1
|
Gheorghe AM, Stanciu M, Lebada IC, Nistor C, Carsote M. An Updated Perspective of the Clinical Features and Parathyroidectomy Impact in Primary Hyperparathyroidism Amid Multiple Endocrine Neoplasia Type 1 (MEN1): Focus on Bone Health. J Clin Med 2025; 14:3113. [PMID: 40364143 PMCID: PMC12072311 DOI: 10.3390/jcm14093113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Multiple endocrine neoplasia type 1 (MEN1)-related primary hyperparathyroidism (MPHPT) belongs to genetic PHPT that accounts for 10% of all PHPT cases, being considered the most frequent hereditary PHPT (less than 5% of all PHPT). Objective: We aimed to provide an updated clinical perspective with a double purpose: to highlight the clinical features in MPHPT, particularly, the bone health assessment, as well as the parathyroidectomy (PTx) impact. Methods: A comprehensive review of the latest 5-year, English-published, PubMed-accessed original studies. Results: The sample-based analysis (n = 17 studies) enrolled 2426 subjects (1720 with MPHPT). The study design was retrospective, except for one prospective and one case-control study. The maximum number of patients per study was of 517. Female predominance (an overall female-to-male ratio of 1.139) was confirmed (except for three studies). Age at MPHPT diagnosis (mean/median per study): 28.7 to 43.1 years; age at PTx: 32 to 43.5 years. Asymptomatic PHPT was reported in 38.3% to 67% of MPHPT. Mean total calcium varied between 1.31 and 2.88 mmol/L and highest PTH was of 317.2 pg/mL. Two studies reported similar PTH and calcaemic levels in MPHPT vs. sporadic PHPT, while another found higher values in MPHPT. Symptomatic vs. asymptomatic patients with MPHPT had similar PTH and serum calcium levels (n = 1). Osteoporosis (n = 8, N = 723 with MPHPT) was reported in 10% to 55.5% of cases, osteopenia in 5.88% to 43.9% (per study); overall fracture rate was 10% (of note, one study showed 0%). Lower bone mineral density (BMD) at DXA (n = 4) in MPHPT vs. sporadic PHPT/controls was found by some studies (n = 3, and only a single study provided third distal radius DXA-BMD assessment), but not all (n = 1). Post-PTx DXA (n = 3, N = 190 with MPHPT) showed a BMD increase (e.g., +8.5% for lumbar spine, +2.1% for total hip, +4.3% for femoral neck BMD); however, post-operatory, BMD remains lower than controls. Trabecular bone score (TBS) analysis (n = 2, N = 142 with MPHPT vs. 397 with sporadic PHPT) showed a higher prevalence of reduced TBS (n = 1) or similar (n = 1). PTx analysis in MPHPT (n = 14): rate of subtotal PTx of 39% to 66.7% (per study) or less than subtotal PTx of 46.9% (n = 1). Post-PTx complications: persistent PHPT (5.6% to 25%), recurrent PHPT (16.87% to 30%, with the highest re-operation rate of 71% in one cohort); hypoparathyroidism (12.4% to 41.7%). Genetic analysis pointed out a higher risk of post-PTx recurrence in exon 10 MEN1 pathogenic variant. Post-PTx histological exam showed a multi-glandular disease in 40% to 52.1% of MPHPT, and a parathyroid carcinoma prevalence of 1%. Conclusions: MPHPT remains a challenging ailment amid a multi-layered genetic syndrome. Current data showed a lower age at MPHPT diagnosis and surgery than found in general population, and a rate of female predominance that is lower than seen in sporadic PHPT cases, but higher than known, for instance, in MEN2. The bone involvement showed heterogeneous results, more consistent for a lower BMD, but not necessarily for a lower TBS vs. controls. PTx involves a rather high rate of recurrence, persistence and redo surgery. About one out of ten patients with MPHPT might have a prevalent fracture and PTx improves the overall bone health, but seems not to restore it to the general population level, despite the young age of the subjects. This suggests that non-parathyroid components and potentially menin protein displays negative bone effects in MEN1.
Collapse
Affiliation(s)
- Ana-Maria Gheorghe
- PhD Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Mihaela Stanciu
- Department of Endocrinology, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania;
- Department of Endocrinology, Clinical County Emergency Hospital, 550245 Sibiu, Romania
| | - Ioana Codruta Lebada
- Department of Endocrinology, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania;
| | - Claudiu Nistor
- Department 4-Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Thoracic Surgery Department, “Dr. Carol Davila” Central Military University Emergency Hospital, 010242 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Clinical Endocrinology V, “C.I. Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania
| |
Collapse
|
2
|
Ukon Y, Kaito T, Hirai H, Kitahara T, Bun M, Kodama J, Tateiwa D, Nakagawa S, Ikuta M, Furuichi T, Kanie Y, Fujimori T, Takenaka S, Yamamuro T, Otsuru S, Okada S, Yamashita M, Imamura T. Cellular senescence by loss of Men1 in osteoblasts is critical for age-related osteoporosis. Aging Cell 2024; 23:e14254. [PMID: 39384404 PMCID: PMC11464108 DOI: 10.1111/acel.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 10/11/2024] Open
Abstract
Recent evidence suggests an association between age-related osteoporosis and cellular senescence in the bone; however, the specific bone cells that play a critical role in age-related osteoporosis and the mechanism remain unknown. Results revealed that age-related osteoporosis is characterized by the loss of osteoblast Men1. Osteoblast-specific inducible knockout of Men1 caused structural changes in the mice bones, matching the phenotypes in patients with age-related osteoporosis. Histomorphometrically, Men1-knockout mice femurs decreased osteoblastic activity and increased osteoclastic activity, hallmarks of age-related osteoporosis. Loss of Men1 induces cellular senescence via mTORC1 activation and AMPK suppression, rescued by metformin treatment. In bone morphogenetic protein-indued bone model, loss of Men1 leads to accumulation of senescent cells and osteoporotic bone formation, which are ameliorated by metformin. Our results indicate that cellular senescence in osteoblasts plays a critical role in age-related osteoporosis and that osteoblast-specific inducible Men1-knockout mice offer a promising model for developing therapeutics for age-related osteoporosis.
Collapse
Affiliation(s)
- Yuichiro Ukon
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Takashi Kaito
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Hiromasa Hirai
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Takayuki Kitahara
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Masayuki Bun
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Joe Kodama
- Department of OrthopedicsUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Daisuke Tateiwa
- Department of Orthopaedic SurgeryOsaka General Medical CenterOsakaOsakaJapan
| | - Shinichi Nakagawa
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Masato Ikuta
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Takuya Furuichi
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Yuya Kanie
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Takahito Fujimori
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Shota Takenaka
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Tadashi Yamamuro
- Division of Endocrinology, Diabetes and MetabolismBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Satoru Otsuru
- Department of OrthopedicsUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Seiji Okada
- Department of Orthopaedic SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Masakatsu Yamashita
- Department of ImmunologyEhime University Graduate School of MedicineToonEhimeJapan
| | - Takeshi Imamura
- Department of Molecular Medicine for PathogenesisEhime University Graduate School of MedicineToonEhimeJapan
| |
Collapse
|
3
|
Song A, Chen R, Guan W, Yu W, Yang Y, Wang J, Nie M, Jiang Y, Li M, Xia W, Xing X, Wang O. Trabecular Bone Score as a More Sensitive Tool to Evaluate Bone Involvement in MEN1-related Primary Hyperparathyroidism. J Clin Endocrinol Metab 2023; 109:135-142. [PMID: 37539859 DOI: 10.1210/clinem/dgad460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/07/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
CONTEXT The skeletal involvement of multiple endocrine neoplasia type 1-related primary hyperparathyroidism (MHPT) is not exactly the same as that of sporadic primary hyperparathyroidism (SHPT). Trabecular bone score (TBS) as a texture parameter has been reported to reflect trabecular bone damage. OBJECTIVE This study aimed to compare the clinical characteristics, especially the skeletal involvement, between patients with MHPT and SHPT. METHODS The clinical characteristics were retrospectively collected in 120 patients with MHPT and compared with 360 patients with SHPT in the same period. Dual-energy X-ray absorptiometry were conducted in some patients with MHPT, in whom bone mineral density (BMD) and calculated TBS derived from lumbar spine dual-energy X-ray absorptiometry images were compared with those of patients with SHPT. RESULTS Although the duration of disease in the MHPT group was longer, the age at hospital visit was significantly lower than that in the SHPT group (43.5 [interquartile range, 31.5-52.0] vs 52.0 [interquartile range, 40.5-61.0], P < .001). The proportion of skeletal involvement in the MHPT group was significantly lower. However, in the subgroup of MHPT cases (n = 86) with data of BMD, there was no significant difference in skeletal involvement from SHPT cases matched for gender and age. Although the BMD and TBS in the lumbar spines of patients with MHPT were lower than those of patients with SHPT (BMD: 0.91 ± 0.18 g/cm2 vs 1.01 ± 0.17 g/cm2; TBS: 1.22 ± 0.14 vs 1.29 ± 0.11, P < .001). According to TBS, among 34 patients with MHPT with normal BMD, 15 patients had bone microstructure damage. CONCLUSION The cancellous bone microarchitecture was more severely damaged in patients with MHPT according to TBS, which suggested that TBS could be a sensitive supplemental index in addition to BMD to identify bone-involvement risk in patients with MHPT.
Collapse
Affiliation(s)
- An Song
- Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Rong Chen
- Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wenmin Guan
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Yu
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yi Yang
- Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jiajia Wang
- Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Min Nie
- Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yan Jiang
- Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mei Li
- Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weibo Xia
- Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoping Xing
- Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ou Wang
- Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
4
|
Mathew UE, Goyal A, Upadhyay AD, Kandasamy D, Agarwal S, Sharma CK, Sharma A, Bal C, Tandon N, Jyotsna VP. Clinical profile and treatment outcomes among patients with sporadic and multiple endocrine neoplasia syndrome-related primary hyperparathyroidism. Clin Endocrinol (Oxf) 2023; 99:449-458. [PMID: 37393194 DOI: 10.1111/cen.14945] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
OBJECTIVE Accurate demarcation between multiple endocrine neoplasia, type 1 (MEN1)- related primary hyperparathyroidism (MPHPT) and sporadic PHPT (SPHPT) is important to plan the management of primary parathyroid disease and surveillance for other endocrine and nonendocrine tumours. The objective of this study is to compare the clinical, biochemical and radiological features and surgical outcomes in patients with MPHPT versus SPHPT and to identify the predictors of MEN1 syndrome in PHPT. DESIGN, PATIENTS AND MEASUREMENTS This was an ambispective observationalstudy involving 251 patients with SPHPT and 23 patients with MPHPT evaluated at the endocrine clinic of All India Institute of Medical Sciences, New Delhi, India between January 2015 and December 2021. RESULTS The prevalence of MEN1 syndrome among patients with PHPT was 8.2% and a genetic mutation was identified by Sanger sequencing in 26.1% of patients with MPHPT. Patients with MPHPT were younger (p < .001), had lower mean serum calcium (p = .01) and alkaline phosphatase (ALP; p = .03) levels and lower bone mineral density (BMD) Z score at lumbar spine (p < .001) and femoral neck (p = .007). The prevalence of renal stones (p = .03) and their complications (p = .006) was significantly higher in MPHPT group. On multivariable analysis, factors predictive of MPHPT were hyperplasia on histopathology [OR 40.1, p < .001], ALP levels within reference range [OR 5.6, p = .02] and lumbar spine BMD [OR 0.39 per unit increase in Z score, p < .001]. CONCLUSIONS Patients with MPHPT have more severe, frequent and early onset of bone and renal involvement despite milder biochemical features. A normal serum ALP, low BMD for age and gender at lumbar spine and histopathology evidence of hyperplasia are predictive factors for MEN1 syndrome in PHPT.
Collapse
Affiliation(s)
- Uthara E Mathew
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Alpesh Goyal
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish D Upadhyay
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | | | - Shipra Agarwal
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Chitresh K Sharma
- Department of Surgical Oncology, All India Institute of Medical Sciences, Bilaspur, Himachal Pradesh, India
| | - Arundhati Sharma
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Nikhil Tandon
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Viveka P Jyotsna
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Kalinina A, Semenova M, Bruter A, Varlamova E, Kubekina M, Pavlenko N, Silaeva Y, Deikin A, Antoshina E, Gorkova T, Trukhanova L, Salmina A, Novikova S, Voronkov D, Kazansky D, Khromykh L. Cyclophilin A as a Pro-Inflammatory Factor Exhibits Embryotoxic and Teratogenic Effects during Fetal Organogenesis. Int J Mol Sci 2023; 24:11279. [PMID: 37511039 PMCID: PMC10380070 DOI: 10.3390/ijms241411279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The precise balance of Th1, Th2, and Th17 cytokines is a key factor in successful pregnancy and normal embryonic development. However, to date, not all humoral factors that regulate and influence physiological pregnancy have been completely studied. Our data here pointed out cyclophilin A (CypA) as the adverse pro-inflammatory factor negatively affecting fetal development and associated with pregnancy complications. In different mouse models in vivo, we demonstrated dramatic embryotoxicity and teratogenicity of increased CypA levels during pregnancy. Using generated transgenic models, we showed that CypA overexpression in fetal tissues induced the death of all transgenic fetuses and complete miscarriage. Administration of recombinant human CypA in a high dose to pregnant females during fetal organogenesis (6.5-11.5 dpc) exhibited teratogenic effects, causing severe defects in the brain and bone development that could lead to malformations and postnatal behavioral and cognitive disorders in the offspring. Embryotoxic and teratogenic effects could be mediated by CypA-induced up-regulation of M1 macrophage polarization via activation of the STAT1/3 signaling pathways. Here, we propose secreted CypA as a novel marker of complicated pregnancy and a therapeutic target for the correction of pregnancy complications.
Collapse
Affiliation(s)
- Anastasiia Kalinina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 24 Kashirskoe Shosse, Moscow 115478, Russia
| | - Maria Semenova
- Department of Embryology, Faculty of Biology, Moscow State University, 1/12 Leninskie Gory, Moscow 119992, Russia
| | - Alexandra Bruter
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 24 Kashirskoe Shosse, Moscow 115478, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Ekaterina Varlamova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Marina Kubekina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Natalia Pavlenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Yulia Silaeva
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, Moscow 119334, Russia
| | - Alexey Deikin
- United Center for Genetic Technologies, Belgorod State National Research University, 85 Pobedi Street, Belgorod 308001, Russia
| | - Elena Antoshina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 24 Kashirskoe Shosse, Moscow 115478, Russia
| | - Tatyana Gorkova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 24 Kashirskoe Shosse, Moscow 115478, Russia
| | - Lubov Trukhanova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 24 Kashirskoe Shosse, Moscow 115478, Russia
| | - Alla Salmina
- Research Center of Neurology, 80 Volokolamskoye Shosse, Moscow 125367, Russia
| | - Svetlana Novikova
- Research Center of Neurology, 80 Volokolamskoye Shosse, Moscow 125367, Russia
| | - Dmitry Voronkov
- Research Center of Neurology, 80 Volokolamskoye Shosse, Moscow 125367, Russia
| | - Dmitry Kazansky
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 24 Kashirskoe Shosse, Moscow 115478, Russia
| | - Ludmila Khromykh
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 24 Kashirskoe Shosse, Moscow 115478, Russia
| |
Collapse
|
6
|
Troka I, Griffanti G, Canaff L, Hendy GN, Goltzman D, Nazhat SN. Effect of Menin Deletion in Early Osteoblast Lineage on the Mineralization of an In Vitro 3D Osteoid-like Dense Collagen Gel Matrix. Biomimetics (Basel) 2022; 7:biomimetics7030101. [PMID: 35892371 PMCID: PMC9329857 DOI: 10.3390/biomimetics7030101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/24/2022] [Accepted: 07/16/2022] [Indexed: 02/05/2023] Open
Abstract
Bone has a complex microenvironment formed by an extracellular matrix (ECM) composed mainly of mineralized type I collagen fibres. Bone ECM regulates signaling pathways important in the differentiation of osteoblast-lineage cells, necessary for bone mineralization and in preserving tissue architecture. Compared to conventional 2D cell cultures, 3D in vitro models may better mimic bone ECM and provide an environment to support osteoblastic differentiation. In this study, a biomimetic 3D osteoid-like dense collagen gel model was used to investigate the role of the nuclear protein menin plays in osteoblastic differentiation and matrix mineralization. Previous in vitro and in vivo studies have shown that when expressed at later stages of osteoblastic differentiation, menin modulates osteoblastogenesis and regulates bone mass in adult mice. To investigate the role of menin when expressed at earlier stages of the osteoblastic lineage, conditional knockout mice in which the Men1 gene is specifically deleted early (i.e., at the level of the pluripotent mesenchymal stem cell lineage), where generated and primary calvarial osteoblasts were cultured in plastically compressed dense collagen gels for 21 days. The proliferation, morphology and differentiation of isolated seeded primary calvarial osteoblasts from knockout (Prx1-Cre; Men1f/f) mice were compared to those isolated from wild-type (Men1f/f) mice. Primary calvarial osteoblasts from knockout and wild-type mice did not show differences in terms of proliferation. However, in comparison to wild-type cells, primary osteoblast cells derived from knockout mice demonstrated deficient mineralization capabilities and an altered gene expression profile when cultured in 3D dense collagen gels. In summary, these findings indicate that when expressed at earlier stages of osteoblast differentiation, menin is important in maintaining matrix mineralization in 3D dense collagen gel matrices, in vitro.
Collapse
Affiliation(s)
- Ildi Troka
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada;
| | - Gabriele Griffanti
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada;
| | - Lucie Canaff
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (L.C.); (D.G.)
| | - Geoffrey N. Hendy
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (L.C.); (D.G.)
| | - David Goltzman
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (L.C.); (D.G.)
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada;
- Correspondence:
| |
Collapse
|
7
|
Marini F, Giusti F, Iantomasi T, Cioppi F, Brandi ML. Bone phenotypes in multiple endocrine neoplasia type 1: survey on the MEN1 Florentine database. Endocr Connect 2022; 11:e210456. [PMID: 35324455 PMCID: PMC9175581 DOI: 10.1530/ec-21-0456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare, inherited cancer syndrome characterized by the development of multiple endocrine and non-endocrine tumors. MEN1 patients show a reduction of bone mass and a higher prevalence of early onset osteoporosis, compared to healthy population of the same age, gender, and ethnicity. During the monitoring and follow-up of MEN1 patients, the attention of clinicians is primarily focused on the diagnosis and therapy of tumors, while the assessment of bone health and mineral metabolism is, in many cases, marginally considered. In this study, we retrospectively analyzed bone and mineral metabolism features in a series of MEN1 patients from the MEN1 Florentine database. Biochemical markers of bone and mineral metabolism and densitometric parameters of bone mass were retrieved from the database and were analyzed based on age ranges and genders of patients and presence/absence of the three main MEN1-related endocrine tumor types. Our evaluation confirmed that patients with a MEN1 diagnosis have a high prevalence of earlyonset osteopenia and osteoporosis, in association with levels of serum and urinary markers of bone turnover higher than the normal reference values, regardless of their different MEN1 tumors. Fifty percent of patients younger than 26 years manifested osteopenia and 8.3% had osteoporosis, in at least one of the measured bone sites. These data suggest the importance of including biochemical and instrumental monitoring of bone metabolism and bone mass in the routine medical evaluation and follow-up of MEN1 patients and MEN1 carriers as important clinical aspects in the management of the syndrome.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Florence, Italy
| | - Francesca Giusti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Federica Cioppi
- University Hospital of Florence, Azienda Ospedaliero Universitaria Careggi (AOUC), Florence, Italy
| | - Maria Luisa Brandi
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Florence, Italy
| |
Collapse
|
8
|
Ma Q, Song C, Yin B, Shi Y, Ye L. The role of Trithorax family regulating osteogenic and Chondrogenic differentiation in mesenchymal stem cells. Cell Prolif 2022; 55:e13233. [PMID: 35481717 PMCID: PMC9136489 DOI: 10.1111/cpr.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) hold great promise and clinical efficacy in bone/cartilage regeneration. With a deeper understanding of stem cell biology over the past decade, epigenetics stands out as one of the most promising ways to control MSCs differentiation. Trithorax group (TrxG) proteins, including the COMPASS family, ASH1L, CBP/p300 as histone modifying factors, and the SWI/SNF complexes as chromatin remodelers, play an important role in gene expression regulation during the process of stem cell differentiation. This review summarises the components and functions of TrxG complexes. We provide an overview of the regulation mechanisms of TrxG in MSCs osteogenic and chondrogenic differentiation, and discuss the prospects of epigenetic regulation mediated by TrxG in bone and cartilage regeneration.
Collapse
Affiliation(s)
- Qingge Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenghao Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bei Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Gorbacheva A, Eremkina A, Goliusova D, Krupinova J, Mokrysheva N. The role of menin in bone pathology. Endocr Connect 2022; 11:EC-21-0494.R2. [PMID: 35148273 PMCID: PMC8942318 DOI: 10.1530/ec-21-0494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/11/2022] [Indexed: 12/02/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is the most common cause of hereditary primary hyperparathyroidism (PHPT). Bone disorders are considered one of the key symptoms in PHPT present with the significant reduction in bone mineral density and low-energy fractures. Previously, these bone disorders were believed to be caused solely by the increase in the level of parathyroid hormone and its subsequent effect on bone resorption. The current paradigm, however, states that the mutations in the menin gene, which cause the development of MEN1, can also affect the metabolism of the cells of the osteoid lineage. This review analyzes both the proven and the potential intracellular mechanisms through which menin can affect bone metabolism.
Collapse
Affiliation(s)
- Anna Gorbacheva
- Endocrinology Research Center, Moscow, Russian Federation
- Correspondence should be addressed to A Gorbacheva:
| | - Anna Eremkina
- Endocrinology Research Center, Moscow, Russian Federation
| | | | | | | |
Collapse
|
10
|
Abi‐Rafeh J, Asgari M, Troka I, Canaff L, Moussa A, Pasini D, Goltzman D. Genetic deletion of menin in mouse mesenchymal stem cells: an experimental and computational analysis. JBMR Plus 2022; 6:e10622. [PMID: 35509630 PMCID: PMC9059475 DOI: 10.1002/jbm4.10622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/17/2022] [Accepted: 03/06/2022] [Indexed: 11/16/2022] Open
Abstract
Loss‐of‐function mutations in the MEN1 tumor‐suppressor gene cause the multiple endocrine neoplasia type 1 syndrome. Menin, the MEN1 gene product, is expressed in many tissues, including bone, where its function remains elusive. We conditionally inactivated menin in mesenchymal stem cells (MSCs) using paired‐related homeobox 1 (Prx1)‐Cre and compared resultant skeletal phenotypes of Prx1‐Cre;Men1f/f menin‐knockout mice (KO) and wild‐type controls using in vivo and in vitro experimental approaches and mechanics simulation. Dual‐energy X‐ray absorptiometry demonstrated significantly reduced bone mineral density, and 3‐dimensional micro‐CT imaging revealed a decrease in trabecular bone volume, altered trabecular structure, and an increase in trabecular separation in KO mice at 6 and 9 months of age. Numbers of osteoblasts were unaltered, and dynamic histomorphometry demonstrated unaltered bone formation; however, osteoclast number and activity and receptor activator of NF‐κB ligand/osteoprotegerin (RANKL/OPG) mRNA profiles were increased, supporting increased osteoclastogenesis and bone resorption. In vitro, proliferative capabilities of bone marrow stem cells and differentiation of osteoblasts and mineralization were unaltered; however, osteoclast generation was increased. Gross femur geometrical alterations observed included significant reductions in length and in mid‐metaphyseal cross‐sectional area. Atomic force microscopy demonstrated significant decreases in elasticity of both cortical and trabecular bone at the nanoscale, whereas three‐point bending tests demonstrated a 30% reduction in bone stiffness; finite element analysis showed morphological changes of the femur microgeometry and a significantly diminished femur flexural rigidity. The biomechanical results demonstrated the detrimental outcome of the accelerated osteoclastic bone resorption. Our studies have a twofold implication; first, MEN1 deletion from MSCs can negatively regulate bone mass and bone biomechanics, and second, the experimental and computational biomechanical analyses employed in the present study should be applicable for improved phenotypic characterization of murine bone. Furthermore, our findings of critical menin function in bone may underpin the more severe skeletal phenotype found in hyperparathyroidism associated with loss‐of‐function of the MEN1 gene. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jad Abi‐Rafeh
- Department of Medicine McGill University and McGill University Health Centre Montreal Quebec Canada
| | - Meisam Asgari
- Department of Mechanical Engineering McGill University, 817 Sherbrooke Street West Montreal QC Canada
- Theoretical and Applied Mechanics Program School of Engineering and Applied Science, Northwestern University, 2145 Sheridan Road Evanston IL USA
| | - Ildi Troka
- Department of Medicine McGill University and McGill University Health Centre Montreal Quebec Canada
| | - Lucie Canaff
- Department of Medicine McGill University and McGill University Health Centre Montreal Quebec Canada
| | - Ahmed Moussa
- Department of Mechanical Engineering McGill University, 817 Sherbrooke Street West Montreal QC Canada
| | - Damiano Pasini
- Department of Mechanical Engineering McGill University, 817 Sherbrooke Street West Montreal QC Canada
| | - David Goltzman
- Department of Medicine McGill University and McGill University Health Centre Montreal Quebec Canada
| |
Collapse
|
11
|
Ouyang T, Qin Y, Luo K, Han X, Yu C, Zhang A, Pan X. miR-486-3p regulates CyclinD1 and promotes fluoride-induced osteoblast proliferation and activation. ENVIRONMENTAL TOXICOLOGY 2021; 36:1817-1828. [PMID: 34080770 DOI: 10.1002/tox.23302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Fluoride is a persistent environmental pollutant, and its excessive intake contributes to skeletal and dental fluorosis. The mechanisms underlying fluoride-induced abnormal osteoblast proliferation and activation, which are related to skeletal fluorosis, have not yet been fully clarified. As important epigenetic regulators, microRNAs (miRNAs) participate in bone metabolism. On the basis of our previous miRNA-seq results and bioinformatics analysis, this study investigated the role and specific molecular mechanism of miR-486-3p in fluoride-induced osteoblast proliferation and activation via CyclinD1. Herein, in the fluoride-challenged population, we observed that miR-486-3p expression decreased while CyclinD1 and transforming growth factor (TGF)-β1 increased, and miR-486-3p level correlated negatively with the expression of CyclinD1 and TGF-β1 genes. Further, we verified that sodium fluoride (NaF) decreases miR-486-3p expression in human osteoblasts and overexpression of miR-486-3p reduces fluoride-induced osteoblast proliferation and activation. Meanwhile, we demonstrated that miR-486-3p regulates NaF-induced upregulation of CyclinD1 by directly targeting its 3'-untranslated region (3'-UTR). In addition, we observed that NaF activates the TGF-β1/Smad2/3/CyclinD1 axis and miR-486-3p mediates transcriptional regulation of CyclinD1 by TGF-β1/Smad2/3 signaling pathway via targeting TGF-β1 3'-UTR in vitro. This study, thus, contributes significantly in revealing the mechanism of miR-486-3p-mediated CyclinD1 upregulation in skeletal fluorosis and sheds new light on endemic fluorosis treatment.
Collapse
Affiliation(s)
- Ting Ouyang
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yu Qin
- Department of Orthopedics, Guizhou Province Orthopedics Hospital, Guiyang, China
| | - Keke Luo
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Xue Han
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Chun Yu
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Aihua Zhang
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Xueli Pan
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
12
|
Marini F, Giusti F, Iantomasi T, Brandi ML. Genetic Determinants of Inherited Endocrine Tumors: Do They Have a Direct Role in Bone Metabolism Regulation and Osteoporosis? Genes (Basel) 2021; 12:genes12081286. [PMID: 34440460 PMCID: PMC8393565 DOI: 10.3390/genes12081286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Endocrine tumors are neoplasms originating from specialized hormone-secreting cells. They can develop as sporadic tumors, caused by somatic mutations, or in the context of familial Mendelian inherited diseases. Congenital forms, manifesting as syndromic or non-syndromic diseases, are caused by germinal heterozygote autosomal dominant mutations in oncogenes or tumor suppressor genes. The genetic defect leads to a loss of cell growth control in target endocrine tissues and to tumor development. In addition to the classical cancer manifestations, some affected patients can manifest alterations of bone and mineral metabolism, presenting both as pathognomonic and/or non-specific skeletal clinical features, which can be either secondary complications of endocrine functioning primary tumors and/or a direct consequence of the gene mutation. Here, we specifically review the current knowledge on possible direct roles of the genes that cause inherited endocrine tumors in the regulation of bone modeling and remodeling by exploring functional in vitro and in vivo studies highlighting how some of these genes participate in the regulation of molecular pathways involved in bone and mineral metabolism homeostasis, and by describing the potential direct effects of gene mutations on the development of skeletal and mineral metabolism clinical features in patients.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (F.M.); (F.G.); (T.I.)
- Fondazione Italiana Ricerca sulle Malattie dell’Osso, Italian Foundation for the Research on Bone Diseases, 50141 Florence, Italy
| | - Francesca Giusti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (F.M.); (F.G.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (F.M.); (F.G.); (T.I.)
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca sulle Malattie dell’Osso, Italian Foundation for the Research on Bone Diseases, 50141 Florence, Italy
- Correspondence: ; Tel.: +39-055-2336663
| |
Collapse
|
13
|
Zoledronic Acid Enhanced the Antitumor Effect of Cisplatin on Orthotopic Osteosarcoma by ROS-PI3K/AKT Signaling and Attenuated Osteolysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6661534. [PMID: 33859780 PMCID: PMC8026287 DOI: 10.1155/2021/6661534] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 01/17/2023]
Abstract
Osteoclasts can interact with osteosarcoma to promote the growth of osteosarcoma. Cisplatin is common in adjuvant chemotherapy of osteosarcoma. However, due to chemoresistance, the efficacy is profoundly limited. Previous studies have found that zoledronic acid (ZA) has osteoclast activation inhibition and antitumor effect. However, the combined effect of ZA and cisplatin on osteosarcoma remains unclear. In vitro, the effects of ZA and cisplatin alone or in combination on 143B cell activity, proliferation, apoptosis, and ROS-PI3K/AKT signaling were detected. At the same time, the effect of ZA and cisplatin on osteoclast formation, survival, and activity was detected by TRAP staining and bone plate absorption test. These were further verified in mice. The results showed that in vitro, compared with the single treatment and control, the combination of ZA and cisplatin could significantly inhibit the activity and proliferation of 143B cells and induced their apoptosis and further promoted the generation of ROS and inhibited the phosphorylation of PI3K and AKT. ROS scavenger and the agonist of the PI3K/AKT pathway could reverse these results. In addition, cisplatin in synergy with ZA could significantly inhibit osteoclast formation and survival to reduce bone plate absorption. In vivo, compared with the single group, the tumor volume and cell proliferation were significantly reduced, apoptosis and necrosis of tumor cells increased, and TRAP+ osteoclasts and osteolysis destruction decreased in the combined group. In conclusion, ZA enhanced the antitumor effect of cisplatin on osteosarcoma by ROS-PI3K/AKT signaling, reducing the chemoresistance and osteoclast activation to enhance chemotherapy and inhibit osteolysis. And this present study raised the possibility that combining ZA and cisplatin may represent a novel strategy against osteosarcoma.
Collapse
|
14
|
Bone tissue and mineral metabolism in hereditary endocrine tumors: clinical manifestations and genetic bases. Orphanet J Rare Dis 2020; 15:102. [PMID: 32326947 PMCID: PMC7181496 DOI: 10.1186/s13023-020-01380-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Inherited endocrine tumors are neoplasms of endocrine cells, transmitted via autosomal dominant germinal mutations. They present in two different forms: non-syndromic (patient has a single affected endocrine organ during his/her lifetime) or syndromic forms (multiple tumors in endocrine and non-endocrine organs during his/her lifetime).In addition to their common tumoral manifestations, many of these diseases present clinical affection of bone tissues and/or mineral metabolism, both as secondary complications of primary tumors and as primary defects due to genetic mutation. To date, few studies have documented these bone complications, and there are no systematic reviews in this area.We present a revision of medical literature about skeletal and mineral metabolism affections in inherited endocrine tumor syndromes, and studies, in cells and animal models, investigating the direct role of some genes, whose mutations are responsible for the development of endocrine tumors, in the regulation of bone and mineral metabolism.
Collapse
|
15
|
Mele C, Mencarelli M, Caputo M, Mai S, Pagano L, Aimaretti G, Scacchi M, Falchetti A, Marzullo P. Phenotypes Associated With MEN1 Syndrome: A Focus on Genotype-Phenotype Correlations. Front Endocrinol (Lausanne) 2020; 11:591501. [PMID: 33312161 PMCID: PMC7708377 DOI: 10.3389/fendo.2020.591501] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant inherited tumor syndrome, associated with parathyroid, pituitary, and gastro-entero-pancreatic (GEP) neuroendocrine tumors (NETs). MEN1 is usually consequent to different germline and somatic mutations of the MEN1 tumor suppressor gene, although phenocopies have also been reported. This review analyzed main biomedical databases searching for reports on MEN1 gene mutations and focused on aggressive and aberrant clinical manifestations to investigate the potential genotype-phenotype correlation. Despite efforts made by several groups, this link remains elusive to date and evidence that aggressive or aberrant clinical phenotypes may be related to specific mutations has been provided by case reports and small groups of MEN1 patients or families. In such context, a higher risk of aggressive tumor phenotypes has been described in relation to frameshift and non-sense mutations, and predominantly associated with aggressive GEP NETs, particularly pancreatic NETs. In our experience a novel heterozygous missense mutation at c.836C>A in exon 6 was noticed in a MEN1 patient operated for macro-prolactinoma, who progressively developed recurrent parathyroid adenomas, expanding gastrinomas and, long after the first MEN1 manifestation, a neuroendocrine uterine carcinoma. In conclusion, proof of genotype-phenotype correlation is limited but current evidence hints at the need for long-term interdisciplinary surveillance in patients with aggressive phenotypes and genetically confirmed MEN1.
Collapse
Affiliation(s)
- Chiara Mele
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Istituto Auxologico Italiano, IRCCS, Division of General Medicine, S. Giuseppe Hospital, Piancavallo, Italy
| | - Monica Mencarelli
- Istituto Auxologico Italiano, IRCCS, Laboratory of Molecular Biology, S. Giuseppe Hospital, Piancavallo, Italy
| | - Marina Caputo
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Division of Endocrinology, University Hospital “Maggiore della Carità”, Novara, Italy
| | - Stefania Mai
- Istituto Auxologico Italiano, IRCCS, Laboratory of Metabolic Research, S. Giuseppe Hospital, Piancavallo, Italy
| | - Loredana Pagano
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Gianluca Aimaretti
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Division of Endocrinology, University Hospital “Maggiore della Carità”, Novara, Italy
| | - Massimo Scacchi
- Istituto Auxologico Italiano, IRCCS, Division of General Medicine, S. Giuseppe Hospital, Piancavallo, Italy
| | - Alberto Falchetti
- Istituto Auxologico Italiano, IRCCS, Rehabilitation Unit, S. Giuseppe Hospital, Unit for Bone Metabolism Diseases, Verbania, Italy
- Diabetes & Lab of Endocrine and Metabolic Research, Dept. of Clinical Sciences & Community Health, University of Milan, Milan, Italy
| | - Paolo Marzullo
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Istituto Auxologico Italiano, IRCCS, Division of General Medicine, S. Giuseppe Hospital, Piancavallo, Italy
- *Correspondence: Paolo Marzullo,
| |
Collapse
|
16
|
Generation and characterization of Men1 mutant mouse models for studying MEN1 disease. JOURNAL OF PANCREATOLOGY 2019. [DOI: 10.1097/jp9.0000000000000017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Asgari M, Abi-Rafeh J, Hendy GN, Pasini D. Material anisotropy and elasticity of cortical and trabecular bone in the adult mouse femur via AFM indentation. J Mech Behav Biomed Mater 2019; 93:81-92. [DOI: 10.1016/j.jmbbm.2019.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/29/2022]
|
18
|
Kanazawa I, Takeno A, Tanaka KI, Notsu M, Sugimoto T. Osteoblast AMP-activated protein kinase regulates glucose metabolism and bone mass in adult mice. Biochem Biophys Res Commun 2018; 503:1955-1961. [DOI: 10.1016/j.bbrc.2018.07.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 01/07/2023]
|
19
|
Yoshida K, Teramachi J, Uchibe K, Ikegame M, Qiu L, Yang D, Okamura H. Reduction of protein phosphatase 2A Cα promotes in vivo bone formation and adipocyte differentiation. Mol Cell Endocrinol 2018; 470:251-258. [PMID: 29128580 DOI: 10.1016/j.mce.2017.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/29/2022]
Abstract
Serine/threonine protein phosphatase 2A (PP2A) regulates diverse physiological processes such as cell cycle, growth, apoptosis, and signal transduction. Previously, we demonstrated that silencing of the α-isoform of PP2A catalytic subunit (PP2A Cα) in osteoblasts accelerated osteoblast differentiation, whereas its overexpression suppressed differentiation. In this study, we examined the role of PP2A Cα in in vivo bone formation by generating transgenic mice (PP2A-Tg), in which the dominant negative form of PP2A Cα was specifically expressed in osteoblasts. PP2A-Tg mice exhibited an increase in body weight, cortical bone mineral density, and cortical bone thickness. Interestingly, they also displayed higher amounts of adipose tissue in the bone marrow of tibiae. The co-culture study showed that PP2A Cα-knockdown osteoblasts stimulated adipocyte differentiation from undifferentiated mesenchymal cells via upregulation of the adipocyte marker genes, such as peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα). These results indicated that the reduction of PP2A Cα levels in osteoblasts promoted bone formation in vivo. Additionally, PP2A Cα in osteoblasts was also potentially involved in controlling adipocyte differentiation through a paracrine mechanism.
Collapse
Affiliation(s)
- Kaya Yoshida
- Department of Oral Healthcare Educations, 3-18-15, Kuramoto, Tokushima 770-8504, Japan
| | - Jumpei Teramachi
- Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima 770-8504, Japan
| | - Kenta Uchibe
- Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Lihong Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China
| | - Di Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
| | - Hirohiko Okamura
- Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima 770-8504, Japan; Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan.
| |
Collapse
|
20
|
Update on multiple endocrine neoplasia Type 1 and 2. Presse Med 2018; 47:722-731. [PMID: 29909163 DOI: 10.1016/j.lpm.2018.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/02/2017] [Accepted: 03/06/2018] [Indexed: 01/20/2023] Open
Abstract
Multiple endocrine neoplasia type 1 is a rare genetic syndrome, characterized by the co-occurrence, in the same individual or in related individuals of the same family, of hyperparathyroidism, duodenopancraetic neuroendocrine tumors, pituitary adenomas, adrenocortical tumors, and neuroendocrine tumors (carcinoids) in the thymus, the bronchi, or the stomach. Multiple endocrine neoplastic type 2 is a rare genetic syndrome, characterized by the familial occurrence of medullary thyroid carcinoma either isolated or associated with pheochromocytoma, primary hyperparathyroidism, or typical features (Marfanoid habitus, mucosal neuromas). Subjects with clinical MEN1 and those who carry a mutation in the MEN1 gene should be offered biochemical and imaging screening in order to detect tumors and evaluate their progression over time. Children with mutation in the RET gene should have prophylactic total thyroidectomy according to the category of aggressiveness of the detected mutation whereas those with clinical MEN2 should be operated on upon diagnosis. In MEN1 patients, special attention should be paid to evaluate the progression duodenopancraetic neuroendocrine tumors because of their malignant potential. Also, thymic neuroendocrine tumors should be detected as soon as possible because they represent the most lethal tumor. In MEN2, calcitonin and carcinoembryonic antigen (CEA) serve as excellent tumor markers for medullary thyroid carcinoma. Their preoperative levels are correlated with tumor size and predict postoperative cure. Moreover, calcitonin or CEA doubling time has important prognostic value. In both MEN syndromes, multidisciplinary approaches are very important in the care of affected patients. Moreover, those patients should be comprehensively informed and enabled to participate in the decision-making procedure. In addition to multidisciplinary approaches, every effort should be made to follow the recommendations and guidelines issued by national (the French Group of Endocrine Tumors) and international groups.
Collapse
|
21
|
Kanazawa I, Takeno A, Tanaka KI, Notsu M, Sugimoto T. Osteoblast AMP-Activated Protein Kinase Regulates Postnatal Skeletal Development in Male Mice. Endocrinology 2018; 159:597-608. [PMID: 29126229 DOI: 10.1210/en.2017-00357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/30/2017] [Indexed: 11/19/2022]
Abstract
Studies have shown that AMP-activated protein kinase (AMPK), a crucial regulator of energy homeostasis, plays important roles in osteoblast differentiation and mineralization. However, little is known about in vivo roles of osteoblastic AMPK in bone development. Thus, to investigate in vivo roles of osteoblast AMPK, we conditionally inactivated Ampk in osterix (Osx)-expressing cells by crossing Osx-Cre mice with floxed AMPKα1 to generate mice lacking AMPKα1 in osteoblasts (Ampk-/- mice). Compared with wild-type and Ampk+/- mice, Ampk-/- mice displayed retardation of postnatal bone development, although bone deformity was not observed at birth. Microcomputed tomography showed significant reductions in trabecular bone volume, cortical bone length, and density, as well as increased cortical porosity in femur as well as development defects of skull in 8-week-old Ampk-/- mice. Surprisingly, histomorphometric analysis demonstrated that the number of osteoclasts was significantly increased, although bone formation rate was not altered. Loss of trabecular network connections and mass, as well as shortened growth plates and reduced thickness of cartilage adjacent to the growth plate, was observed in Ampk-/- mice. In primary cultured osteoblasts from calvaria, the expressions of alkaline phosphatase, type 1 collagen, osteocalcin, bone morphogenetic protein 2, Runx2, and osterix were significantly inhibited in Ampk-/- osteoblasts, whereas the expression of receptor activator of nuclear κB ligand (RANKL) and the RANKL/osteoprotegerin ratio were significantly increased. These findings indicate that osteoblastic AMPK plays important roles in bone development in vivo and that deletion of AMPK in osteoblasts decreases osteoblastic differentiation and enhances bone turnover by increasing RANKL expression.
Collapse
Affiliation(s)
- Ippei Kanazawa
- Internal Medicine 1, Shimane University Faculty of Medicine, Shimane, Japan
| | - Ayumu Takeno
- Internal Medicine 1, Shimane University Faculty of Medicine, Shimane, Japan
| | - Ken-Ichiro Tanaka
- Internal Medicine 1, Shimane University Faculty of Medicine, Shimane, Japan
| | - Masakazu Notsu
- Internal Medicine 1, Shimane University Faculty of Medicine, Shimane, Japan
| | | |
Collapse
|
22
|
Newey PJ, Thakker RV. Multiple Endocrine Neoplasia Syndromes. GENETICS OF BONE BIOLOGY AND SKELETAL DISEASE 2018:699-732. [DOI: 10.1016/b978-0-12-804182-6.00038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Deletion of Menin in craniofacial osteogenic cells in mice elicits development of mandibular ossifying fibroma. Oncogene 2017; 37:616-626. [PMID: 28991228 DOI: 10.1038/onc.2017.364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
Ossifying fibroma (OF) is a rare benign tumor of the craniofacial bones that can reach considerable and disfiguring dimensions if left untreated. Although the clinicopathological characteristics of OF are well established, the underlying etiology has remained largely unknown. Our work indicates that Men1-a tumor suppressor gene responsible of Multiple endocrine neoplasia type 1-is critical for OF formation and shows that mice with targeted disruption of Men1 in osteoblasts (Men1Runx2Cre) develop multifocal OF in the mandible with a 100% penetrance. Using lineage-tracing analysis, we demonstrate that loss of Men1 arrests stromal osteoprogenitors in OF at the osterix-positive pre-osteoblastic differentiation stage. Analysis of Men1-lacking stromal spindle cells isolated from OF (OF-derived MSCs (OFMSCs)) revealed a downregulation of the cyclin-dependent kinase (CDK) inhibitor Cdkn1a, consistent with an increased proliferation rate. Intriguingly, the re-expression of Men1 in Men1-deficient OFMSCs restored Cdkn1a expression and abrogated cellular proliferation supporting the tumor-suppressive role of Men1 in OF. Although our work presents the first evidence of Men1 in OF development, it further provides the first genetic mouse model of OF that can be used to better understand the molecular pathogenesis of these benign tumors and to potentially develop novel treatment strategies.
Collapse
|
24
|
Agarwal SK. The future: genetics advances in MEN1 therapeutic approaches and management strategies. Endocr Relat Cancer 2017; 24:T119-T134. [PMID: 28899949 PMCID: PMC5679100 DOI: 10.1530/erc-17-0199] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 02/01/2023]
Abstract
The identification of the multiple endocrine neoplasia type 1 (MEN1) gene in 1997 has shown that germline heterozygous mutations in the MEN1 gene located on chromosome 11q13 predisposes to the development of tumors in the MEN1 syndrome. Tumor development occurs upon loss of the remaining normal copy of the MEN1 gene in MEN1-target tissues. Therefore, MEN1 is a classic tumor suppressor gene in the context of MEN1. This tumor suppressor role of the protein encoded by the MEN1 gene, menin, holds true in mouse models with germline heterozygous Men1 loss, wherein MEN1-associated tumors develop in adult mice after spontaneous loss of the remaining non-targeted copy of the Men1 gene. The availability of genetic testing for mutations in the MEN1 gene has become an essential part of the diagnosis and management of MEN1. Genetic testing is also helping to exclude mutation-negative cases in MEN1 families from the burden of lifelong clinical screening. In the past 20 years, efforts of various groups world-wide have been directed at mutation analysis, molecular genetic studies, mouse models, gene expression studies, epigenetic regulation analysis, biochemical studies and anti-tumor effects of candidate therapies in mouse models. This review will focus on the findings and advances from these studies to identify MEN1 germline and somatic mutations, the genetics of MEN1-related states, several protein partners of menin, the three-dimensional structure of menin and menin-dependent target genes. The ongoing impact of all these studies on disease prediction, management and outcomes will continue in the years to come.
Collapse
Affiliation(s)
- Sunita K Agarwal
- Metabolic Diseases BranchNational Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Zeng HC, Bae Y, Dawson BC, Chen Y, Bertin T, Munivez E, Campeau PM, Tao J, Chen R, Lee BH. MicroRNA miR-23a cluster promotes osteocyte differentiation by regulating TGF-β signalling in osteoblasts. Nat Commun 2017; 8:15000. [PMID: 28397831 PMCID: PMC5394267 DOI: 10.1038/ncomms15000] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 02/20/2017] [Indexed: 01/20/2023] Open
Abstract
Osteocytes are the terminally differentiated cell type of the osteoblastic lineage and have important functions in skeletal homeostasis. Although the transcriptional regulation of osteoblast differentiation has been well characterized, the factors that regulate differentiation of osteocytes from mature osteoblasts are poorly understood. Here we show that miR-23a∼27a∼24-2 (miR-23a cluster) promotes osteocyte differentiation. Osteoblast-specific miR-23a cluster gain-of-function mice have low bone mass associated with decreased osteoblast but increased osteocyte numbers. By contrast, loss-of-function transgenic mice overexpressing microRNA decoys for either miR-23a or miR-27a, but not miR24-2, show decreased osteocyte numbers. Moreover, RNA-sequencing analysis shows altered transforming growth factor-β (TGF-β) signalling. Prdm16, a negative regulator of the TGF-β pathway, is directly repressed by miR-27a with concomitant alteration of sclerostin expression, and pharmacological inhibition of TGF-β rescues the phenotypes observed in the gain-of-function transgenic mice. Taken together, the miR-23a cluster regulates osteocyte differentiation by modulating the TGF-β signalling pathway through targeting of Prdm16. Control of osteocyte differentiation is not well understood. Here the authors show that the miR-23 cluster represses the TGF-β signalling repressor Prdm16 in osteoblasts, thus enhancing osteocyte differentiation and a low bone mass phenotype.
Collapse
Affiliation(s)
- Huan-Chang Zeng
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Yangjin Bae
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Brian C Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Terry Bertin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Elda Munivez
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Philippe M Campeau
- Department of Pediatrics, Sainte-Justine Hospital, University of Montreal, Montreal, Canada H3T 1C5
| | - Jianning Tao
- Department of Pediatrics, University of South Dakota School of Medicine, Vermillion, South Dakota 57104, USA
| | - Rui Chen
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Brendan H Lee
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
26
|
Liu P, Lee S, Knoll J, Rauch A, Ostermay S, Luther J, Malkusch N, Lerner UH, Zaiss MM, Neven M, Wittig R, Rauner M, David JP, Bertolino P, Zhang CX, Tuckermann JP. Loss of menin in osteoblast lineage affects osteocyte-osteoclast crosstalk causing osteoporosis. Cell Death Differ 2017; 24:672-682. [PMID: 28106886 PMCID: PMC5384024 DOI: 10.1038/cdd.2016.165] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/08/2016] [Accepted: 12/20/2016] [Indexed: 12/21/2022] Open
Abstract
During osteoporosis bone formation by osteoblasts is reduced and/or bone resorption by osteoclasts is enhanced. Currently, only a few factors have been identified in the regulation of bone integrity by osteoblast-derived osteocytes. In this study, we show that specific disruption of menin, encoded by multiple endocrine neoplasia type 1 (Men1), in osteoblasts and osteocytes caused osteoporosis despite the preservation of osteoblast differentiation and the bone formation rate. Instead, an increase in osteoclast numbers and bone resorption was detected that persisted even when the deletion of Men1 was restricted to osteocytes. We demonstrate that isolated Men1-deficient osteocytes expressed numerous soluble mediators, such as C-X-C motif chemokine 10 (CXCL10), and that CXCL10-mediated osteoclastogenesis was reduced by CXCL10-neutralizing antibodies. Collectively, our data reveal a novel role for Men1 in osteocyte–osteoclast crosstalk by controlling osteoclastogenesis through the action of soluble factors. A role for Men1 in maintaining bone integrity and thereby preventing osteoporosis is proposed.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm D-89081, Germany.,Tissue-specific Hormone Action, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena D-07745, Germany
| | - Sooyeon Lee
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm D-89081, Germany.,Tissue-specific Hormone Action, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena D-07745, Germany
| | - Jeanette Knoll
- Tissue-specific Hormone Action, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena D-07745, Germany
| | - Alexander Rauch
- Tissue-specific Hormone Action, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena D-07745, Germany
| | - Susanne Ostermay
- Tissue-specific Hormone Action, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena D-07745, Germany
| | - Julia Luther
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Nicole Malkusch
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm D-89081, Germany
| | - Ulf H Lerner
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition at Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg SE-41345, Sweden
| | - Mario M Zaiss
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen D-91054, Germany
| | - Mona Neven
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Rainer Wittig
- Institute for Laser Technologies in Medicine and Metrology at Ulm University, Ulm D-89081, Germany
| | - Martina Rauner
- Division of Endocrinology and Bone Diseases, Department of Medicine III, TU Dresden, Dresden D-01307, Germany
| | - Jean-Pierre David
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.,Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen D-91054, Germany
| | - Philippe Bertolino
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université Lyon 1, Lyon F-69000, France
| | - Chang X Zhang
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université Lyon 1, Lyon F-69000, France
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm D-89081, Germany.,Tissue-specific Hormone Action, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena D-07745, Germany
| |
Collapse
|
27
|
Sun X, Liu J, Zhuang C, Yang X, Han Y, Shao B, Song M, Li Y, Zhu Y. Aluminum trichloride induces bone impairment through TGF-β1/Smad signaling pathway. Toxicology 2016; 371:49-57. [DOI: 10.1016/j.tox.2016.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/05/2016] [Indexed: 12/31/2022]
|
28
|
Shin MH, He Y, Marrogi E, Piperdi S, Ren L, Khanna C, Gorlick R, Liu C, Huang J. A RUNX2-Mediated Epigenetic Regulation of the Survival of p53 Defective Cancer Cells. PLoS Genet 2016; 12:e1005884. [PMID: 26925584 PMCID: PMC4771715 DOI: 10.1371/journal.pgen.1005884] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 01/29/2016] [Indexed: 01/15/2023] Open
Abstract
The inactivation of p53 creates a major challenge for inducing apoptosis in cancer cells. An attractive strategy is to identify and subsequently target the survival signals in p53 defective cancer cells. Here we uncover a RUNX2-mediated survival signal in p53 defective cancer cells. The inhibition of this signal induces apoptosis in cancer cells but not non-transformed cells. Using the CRISPR technology, we demonstrate that p53 loss enhances the apoptosis caused by RUNX2 knockdown. Mechanistically, RUNX2 provides the survival signal partially through inducing MYC transcription. Cancer cells have high levels of activating histone marks on the MYC locus and concomitant high MYC expression. RUNX2 knockdown decreases the levels of these histone modifications and the recruitment of the Menin/MLL1 (mixed lineage leukemia 1) complex to the MYC locus. Two inhibitors of the Menin/MLL1 complex induce apoptosis in p53 defective cancer cells. Together, we identify a RUNX2-mediated epigenetic mechanism of the survival of p53 defective cancer cells and provide a proof-of-principle that the inhibition of this epigenetic axis is a promising strategy to kill p53 defective cancer cells. Because activated p53 is a potent inducer of apoptosis, several approaches centering on p53 activation are designed for killing cancer cells. However, more than half of human tumors have p53 inactivation, which renders these p53-activating approaches less effective in killing cancer cells. Targeting the survival signals specific to p53 defective cancer cells offers an opportunity to circumvent the challenge of p53 inactivation. In this study, we showed that one such survival signal is the RUNX2 signaling pathway. To investigate the mechanism underlying this survival signal, we used biochemical, genetic, and genomic approaches. The MYC gene was identified as a novel mediator of the pro-survival function of RUNX2. We further studied the regulatory mechanism of MYC by RUNX2 and found that RUNX2 recruits the Menin/MLL1 epigenetic complex to induce the expression of MYC. Using small molecule inhibitors of the Menin/MLL1 complex, we showed that targeting RUNX2/Menin/MLL1/MYC axis is a feasible strategy for killing p53 defective cancer cells. Our study paves the road for the future development of targeted therapies for OS.
Collapse
Affiliation(s)
- Min Hwa Shin
- Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Yunlong He
- Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Eryney Marrogi
- Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sajida Piperdi
- Division of Pediatric Hematology-Oncology, The Children’s Hospital at Montefiore, Bronx, New York, United States of America
| | - Ling Ren
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Chand Khanna
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Richard Gorlick
- Division of Pediatric Hematology-Oncology, The Children’s Hospital at Montefiore, Bronx, New York, United States of America
| | - Chengyu Liu
- Transgenic Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - Jing Huang
- Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Abstract
Early diagnosis of multiple endocrine neoplasia (MEN) syndromes is critical for optimal clinical outcomes; before the MEN syndromes can be diagnosed, they must be suspected. Genetic testing for germline alterations in both the MEN type 1 (MEN1) gene and RET proto-oncogene is crucial to identifying those at risk in affected kindreds and directing timely surveillance and surgical therapy to those at greatest risk of potentially life-threatening neoplasia. Pancreatic, thymic, and bronchial neuroendocrine tumors are the leading cause of death in patients with MEN1 and should be aggressively considered by at least biannual computed tomography imaging.
Collapse
Affiliation(s)
- Jeffrey A Norton
- Department of Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Geoffrey Krampitz
- Department of Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Robert T Jensen
- Cell Biology Section, Digestive Diseases Branch, National Institute of Arthritis, Diabetes, Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892-2560, USA
| |
Collapse
|