptic AMPA receptors and pre-synaptic amyloid precursor protein. In addition, the variation in domain composition of these protein tools provides a means to dissect the Olfm1 regions important for receptor binding.
Collapse
Affiliation(s)
- Matti F Pronker
- MRC Laboratory of Molecular Biology, Division of Neurobiology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. .,Bijvoet Center for Biomolecular Research, Utrecht University, Crystal and Structural Chemistry, Kruytgebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Hugo van den Hoek
- Bijvoet Center for Biomolecular Research, Utrecht University, Crystal and Structural Chemistry, Kruytgebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Department of Molecular Structural Biology, Max Planck institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Bert J C Janssen
- Bijvoet Center for Biomolecular Research, Utrecht University, Crystal and Structural Chemistry, Kruytgebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Hill SE, Cho H, Raut P, Lieberman RL. Calcium-ligand variants of the myocilin olfactomedin propeller selected from invertebrate phyla reveal cross-talk with N-terminal blade and surface helices. Acta Crystallogr D Struct Biol 2019; 75:817-824. [PMID: 31478904 PMCID: PMC6719662 DOI: 10.1107/s205979831901074x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/31/2019] [Indexed: 11/10/2022] Open
Abstract
Olfactomedins are a family of modular proteins found in multicellular organisms that all contain five-bladed β-propeller olfactomedin (OLF) domains. In support of differential functions for the OLF propeller, the available crystal structures reveal that only some OLF domains harbor an internal calcium-binding site with ligands derived from a triad of residues. For the myocilin OLF domain (myoc-OLF), ablation of the ion-binding site (triad Asp, Asn, Asp) by altering the coordinating residues affects the stability and overall structure, in one case leading to misfolding and glaucoma. Bioinformatics analysis reveals a variety of triads with possible ion-binding characteristics lurking in OLF domains in invertebrate chordates such as Arthropoda (Asp-Glu-Ser), Nematoda (Asp-Asp-His) and Echinodermata (Asp-Glu-Lys). To test ion binding and to extend the observed connection between ion binding and distal structural rearrangements, consensus triads from these phyla were installed in the myoc-OLF. All three protein variants exhibit wild-type-like or better stability, but their calcium-binding properties differ, concomitant with new structural deviations from wild-type myoc-OLF. Taken together, the results indicate that calcium binding is not intrinsically destabilizing to myoc-OLF or required to observe a well ordered side helix, and that ion binding is a differential feature that may underlie the largely elusive biological function of OLF propellers.
Collapse
Affiliation(s)
- Shannon E. Hill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332-0400, USA
| | - Hayeon Cho
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332-0400, USA
| | - Priyam Raut
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive NW, Atlanta, GA 30318, USA
| | - Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332-0400, USA
| |
Collapse
|
7
|
Hill SE, Kwon MS, Martin MD, Suntharalingam A, Hazel A, Dickey CA, Gumbart JC, Lieberman RL. Stable calcium-free myocilin olfactomedin domain variants reveal challenges in differentiating between benign and glaucoma-causing mutations. J Biol Chem 2019; 294:12717-12728. [PMID: 31270212 PMCID: PMC6709634 DOI: 10.1074/jbc.ra119.009419] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
Nonsynonymous gene mutations can be beneficial, neutral, or detrimental to the stability, structure, and biological function of the encoded protein, but the effects of these mutations are often not readily predictable. For example, the β-propeller olfactomedin domain of myocilin (mOLF) exhibits a complex interrelationship among structure(s), stability, and aggregation. Numerous mutations within mOLF are linked to glaucoma; the resulting variants are less stable, aggregation-prone, and sequestered intracellularly, causing cytotoxicity. Here, we report the first stable mOLF variants carrying substitutions in the calcium-binding site that exhibit solution characteristics indistinguishable from those of glaucoma variants. Crystal structures of these stable variants at 1.8-2.0-Å resolution revealed features that we could not predict by molecular dynamics simulations, including loss of loop structure, helix unwinding, and a blade shift. Double mutants that combined a stabilizing substitution and a selected glaucoma-causing single-point mutant rescued in vitro folding and stability defects. In the context of full-length myocilin, secretion of stable single variants was indistinguishable from that of the WT protein, and the double mutants were secreted to varying extents. In summary, our finding that mOLF can tolerate particular substitutions that render the protein stable despite a conformational switch emphasizes the complexities in differentiating between benign and glaucoma-causing variants and provides new insight into the possible biological function of myocilin.
Collapse
Affiliation(s)
- Shannon E. Hill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Michelle S. Kwon
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Mackenzie D. Martin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Amirthaa Suntharalingam
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida 33613
| | - Anthony Hazel
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Chad A. Dickey
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida 33613
| | - James C. Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332,School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, To whom correspondence should be addressed:
School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA 30332-0400. E-mail:
| |
Collapse
|
8
|
Sears NC, Boese EA, Miller MA, Fingert JH. Mendelian genes in primary open angle glaucoma. Exp Eye Res 2019; 186:107702. [PMID: 31238079 DOI: 10.1016/j.exer.2019.107702] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 01/09/2023]
Abstract
Mutations in each of three genes, myocilin (MYOC), optineurin (OPTN), and TANK binding kinase 1 (TBK1), may cause primary open-angle glaucoma (POAG) that is inherited as a Mendelian trait. MYOC mutations cause 3-4% of POAG cases with IOP >21 mmHg, while mutations in OPTN, TBK1, and MYOC each cause ∼1% of POAG with IOP ≤21 mmHg, i.e. normal tension glaucoma. Identification of these disease-causing genes has provided insights into glaucoma pathogenesis. Mutations in MYOC cause a cascade of abnormalities in the trabecular meshwork including intracellular retention of MYOC protein, decreased aqueous outflow, higher intraocular pressure, and glaucoma. Investigation of MYOC mutations demonstrated that abnormal retention of intracellular MYOC and stimulation of endoplasmic reticular (ER) stress may be important steps in the development of MYOC-associated glaucoma. Mutations in OPTN and TBK1 cause a dysregulation of autophagy which may directly cause retinal ganglion cell damage and normal tension glaucoma. Discovery of these Mendelian causes of glaucoma has also provided a new set of potential therapeutic targets that may ultimately lead to novel, gene-directed glaucoma treatments.
Collapse
Affiliation(s)
- Nathan C Sears
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Erin A Boese
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mathew A Miller
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - John H Fingert
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
9
|
Bang ML, Vainshtein A, Yang HJ, Eshed-Eisenbach Y, Devaux J, Werner HB, Peles E. Glial M6B stabilizes the axonal membrane at peripheral nodes of Ranvier. Glia 2018; 66:801-812. [PMID: 29282769 PMCID: PMC5812800 DOI: 10.1002/glia.23285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Abstract
Glycoprotein M6B and the closely related proteolipid protein regulate oligodendrocyte myelination in the central nervous system, but their role in the peripheral nervous system is less clear. Here we report that M6B is located at nodes of Ranvier in peripheral nerves where it stabilizes the nodal axolemma. We show that M6B is co-localized and associates with gliomedin at Schwann cell microvilli that are attached to the nodes. Developmental analysis of sciatic nerves, as well as of myelinating Schwann cells/dorsal root ganglion neurons cultures, revealed that M6B is already present at heminodes, which are considered the precursors of mature nodes of Ranvier. However, in contrast to gliomedin, which accumulates at heminodes with or prior to Na+ channels, we often detected Na+ channel clusters at heminodes without any associated M6B, indicating that it is not required for initial channel clustering. Consistently, nodal cell adhesion molecules (NF186, NrCAM), ion channels (Nav1.2 and Kv7.2), cytoskeletal proteins (AnkG and βIV spectrin), and microvilli components (pERM, syndecan3, gliomedin), are all present at both heminodes and mature nodes of Ranvier in Gpm6b null mice. Using transmission electron microscopy, we show that the absence of M6B results in progressive appearance of nodal protrusions of the nodal axolemma, that are often accompanied by the presence of enlarged mitochondria. Our results reveal that M6B is a Schwann cell microvilli component that preserves the structural integrity of peripheral nodes of Ranvier.
Collapse
Affiliation(s)
- Marie L Bang
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anya Vainshtein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hyun-Jeong Yang
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jerome Devaux
- Aix-Marseille University, CNRS, CRN2M-UMR 7286, Marseille, France
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Wambach JA, Stettner GM, Haack TB, Writzl K, Škofljanec A, Maver A, Munell F, Ossowski S, Bosio M, Wegner DJ, Shinawi M, Baldridge D, Alhaddad B, Strom TM, Grange DK, Wilichowski E, Troxell R, Collins J, Warner BB, Schmidt RE, Pestronk A, Cole FS, Steinfeld R. Survival among children with "Lethal" congenital contracture syndrome 11 caused by novel mutations in the gliomedin gene (GLDN). Hum Mutat 2017; 38:1477-1484. [PMID: 28726266 DOI: 10.1002/humu.23297] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 12/30/2022]
Abstract
Biallelic GLDN mutations have recently been identified among infants with lethal congenital contracture syndrome 11 (LCCS11). GLDN encodes gliomedin, a protein required for the formation of the nodes of Ranvier and development of the human peripheral nervous system. We report six infants and children from four unrelated families with biallelic GLDN mutations, four of whom survived beyond the neonatal period into infancy, childhood, and late adolescence with intensive care and chronic respiratory and nutritional support. Our findings expand the genotypic and phenotypic spectrum of LCCS11 and demonstrate that the condition may not necessarily be lethal in the neonatal period.
Collapse
Affiliation(s)
- Jennifer A Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri
| | - Georg M Stettner
- Department of Pediatric Neurology, University of Göttingen, Göttingen, Germany.,Division of Pediatric Neurology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Karin Writzl
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Andreja Škofljanec
- Department of Paediatric Intensive Care, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Francina Munell
- Neuromuscular Unit, Pediatric Neurology Department, Vall d'Hebron University Hospital', Vall d'Hebron Research Institute, Barcelona, Spain
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mattia Bosio
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Daniel J Wegner
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri
| | - Marwan Shinawi
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri
| | - Dustin Baldridge
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri
| | - Bader Alhaddad
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dorothy K Grange
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri
| | | | - Robin Troxell
- Mercy Children's Hospital Springfield, Springfield, Missouri
| | - James Collins
- Mercy Children's Hospital Springfield, Springfield, Missouri
| | - Barbara B Warner
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri.,Fetal Care Center, Washington University School of Medicine, St. Louis, Missouri
| | - Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Alan Pestronk
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.,Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - F Sessions Cole
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri
| | - Robert Steinfeld
- Department of Pediatric Neurology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Crystallographic anomalous diffraction data for the experimental phasing of two myelin proteins, gliomedin and periaxin. Data Brief 2017; 11:552-556. [PMID: 28861438 PMCID: PMC5567927 DOI: 10.1016/j.dib.2017.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/11/2017] [Accepted: 02/27/2017] [Indexed: 11/24/2022] Open
Abstract
We present datasets that can be used for the experimental phasing of crystal structures of two myelin proteins. The structures were recently described in the articles “Periaxin and AHNAK nucleoprotein 2 form intertwined homodimers through domain swapping” (H. Han, P. Kursula, 2014) [1] and “The olfactomedin domain from gliomedin is a β-propeller with unique structural properties” (H. Han, P. Kursula, 2015) [2]. Crystals of periaxin were derivatized with tungsten and xenon prior to data collection, and diffraction data for these crystals are reported at 3 and 1 wavelengths, respectively. Crystallographic data for two different pressurizing times for xenon are provided. Gliomedin was derivatized with platinum, and data for single-wavelength anomalous dispersion are included. The data can be used to repeat the phasing experiments, to analyze heavy atom binding sites in proteins, as well as to optimize future derivatization experiments of protein crystals with these and other heavy-atom compounds.
Collapse
|
12
|
Ranaivoson FM, Liu Q, Martini F, Bergami F, von Daake S, Li S, Lee D, Demeler B, Hendrickson WA, Comoletti D. Structural and Mechanistic Insights into the Latrophilin3-FLRT3 Complex that Mediates Glutamatergic Synapse Development. Structure 2015; 23:1665-1677. [PMID: 26235031 DOI: 10.1016/j.str.2015.06.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 06/09/2015] [Accepted: 06/21/2015] [Indexed: 10/23/2022]
Abstract
Latrophilins (LPHNs) are adhesion-like G-protein-coupled receptors implicated in attention-deficit/hyperactivity disorder. Recently, LPHN3 was found to regulate excitatory synapse number through trans interactions with fibronectin leucine-rich repeat transmembrane 3 (FLRT3). By isothermal titration calorimetry, we determined that only the olfactomedin (OLF) domain of LPHN3 is necessary for FLRT3 association. By multi-crystal native single-wavelength anomalous diffraction phasing, we determined the crystal structure of the OLF domain. This structure is a five-bladed β propeller with a Ca(2+) ion bound in the central pore, which is capped by a mobile loop that allows the ion to exchange with the solvent. The crystal structure of the OLF/FLRT3 complex shows that LPHN3-OLF in the closed state binds with high affinity to the concave face of FLRT3-LRR with a combination of hydrophobic and charged residues. Our study provides structural and functional insights into the molecular mechanism underlying the contribution of LPHN3/FLRT3 to the development of glutamatergic synapses.
Collapse
Affiliation(s)
- Fanomezana M Ranaivoson
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 89 French Street, New Brunswick, NJ 08901, USA
| | - Qun Liu
- New York Structural Biology Center, NSLSII, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Francesca Martini
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 89 French Street, New Brunswick, NJ 08901, USA
| | - Francesco Bergami
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 89 French Street, New Brunswick, NJ 08901, USA
| | - Sventja von Daake
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 89 French Street, New Brunswick, NJ 08901, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Lee
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Borries Demeler
- The University of Texas Health Science Center at San Antonio, Department of Biochemistry, San Antonio, TX 78229, USA
| | - Wayne A Hendrickson
- New York Structural Biology Center, NSLSII, Brookhaven National Laboratory, Upton, NY 11973, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Davide Comoletti
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 89 French Street, New Brunswick, NJ 08901, USA; Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
13
|
Lu YC, Nazarko OV, Sando R, Salzman GS, Li NS, Südhof TC, Araç D. Structural Basis of Latrophilin-FLRT-UNC5 Interaction in Cell Adhesion. Structure 2015; 23:1678-1691. [PMID: 26235030 DOI: 10.1016/j.str.2015.06.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/18/2015] [Accepted: 06/21/2015] [Indexed: 11/24/2022]
Abstract
Fibronectin leucine-rich repeat transmembrane proteins (FLRTs) are cell-adhesion molecules with emerging functions in cortical development and synapse formation. Their extracellular regions interact with latrophilins (LPHNs) to mediate synapse development, and with Uncoordinated-5 (UNC5)/netrin receptors to control the migration of neurons in the developing cortex. Here, we present the crystal structures of FLRT3 in isolation and in complex with LPHN3. The LPHN3/FLRT3 structure reveals that LPHN3 binds to FLRT3 at a site distinct from UNC5. Structure-based mutations specifically disrupt LPHN3/FLRT3 binding, but do not disturb their interactions with other proteins or their cell-membrane localization. Thus, they can be used as molecular tools to dissect the functions of FLRTs and LPHNs in vivo. Our results suggest that UNC5 and LPHN3 can simultaneously bind to FLRT3, forming a trimeric complex, and that FLRT3 may form transsynaptic complexes with both LPHN3 and UNC5. These findings provide molecular insights for understanding the role of cell-adhesion proteins in synapse function.
Collapse
Affiliation(s)
- Yue C Lu
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, GCIS W219, Chicago, IL 60637, USA
| | - Olha V Nazarko
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, GCIS W219, Chicago, IL 60637, USA
| | - Richard Sando
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Gabriel S Salzman
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, GCIS W219, Chicago, IL 60637, USA
| | - Nan-Sheng Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, GCIS W219, Chicago, IL 60637, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, GCIS W219, Chicago, IL 60637, USA.
| |
Collapse
|
14
|
Hill SE, Donegan RK, Nguyen E, Desai TM, Lieberman RL. Molecular Details of Olfactomedin Domains Provide Pathway to Structure-Function Studies. PLoS One 2015; 10:e0130888. [PMID: 26121352 PMCID: PMC4488277 DOI: 10.1371/journal.pone.0130888] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/26/2015] [Indexed: 11/18/2022] Open
Abstract
Olfactomedin (OLF) domains are found within extracellular, multidomain proteins in numerous tissues of multicellular organisms. Even though these proteins have been implicated in human disorders ranging from cancers to attention deficit disorder to glaucoma, little is known about their structure(s) and function(s). Here we biophysically, biochemically, and structurally characterize OLF domains from H. sapiens olfactomedin-1 (npoh-OLF, also called noelin, pancortin, OLFM1, and hOlfA), and M. musculus gliomedin (glio-OLF, also called collomin, collmin, and CRG-L2), and compare them with available structures of myocilin (myoc-OLF) recently reported by us and R. norvegicus glio-OLF and M. musculus latrophilin-3 (lat3-OLF) by others. Although the five-bladed β-propeller architecture remains unchanged, numerous physicochemical characteristics differ among these OLF domains. First, npoh-OLF and glio-OLF exhibit prominent, yet distinct, positive surface charges and copurify with polynucleotides. Second, whereas npoh-OLF and myoc-OLF exhibit thermal stabilities typical of human proteins near 55°C, and most myoc-OLF variants are destabilized and highly prone to aggregation, glio-OLF is nearly 20°C more stable and significantly more resistant to chemical denaturation. Phylogenetically, glio-OLF is most similar to primitive OLFs, and structurally, glio-OLF is missing distinguishing features seen in OLFs such as the disulfide bond formed by N- and C- terminal cysteines, the sequestered Ca2+ ion within the propeller central hydrophilic cavity, and a key loop-stabilizing cation-π interaction on the top face of npoh-OLF and myoc-OLF. While deciphering the explicit biological functions, ligands, and binding partners for OLF domains will likely continue to be a challenging long-term experimental pursuit, we used structural insights gained here to generate a new antibody selective for myoc-OLF over npoh-OLF and glio-OLF as a first step in overcoming the impasse in detailed functional characterization of these biomedically important protein domains.
Collapse
Affiliation(s)
- Shannon E. Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Rebecca K. Donegan
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Elaine Nguyen
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Tanay M. Desai
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Raquel L. Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
15
|
Balaji S. Internal symmetry in protein structures: prevalence, functional relevance and evolution. Curr Opin Struct Biol 2015; 32:156-66. [PMID: 26093245 DOI: 10.1016/j.sbi.2015.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
Symmetry has been found at various levels of biological organization in the protein structural universe. Numerous evolutionary studies have proposed connections between internal symmetry within protein tertiary structures, quaternary associations and protein functions. Recent computational methods, such as SymD and CE-Symm, facilitate a large-scale detection of internal symmetry in protein structures. Based on the results from these methods, about 20% of SCOP folds, superfamilies and families are estimated to have structures with internal symmetry (Figure 1d). All-β and membrane proteins fold classes contain a relatively high number of unique instances of internal symmetry. In addition to the axis of symmetry, anecdotal evidence suggests that, the region of connection or contact between symmetric units could coincide with functionally relevant sites within a fold. General principles that underlie protein internal symmetry and their connections to protein structural integrity and functions remain to be elucidated.
Collapse
Affiliation(s)
- Santhanam Balaji
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
16
|
Pronker MF, Bos TGAA, Sharp TH, Thies-Weesie DME, Janssen BJC. Olfactomedin-1 Has a V-shaped Disulfide-linked Tetrameric Structure. J Biol Chem 2015; 290:15092-101. [PMID: 25903135 PMCID: PMC4463452 DOI: 10.1074/jbc.m115.653485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 11/06/2022] Open
Abstract
Olfactomedin-1 (Olfm1; also known as noelin and pancortin) is a member of the olfactomedin domain-containing superfamily and a highly expressed neuronal glycoprotein important for nervous system development. It binds a number of secreted proteins and cell surface-bound receptors to induce cell signaling processes. Using a combined approach of x-ray crystallography, solution scattering, analytical ultracentrifugation, and electron microscopy we determined that full-length Olfm1 forms disulfide-linked tetramers with a distinctive V-shaped architecture. The base of the “V” is formed by two disulfide-linked dimeric N-terminal domains. Each of the two V legs consists of a parallel dimeric disulfide-linked coiled coil with a C-terminal β-propeller dimer at the tips. This agrees with our crystal structure of a C-terminal coiled-coil segment and β-propeller combination (Olfm1coil-Olf) that reveals a disulfide-linked dimeric arrangement with the β-propeller top faces in an outward exposed orientation. Similar to its family member myocilin, Olfm1 is stabilized by calcium. The dimer-of-dimers architecture suggests a role for Olfm1 in clustering receptors to regulate signaling and sheds light on the conformation of several other olfactomedin domain family members.
Collapse
Affiliation(s)
- Matti F Pronker
- From the Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and
| | - Trusanne G A A Bos
- From the Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and
| | - Thomas H Sharp
- Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Dominique M E Thies-Weesie
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute of Nanomaterials Science, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands and
| | - Bert J C Janssen
- From the Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and
| |
Collapse
|