1
|
Gorodetska I, Lukiyanchuk V, Gawin M, Sliusar M, Linge A, Lohaus F, Hölscher T, Erdmann K, Fuessel S, Borkowetz A, Wojakowska A, Fochtman D, Reardon M, Choudhury A, Antonelli Y, Leal-Egaña A, Köseer AS, Kahya U, Püschel J, Petzold A, Klusa D, Peitzsch C, Kronstein-Wiedemann R, Tonn T, Marczak L, Thomas C, Widłak P, Pietrowska M, Krause M, Dubrovska A. Blood-based detection of MMP11 as a marker of prostate cancer progression regulated by the ALDH1A1-TGF-β1 signaling mechanism. J Exp Clin Cancer Res 2025; 44:105. [PMID: 40122809 PMCID: PMC11931756 DOI: 10.1186/s13046-025-03299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/12/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the second most common type of tumor diagnosed in men and the fifth leading cause of cancer-related death in male patients. The response of metastatic disease to standard treatment is heterogeneous. As for now, there is no curative treatment option available for metastatic PCa, and the clinical tests capable of predicting metastatic dissemination and metastatic response to the therapies are lacking. Our recent study identified aldehyde dehydrogenases ALDH1A1 and ALDH1A3 as critical regulators of PCa metastases. Still, the exact mechanisms mediating the role of these proteins in PCa metastatic dissemination remain not fully understood, and plasma-based biomarkers of these metastatic mechanisms are not available. METHODS Genetic silencing, gene overexpression, or treatment with different concentrations of the retinoic acid (RA) isomers, which are the products of ALDH catalytic activity, were used to modulate the interplay between retinoic acid receptors (RARs) and androgen receptor (AR). RNA sequencing (RNAseq), reporter gene assays, and chromatin immunoprecipitation (ChIP) analysis were employed to validate the role of RARs and AR in the regulation of the transforming growth factor-beta 1 (TGFB1) expression. Gene expression levels of ALDH1A1, ALDH1A3, and the matrix metalloproteinase 11 (MMP11) and their correlation with pathological parameters and clinical outcomes were analysed by mining several publicly available patient datasets as well as our multi-center transcriptomic dataset from patients with high-risk and locally advanced PCa. The level of MMP11 protein was analysed by enzyme-linked immunosorbent assay (ELISA) in independent cohorts of plasma samples from patients with primary or metastatic PCa and healthy donors, while plasma proteome profiles were obtained for selected subsets of PCa patients. RESULTS We could show that ALDH1A1 and ALDH1A3 genes differently regulate TGFB1 expression in a RAR- and AR-dependent manner. We further observed that the TGF-β1 pathway contributes to the regulation of the MMPs, including MMP11. We have confirmed the relevance of MMP11 as a promising clinical marker for PCa using several independent gene expression datasets. Further, we have validated plasma MMP11 level as a prognostic biomarker in patients with metastatic PCa. Finally, we proposed a hypothetical ALDH1A1/MMP11-related plasma proteome-based prognostic signature. CONCLUSIONS TGFB1/MMP11 signaling contributes to the ALDH1A1-driven PCa metastases. MMP11 is a promising blood-based biomarker of PCa progression.
Collapse
Affiliation(s)
- Ielizaveta Gorodetska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Vasyl Lukiyanchuk
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Marta Gawin
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Myroslava Sliusar
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Annett Linge
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Fabian Lohaus
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Tobias Hölscher
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Kati Erdmann
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Susanne Fuessel
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Angelika Borkowetz
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Anna Wojakowska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Daniel Fochtman
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Mark Reardon
- Division of Cancer Sciences, Translational Radiobiology Group, University of Manchester, Manchester Cancer Research Centre, Christie NHS Foundation Trust, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, Translational Radiobiology Group, University of Manchester, Manchester Cancer Research Centre, Christie NHS Foundation Trust, Manchester, UK
| | - Yasmin Antonelli
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg, Germany
| | - Aldo Leal-Egaña
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg, Germany
| | - Ayse Sedef Köseer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Uğur Kahya
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Jakob Püschel
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
| | - Andrea Petzold
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
| | - Daria Klusa
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Claudia Peitzsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Romy Kronstein-Wiedemann
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Torsten Tonn
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Lukasz Marczak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Christian Thomas
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Piotr Widłak
- 2nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland
| | - Monika Pietrowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany.
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.
| |
Collapse
|
2
|
Tomecka P, Kunachowicz D, Górczyńska J, Gebuza M, Kuźnicki J, Skinderowicz K, Choromańska A. Factors Determining Epithelial-Mesenchymal Transition in Cancer Progression. Int J Mol Sci 2024; 25:8972. [PMID: 39201656 PMCID: PMC11354349 DOI: 10.3390/ijms25168972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which an epithelial cell undergoes multiple modifications, acquiring both morphological and functional characteristics of a mesenchymal cell. This dynamic process is initiated by various inducing signals that activate numerous signaling pathways, leading to the stimulation of transcription factors. EMT plays a significant role in cancer progression, such as metastasis and tumor heterogeneity, as well as in drug resistance. In this article, we studied molecular mechanisms, epigenetic regulation, and cellular plasticity of EMT, as well as microenvironmental factors influencing this process. We included both in vivo and in vitro models in EMT investigation and clinical implications of EMT, such as the use of EMT in curing oncological patients and targeting its use in therapies. Additionally, this review concludes with future directions and challenges in the wide field of EMT.
Collapse
Affiliation(s)
- Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Michał Gebuza
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
3
|
Manoochehri H, Farrokhnia M, Sheykhhasan M, Mahaki H, Tanzadehpanah H. Key target genes related to anti-breast cancer activity of ATRA: A network pharmacology, molecular docking and experimental investigation. Heliyon 2024; 10:e34300. [PMID: 39108872 PMCID: PMC11301165 DOI: 10.1016/j.heliyon.2024.e34300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 01/07/2025] Open
Abstract
All-trans retinoic acid (ATRA) has promising activity against breast cancer. However, the exact mechanisms of ATRA's anticancer effects remain complex and not fully understood. In this study, a network pharmacology and molecular docking approach was applied to identify key target genes related to ATRA's anti-breast cancer activity. Gene/disease enrichment analysis for predicted ATRA targets was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID), the Comparative Toxicogenomics Database (CTD), and the Gene Set Cancer Analysis (GSCA) database. Protein-Protein Interaction Network (PPIN) generation and analysis was conducted via Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and cytoscape, respectively. Cancer-associated genes were evaluated using MyGeneVenn from the CTD. Differential expression analysis was conducted using the Tumor, Normal, and Metastatic (TNM) Plot tool and the Human Protein Atlas (HPA). The Glide docking program was used to predict ligand-protein binding. Treatment response predication and clinical profile assessment were performed using Receiver Operating Characteristic (ROC) Plotter and OncoDB databases, respectively. Cytotoxicity and gene expression were measured using MTT/fluorescent assays and Real-Time PCR, respectively. Molecular functions of ATRA targets (n = 209) included eicosanoid receptor activity and transcription factor activity. Some enriched pathways included inclusion body myositis and nuclear receptors pathways. Network analysis revealed 35 hub genes contributing to 3 modules, with 16 of them were associated with breast cancer. These genes were involved in apoptosis, cell cycle, androgen receptor pathway, and ESR-mediated signaling, among others. CCND1, ESR1, MMP9, MDM2, NCOA3, and RARA were significantly overexpressed in tumor samples. ATRA showed a high affinity towards CCND1/CDK4 and MMP9. CCND1, ESR1, and MDM2 were associated with poor treatment response and were downregulated after treatment of the breast cancer cell line with ATRA. CCND1 and ESR1 exhibited differential expression across breast cancer stages. Therefore, some part of ATRA's anti-breast cancer activity may be exerted through the CCND1/CDK4 complex.
Collapse
Affiliation(s)
- Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Farrokhnia
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Caricasulo MA, Zanetti A, Terao M, Garattini E, Paroni G. Cellular and micro-environmental responses influencing the antitumor activity of all-trans retinoic acid in breast cancer. Cell Commun Signal 2024; 22:127. [PMID: 38360674 PMCID: PMC10870483 DOI: 10.1186/s12964-024-01492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
All-trans retinoic acid (ATRA) is the most relevant and functionally active metabolite of Vitamin-A. From a therapeutic standpoint, ATRA is the first example of pharmacological agent exerting its anti-tumor activity via a cell differentiating action. In the clinics, ATRA is used in the treatment of Acute Promyelocytic Leukemia, a rare form of myeloid leukemia with unprecedented therapeutic results. The extraordinary effectiveness of ATRA in the treatment of Acute Promyelocytic Leukemia patients has raised interest in evaluating the potential of this natural retinoid in the treatment of other types of neoplasias, with particular reference to solid tumors.The present article provides an overview of the available pre-clinical and clinical studies focussing on ATRA as a therapeutic agent in the context of breast cancer from a holistic point of view. In detail, we focus on the direct effects of ATRA in breast cancer cells as well as the underlying molecular mechanisms of action. In addition, we summarize the available information on the action exerted by ATRA on the breast cancer micro-environment, an emerging determinant of the progression and invasive behaviour of solid tumors. In particular we discuss the recent evidences of ATRA activity on the immune system. Finally, we analyse and discuss the results obtained with the few ATRA-based clinical trials conducted in the context of breast cancer.
Collapse
Affiliation(s)
- Maria Azzurra Caricasulo
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy
| | - Adriana Zanetti
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy
| | - Mineko Terao
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy
| | - Enrico Garattini
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy
| | - Gabriela Paroni
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy.
| |
Collapse
|
5
|
Garza-Juárez A, Pérez-Carrillo E, Arredondo-Espinoza EU, Islas JF, Benítez-Chao DF, Escamilla-García E. Nutraceuticals and Their Contribution to Preventing Noncommunicable Diseases. Foods 2023; 12:3262. [PMID: 37685194 PMCID: PMC10486909 DOI: 10.3390/foods12173262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The high rate of deaths around the world from noncommunicable diseases (NCDs) (70%) is a consequence of a poor diet lacking in nutrients and is linked to lifestyle and environmental conditions that together trigger predisposing factors. NCDs have increased 9.8% of public health spending worldwide, which has been increasing since 2000. Hence, international organizations such as the WHO, the Pan American Health Organization, and the Food and Agriculture Organization of the United Nations have been developing strategic plans to implement government and economic policies to strengthen programs in favor of food security and nutrition. A systematic review is presented to document an analysis of the origin and characteristics of obesity, cardiovascular disease, chronic respiratory diseases, diabetes, and cancers affecting a large part of the world's population. This review proposes a scientifically based report of functional foods including fruits, vegetables, grains, and plants, and how their bioactive compounds called nutraceuticals-when consumed as part of a diet-benefit in the prevention and treatment of NCDs from an early age. Multifactorial aspects of NCDs, such as culture and eating habits, are limitations to consider from the clinical, nutritional, and biochemical points of view of everyone who suffers from them.
Collapse
Affiliation(s)
- Aurora Garza-Juárez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (A.G.-J.)
| | - Esther Pérez-Carrillo
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Eder Ubaldo Arredondo-Espinoza
- Laboratorio de Farmacología Molecular y Modelos Biológicos, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Monterrey 66427, Mexico
| | - José Francisco Islas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (A.G.-J.)
| | - Diego Francisco Benítez-Chao
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (A.G.-J.)
| | - Erandi Escamilla-García
- Microbial Biotechnology Laboratory, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
- Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| |
Collapse
|
6
|
Zhou MJ, Yang JJ, Ma TY, Feng GX, Wang XL, Wang LY, Ge YZ, Gao R, Liu HL, Shan L, Kong L, Chen XH. Increased retinoic acid signaling decreases lung metastasis in salivary adenoid cystic carcinoma by inhibiting the noncanonical Notch1 pathway. Exp Mol Med 2023; 55:597-611. [PMID: 36879115 PMCID: PMC10073150 DOI: 10.1038/s12276-023-00957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 03/08/2023] Open
Abstract
MYB-NFIB fusion and NOTCH1 mutation are common hallmark genetic events in salivary gland adenoid cystic carcinoma (SACC). However, abnormal expression of MYB and NOTCH1 is also observed in patients without MYB-NFIB fusion and NOTCH1 mutation. Here, we explore in-depth the molecular mechanisms of lung metastasis through single-cell RNA sequencing (scRNA-seq) and exome target capture sequencing in two SACC patients without MYB-NFIB fusion and NOTCH1 mutation. Twenty-five types of cells in primary and metastatic tissues were identified via Seurat clustering and categorized into four main stages ranging from near-normal to cancer-based on the abundance of each cell cluster in normal tissue. In this context, we identified the Notch signaling pathway enrichment in almost all cancer cells; RNA velocity, trajectory, and sub-clustering analyses were performed to deeply investigate cancer progenitor-like cell clusters in primary tumor-associated lung metastases, and signature genes of progenitor-like cells were enriched in the "MYC_TARGETS_V2" gene set. In vitro, we detected the NICD1-MYB-MYC complex by co-immunoprecipitation (Co-IP) and incidentally identified retinoic acid (RA) as an endogenous antagonist of genes in the "MYC_TARGETS_V2" gene set. Following this, we confirmed that all-trans retinoic acid (ATRA) suppresses the lung metastasis of SACC by correcting erroneous cell differentiation mainly caused by aberrant NOTCH1 or MYB expression. Bioinformatic, RNA-seq, and immunohistochemical (IHC) analyses of primary tissues and metastatic lung tissues from patients with SACC suggested that RA system insufficiency partially promotes lung metastasis. These findings imply the value of the RA system in diagnosis and treatment.
Collapse
Affiliation(s)
- Meng-Jiao Zhou
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Jia-Jie Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China
| | - Ting-Yao Ma
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Ge-Xuan Feng
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China
| | - Xue-Lian Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Li-Yong Wang
- The Central Laboratory for Molecular Biology, Capital Medical University, Beijing, 100069, China
| | - Yu-Ze Ge
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China
| | - Ran Gao
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Hong-Liang Liu
- SHANDONG Longfine PHARMACEUTICAL CO., LTD, Shandong, 272622, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China
| | - Lu Kong
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China.
| | - Xiao-Hong Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
7
|
Ainsworth RI, Hammaker D, Nygaard G, Ansalone C, Machado C, Zhang K, Zheng L, Carrillo L, Wildberg A, Kuhs A, Svensson MND, Boyle DL, Firestein GS, Wang W. Systems-biology analysis of rheumatoid arthritis fibroblast-like synoviocytes implicates cell line-specific transcription factor function. Nat Commun 2022; 13:6221. [PMID: 36266270 PMCID: PMC9584907 DOI: 10.1038/s41467-022-33785-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is an immune-mediated disease affecting diarthrodial joints that remains an unmet medical need despite improved therapy. This limitation likely reflects the diversity of pathogenic pathways in RA, with individual patients demonstrating variable responses to targeted therapies. Better understanding of RA pathogenesis would be aided by a more complete characterization of the disease. To tackle this challenge, we develop and apply a systems biology approach to identify important transcription factors (TFs) in individual RA fibroblast-like synoviocyte (FLS) cell lines by integrating transcriptomic and epigenomic information. Based on the relative importance of the identified TFs, we stratify the RA FLS cell lines into two subtypes with distinct phenotypes and predicted active pathways. We biologically validate these predictions for the top subtype-specific TF RARα and demonstrate differential regulation of TGFβ signaling in the two subtypes. This study characterizes clusters of RA cell lines with distinctive TF biology by integrating transcriptomic and epigenomic data, which could pave the way towards a greater understanding of disease heterogeneity.
Collapse
Affiliation(s)
- Richard I Ainsworth
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Deepa Hammaker
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gyrid Nygaard
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Cecilia Ansalone
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Camilla Machado
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kai Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Lina Zheng
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Lucy Carrillo
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Andre Wildberg
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Amanda Kuhs
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mattias N D Svensson
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - David L Boyle
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gary S Firestein
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Combination Treatment of Retinoic Acid Plus Focal Adhesion Kinase Inhibitor Prevents Tumor Growth and Breast Cancer Cell Metastasis. Cells 2022; 11:cells11192988. [PMID: 36230951 PMCID: PMC9564078 DOI: 10.3390/cells11192988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
All-trans retinoic acid (RA), the primary metabolite of vitamin A, controls the development and homeostasis of organisms and tissues. RA and its natural and synthetic derivatives, both known as retinoids, are promising agents in treating and chemopreventing different neoplasias, including breast cancer (BC). Focal adhesion kinase (FAK) is a crucial regulator of cell migration, and its overexpression is associated with tumor metastatic behavior. Thus, pharmaceutical FAK inhibitors (FAKi) have been developed to counter its action. In this work, we hypothesize that the RA plus FAKi (RA + FAKi) approach could improve the inhibition of tumor progression. By in silico analysis and its subsequent validation by qPCR, we confirmed RARA, SRC, and PTK2 (encoding RARα, Src, and FAK, respectively) overexpression in all breast cells tested. We also showed a different pattern of genes up/down-regulated between RA-resistant and RA-sensitive BC cells. In addition, we demonstrated that both RA-resistant BC cells (MDA-MB-231 and MDA-MB-468) display the same behavior after RA treatment, modulating the expression of genes involved in Src-FAK signaling. Furthermore, we demonstrated that although RA and FAKi administered separately decrease viability, adhesion, and migration in mammary adenocarcinoma LM3 cells, their combination exerts a higher effect. Additionally, we show that both drugs individually, as well as in combination, induce the expression of apoptosis markers such as active-caspase-3 and cleaved-PARP1. We also provided evidence that RA effects are extrapolated to other cancer cells, including T-47D BC and the human cervical carcinoma HeLa cells. In an orthotopic assay of LM3 tumor growth, whereas RA and FAKi administered separately reduced tumor growth, the combined treatment induced a more potent inhibition increasing mice survival. Moreover, in an experimental metastatic assay, RA significantly reduced metastatic lung dissemination of LM3 cells. Overall, these results indicate that RA resistance could reflect deregulation of most RA-target genes, including genes encoding components of the Src-FAK pathway. Our study demonstrates that RA plays an essential role in disrupting BC tumor growth and metastatic dissemination in vitro and in vivo by controlling FAK expression and localization. RA plus FAKi exacerbate these effects, thus suggesting that the sensitivity to RA therapies could be increased with FAKi coadministration in BC tumors.
Collapse
|
9
|
Su X, Wu W, Zhu Z, Lin X, Zeng Y. The effects of epithelial-mesenchymal transitions in COPD induced by cigarette smoke: an update. Respir Res 2022; 23:225. [PMID: 36045410 PMCID: PMC9429334 DOI: 10.1186/s12931-022-02153-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
Cigarette smoke is a complex aerosol containing a large number of compounds with a variety of toxicity and carcinogenicity. Long-term exposure to cigarette smoke significantly increases the risk of a variety of diseases, including chronic obstructive pulmonary disease (COPD) and lung cancer. Epithelial–mesenchymal transition (EMT) is a unique biological process, that refers to epithelial cells losing their polarity and transforming into mobile mesenchymal cells, playing a crucial role in organ development, fibrosis, and cancer progression. Numerous recent studies have shown that EMT is an important pathophysiological process involved in airway fibrosis, airway remodeling, and malignant transformation of COPD. In this review, we summarized the effects of cigarette smoke on the development and progression of COPD and focus on the specific changes and underlying mechanisms of EMT in COPD induced by cigarette smoke. We spotlighted the signaling pathways involved in EMT induced by cigarette smoke and summarize the current research and treatment approaches for EMT in COPD, aiming to provide ideas for potential new treatment and research directions.
Collapse
Affiliation(s)
- Xiaoshan Su
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Weijing Wu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Zhixing Zhu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Xiaoping Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China.
| |
Collapse
|
10
|
Huang Z, Zhang Z, Zhou C, Liu L, Huang C. Epithelial–mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm (Beijing) 2022; 3:e144. [PMID: 35601657 PMCID: PMC9115588 DOI: 10.1002/mco2.144] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a program wherein epithelial cells lose their junctions and polarity while acquiring mesenchymal properties and invasive ability. Originally defined as an embryogenesis event, EMT has been recognized as a crucial process in tumor progression. During EMT, cell–cell junctions and cell–matrix attachments are disrupted, and the cytoskeleton is remodeled to enhance mobility of cells. This transition of phenotype is largely driven by a group of key transcription factors, typically Snail, Twist, and ZEB, through epigenetic repression of epithelial markers, transcriptional activation of matrix metalloproteinases, and reorganization of cytoskeleton. Mechanistically, EMT is orchestrated by multiple pathways, especially those involved in embryogenesis such as TGFβ, Wnt, Hedgehog, and Hippo, suggesting EMT as an intrinsic link between embryonic development and cancer progression. In addition, redox signaling has also emerged as critical EMT modulator. EMT confers cancer cells with increased metastatic potential and drug resistant capacity, which accounts for tumor recurrence in most clinic cases. Thus, targeting EMT can be a therapeutic option providing a chance of cure for cancer patients. Here, we introduce a brief history of EMT and summarize recent advances in understanding EMT mechanisms, as well as highlighting the therapeutic opportunities by targeting EMT in cancer treatment.
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Chengwei Zhou
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Lin Liu
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| |
Collapse
|
11
|
Modulation of Notch Signaling Pathway by Bioactive Dietary Agents. Int J Mol Sci 2022; 23:ijms23073532. [PMID: 35408894 PMCID: PMC8998406 DOI: 10.3390/ijms23073532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Notch signaling is often aberrantly activated in solid and hematological cancers and regulates cell fate decisions and the maintenance of cancer stem cells. In addition, increased expression of Notch pathway components is clinically associated with poorer prognosis in several types of cancer. Targeting Notch may have chemopreventive and anti-cancer effects, leading to reduced disease incidence and improved survival. While therapeutic agents are currently in development to achieve this goal, several researchers have turned their attention to dietary and natural agents for targeting Notch signaling. Given their natural abundance from food sources, the use of diet-derived agents to target Notch signaling offers the potential advantage of low toxicity to normal tissue. In this review, we discuss several dietary agents including curcumin, EGCG, resveratrol, and isothiocyanates, which modulate Notch pathway components in a context-dependent manner. Dietary agents modulate Notch signaling in several types of cancer and concurrently decrease in vitro cell viability and in vivo tumor growth, suggesting a potential role for their clinical use to target Notch pathway components, either alone or in combination with current therapeutic agents.
Collapse
|
12
|
Dahmardeh Ghalehno A, Boustan A, Abdi H, Aganj Z, Mosaffa F, Jamialahmadi K. The Potential for Natural Products to Overcome Cancer Drug Resistance by Modulation of Epithelial-Mesenchymal Transition. Nutr Cancer 2022; 74:2686-2712. [PMID: 34994266 DOI: 10.1080/01635581.2021.2022169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The acquisition of resistance and ultimately disease relapse after initial response to chemotherapy put obstacles in the way of cancer therapy. Epithelial-mesenchymal transition (EMT) is a biologic process that epithelial cells alter to mesenchymal cells and acquire fibroblast-like properties. EMT plays a significant role in cancer metastasis, motility, and survival. Recently, emerging evidence suggested that EMT pathways are very important in making drug-resistant involved in cancer. Natural products are gradually emerging as a valuable source of safe and effective anticancer compounds. Natural products could interfere with the different processes implicated in cancer drug resistance by reversing the EMT process. In this review, we illustrate the molecular mechanisms of EMT in the emergence of cancer metastasis. We then present the role of natural compounds in the suppression of EMT pathways in different cancers to overcome cancer cell drug resistance and improve tumor chemotherapy. HighlightsDrug-resistance is one of the obstacles to cancer treatment.EMT signaling pathways have been correlated to tumor invasion, metastasis, and drug-resistance.Various studies on the relationship between EMT and resistance to chemotherapy agents were reviewed.Different anticancer natural products with EMT inhibitory properties and drug resistance reversal effects were compared.
Collapse
Affiliation(s)
- Asefeh Dahmardeh Ghalehno
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arad Boustan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hakimeh Abdi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Aganj
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
The Role of ATRA, Natural Ligand of Retinoic Acid Receptors, on EMT-Related Proteins in Breast Cancer: Minireview. Int J Mol Sci 2021; 22:ijms222413345. [PMID: 34948142 PMCID: PMC8705994 DOI: 10.3390/ijms222413345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
The knowledge of the structure, function, and abundance of specific proteins related to the EMT process is essential for developing effective diagnostic approaches to cancer with the perspective of diagnosis and therapy of malignancies. The success of all-trans retinoic acid (ATRA) differentiation therapy in acute promyelocytic leukemia has stimulated studies in the treatment of other tumors with ATRA. This review will discuss the impact of ATRA use, emphasizing epithelial-mesenchymal transition (EMT) proteins in breast cancer, of which metastasis and recurrence are major causes of death.
Collapse
|
14
|
Poturnajova M, Kozovska Z, Matuskova M. Aldehyde dehydrogenase 1A1 and 1A3 isoforms - mechanism of activation and regulation in cancer. Cell Signal 2021; 87:110120. [PMID: 34428540 PMCID: PMC8505796 DOI: 10.1016/j.cellsig.2021.110120] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022]
Abstract
In some types of human cancer, aldehyde dehydrogenases represent stemness markers and their expression is associated with advanced disease stages and poor prognosis. Although several biological functions are mediated by their product Retinoid acid, the molecular mechanism is tissue-dependent and only partially understood. In this review, we summarize the current knowledge about the role of ALDH in solid tumours, especially ALDH1A1 and ALDH1A3 isoforms, regarding the molecular mechanism of their transcription and regulation, and their crosstalk with main molecular pathways resulting in the excessive proliferation, chemoresistance, stem cells properties and invasiveness. The recent knowledge of the regulatory effect of lnRNA on ALDH1A1 and ALDH1A3 is discussed too. Aldehyde dehydrogenases are important stem cell markers in many human cancer types. ALDH1A1 or ALDH1A3 activation participates in tumour progression, chemoresistance, stem-cell properties and invasiveness. ALDH1A1 interacts with oncogenic pathways Notch, NRF, CXCR4, Polycomb, MDR, and HOX.
Collapse
Affiliation(s)
- M Poturnajova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia.
| | - Z Kozovska
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - M Matuskova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| |
Collapse
|
15
|
Cai J, Cui Y, Yang J, Wang S. Epithelial-mesenchymal transition: When tumor cells meet myeloid-derived suppressor cells. Biochim Biophys Acta Rev Cancer 2021; 1876:188564. [PMID: 33974950 DOI: 10.1016/j.bbcan.2021.188564] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous myeloid cell population characterized by protumoral functions in the tumor immune network. An increasing number of studies have focused on the biological functions of MDSCs in tumor immunity. Epithelial-mesenchymal transition (EMT) is a cellular plasticity process accompanied by a loss of epithelial phenotypes and an acquisition of mesenchymal phenotypes. In general, tumor cells that undergo EMT are more likely to invade and metastasize. Recently, extensive evidence suggests that EMT is closely related to a highly immunosuppressive environment. This review will summarize the immunosuppressive capacities of MDSC subsets and their distinct role in tumor EMT and further discuss immunotherapy for tumor EMT by targeting MDSCs.
Collapse
Affiliation(s)
- Jingshan Cai
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yudan Cui
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Yang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
16
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
17
|
Shan NL, Shin Y, Yang G, Furmanski P, Suh N. Breast cancer stem cells: A review of their characteristics and the agents that affect them. Mol Carcinog 2021; 60:73-100. [PMID: 33428807 DOI: 10.1002/mc.23277] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
The evolving concept that cancer stem cells (CSCs) are the driving element in cancer development, evolution and heterogeneity, has overridden the previous model of a tumor consisting of cells all with similar sequentially acquired mutations and a similar potential for renewal, invasion and metastasis. This paradigm shift has focused attention on therapeutically targeting CSCs directly as a means of eradicating the disease. In breast cancers, CSCs can be identified by cell surface markers and are characterized by their ability to self-renew and differentiate, resist chemotherapy and radiation, and initiate new tumors upon serial transplantation in xenografted mice. These functional properties of CSCs are regulated by both intracellular and extracellular factors including pluripotency-related transcription factors, intracellular signaling pathways and external stimuli. Several classes of natural products and synthesized compounds have been studied to target these regulatory elements and force CSCs to lose stemness and/or terminally differentiate and thereby achieve a therapeutic effect. However, realization of an effective treatment for breast cancers, focused on the biological effects of these agents on breast CSCs, their functions and signaling, has not yet been achieved. In this review, we delineate the intrinsic and extrinsic factors identified to date that control or promote stemness in breast CSCs and provide a comprehensive compilation of potential agents that have been studied to target breast CSCs, transcription factors and stemness-related signaling. Our aim is to stimulate further study of these agents that could become the basis for their use as stand-alone treatments or components of combination therapies effective against breast cancers.
Collapse
Affiliation(s)
- Naing L Shan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Yoosub Shin
- Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Ge Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Philip Furmanski
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
18
|
Ávalos-Moreno M, López-Tejada A, Blaya-Cánovas JL, Cara-Lupiañez FE, González-González A, Lorente JA, Sánchez-Rovira P, Granados-Principal S. Drug Repurposing for Triple-Negative Breast Cancer. J Pers Med 2020; 10:E200. [PMID: 33138097 PMCID: PMC7711505 DOI: 10.3390/jpm10040200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer which presents a high rate of relapse, metastasis, and mortality. Nowadays, the absence of approved specific targeted therapies to eradicate TNBC remains one of the main challenges in clinical practice. Drug discovery is a long and costly process that can be dramatically improved by drug repurposing, which identifies new uses for existing drugs, both approved and investigational. Drug repositioning benefits from improvements in computational methods related to chemoinformatics, genomics, and systems biology. To the best of our knowledge, we propose a novel and inclusive classification of those approaches whereby drug repurposing can be achieved in silico: structure-based, transcriptional signatures-based, biological networks-based, and data-mining-based drug repositioning. This review specially emphasizes the most relevant research, both at preclinical and clinical settings, aimed at repurposing pre-existing drugs to treat TNBC on the basis of molecular mechanisms and signaling pathways such as androgen receptor, adrenergic receptor, STAT3, nitric oxide synthase, or AXL. Finally, because of the ability and relevance of cancer stem cells (CSCs) to drive tumor aggressiveness and poor clinical outcome, we also focus on those molecules repurposed to specifically target this cell population to tackle recurrence and metastases associated with the progression of TNBC.
Collapse
Affiliation(s)
- Marta Ávalos-Moreno
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Francisca E. Cara-Lupiañez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose A. Lorente
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- Department of Legal Medicine, School of Medicine—PTS—University of Granada, 18016 Granada, Spain
| | | | - Sergio Granados-Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| |
Collapse
|
19
|
Agioutantis PC, Loutrari H, Kolisis FN. Computational Analysis of Transcriptomic and Proteomic Data for Deciphering Molecular Heterogeneity and Drug Responsiveness in Model Human Hepatocellular Carcinoma Cell Lines. Genes (Basel) 2020; 11:E623. [PMID: 32517019 PMCID: PMC7349788 DOI: 10.3390/genes11060623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is associated with high mortality due to its inherent heterogeneity, aggressiveness, and limited therapeutic regimes. Herein, we analyzed 21 human HCC cell lines (HCC lines) to explore intertumor molecular diversity and pertinent drug sensitivity. We used an integrative computational approach based on exploratory and single-sample gene-set enrichment analysis of transcriptome and proteome data from the Cancer Cell Line Encyclopedia, followed by correlation analysis of drug-screening data from the Cancer Therapeutics Response Portal with curated gene-set enrichment scores. Acquired results classified HCC lines into two groups, a poorly and a well-differentiated group, displaying lower/higher enrichment scores in a "Specifically Upregulated in Liver" gene-set, respectively. Hierarchical clustering based on a published epithelial-mesenchymal transition gene expression signature further supported this stratification. Between-group comparisons of gene and protein expression unveiled distinctive patterns, whereas downstream functional analysis significantly associated differentially expressed genes with crucial cancer-related biological processes/pathways and revealed concrete driver-gene signatures. Finally, correlation analysis highlighted a diverse effectiveness of specific drugs against poorly compared to well-differentiated HCC lines, possibly applicable in clinical research with patients with analogous characteristics. Overall, this study expanded the knowledge on the molecular profiles, differentiation status, and drug responsiveness of HCC lines, and proposes a cost-effective computational approach to precision anti-HCC therapies.
Collapse
Affiliation(s)
- Panagiotis C. Agioutantis
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece;
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece
| | - Heleni Loutrari
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece
| | - Fragiskos N. Kolisis
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece;
| |
Collapse
|
20
|
Dai Y, Huang H, Zhu Y, Cheng J, Shen AZ, Liu Y. Combating metastasis of breast cancer cells with a carboplatin analogue containing an all-trans retinoic acid ligand. Dalton Trans 2020; 49:5039-5043. [PMID: 32242881 DOI: 10.1039/d0dt00507j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pt-ATRA, a carboplatin analogue containing an all-trans retinoic acid (ATRA) derivative ligand, was synthesized via a click reaction. Upon cellular internalization, Pt-ATRA exhibits a dual function, releasing an active Pt(ii) moiety to induce cell apoptosis and ATRA to inhibit tumor metastasis.
Collapse
Affiliation(s)
- Yi Dai
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | |
Collapse
|
21
|
Xu A, Zhang N, Cao J, Zhu H, Yang B, He Q, Shao X, Ying M. Post-translational modification of retinoic acid receptor alpha and its roles in tumor cell differentiation. Biochem Pharmacol 2020; 171:113696. [DOI: 10.1016/j.bcp.2019.113696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
|
22
|
Terao M, Goracci L, Celestini V, Kurosaki M, Bolis M, Di Veroli A, Vallerga A, Fratelli M, Lupi M, Corbelli A, Fiordaliso F, Gianni M, Paroni G, Zanetti A, Cruciani G, Garattini E. Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:436. [PMID: 31665044 PMCID: PMC6821005 DOI: 10.1186/s13046-019-1438-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022]
Abstract
Background All-trans-retinoic-acid (ATRA) is a promising agent in the prevention/treatment of breast-cancer. There is growing evidence that reprogramming of cellular lipid metabolism contributes to malignant transformation and progression. Lipid metabolism is implicated in cell differentiation and metastatic colonization and it is involved in the mechanisms of sensitivity/resistance to different anti-tumor agents. The role played by lipids in the anti-tumor activity of ATRA has never been studied. Methods We used 16 breast cancer cell-lines whose degree of sensitivity to the anti-proliferative action of ATRA is known. We implemented a non-oriented mass-spectrometry based approach to define the lipidomic profiles of each cell-line grown under basal conditions and following treatment with ATRA. To complement the lipidomic data, untreated and retinoid treated cell-lines were also subjected to RNA-sequencing to define the perturbations afforded by ATRA on the whole-genome gene-expression profiles. The number and functional activity of mitochondria were determined in selected ATRA-sensitive and –resistant cell-lines. Bio-computing approaches were used to analyse the high-throughput lipidomic and transcriptomic data. Results ATRA perturbs the homeostasis of numerous lipids and the most relevant effects are observed on cardiolipins, which are located in the mitochondrial inner membranes and play a role in oxidative-phosphorylation. ATRA reduces the amounts of cardiolipins and the effect is associated with the growth-inhibitory activity of the retinoid. Down-regulation of cardiolipins is due to a reduction of mitochondria, which is caused by an ATRA-dependent decrease in the expression of nuclear genes encoding mitochondrial proteins. This demonstrates that ATRA anti-tumor activity is due to a decrease in the amounts of mitochondria causing deficits in the respiration/energy-balance of breast-cancer cells. Conclusions The observation that ATRA anti-proliferative activity is caused by a reduction in the respiration and energy balance of the tumor cells has important ramifications for the therapeutic action of ATRA in breast cancer. The study may open the way to the development of rational therapeutic combinations based on the use of ATRA and anti-tumor agents targeting the mitochondria.
Collapse
Affiliation(s)
- Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156, Milan, Italy
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy.,Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123, Perugia, Italy
| | - Valentina Celestini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156, Milan, Italy
| | - Mami Kurosaki
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156, Milan, Italy
| | - Marco Bolis
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156, Milan, Italy
| | - Alessandra Di Veroli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Arianna Vallerga
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156, Milan, Italy
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156, Milan, Italy
| | - Monica Lupi
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156, Milan, Italy
| | - Alessandro Corbelli
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156, Milan, Italy
| | - Fabio Fiordaliso
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156, Milan, Italy
| | - Maurizio Gianni
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156, Milan, Italy
| | - Gabriela Paroni
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156, Milan, Italy
| | - Adriana Zanetti
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156, Milan, Italy
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy.,Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123, Perugia, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156, Milan, Italy.
| |
Collapse
|
23
|
Wu VT, Kiriazov B, Koch KE, Gu VW, Beck AC, Borcherding N, Li T, Addo P, Wehrspan ZJ, Zhang W, Braun TA, Brown BJ, Band V, Band H, Kulak MV, Weigel RJ. A TFAP2C Gene Signature Is Predictive of Outcome in HER2-Positive Breast Cancer. Mol Cancer Res 2019; 18:46-56. [PMID: 31619506 DOI: 10.1158/1541-7786.mcr-19-0359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/05/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022]
Abstract
The AP-2γ transcription factor, encoded by the TFAP2C gene, regulates the expression of estrogen receptor-alpha (ERα) and other genes associated with hormone response in luminal breast cancer. Little is known about the role of AP-2γ in other breast cancer subtypes. A subset of HER2+ breast cancers with amplification of the TFAP2C gene locus becomes addicted to AP-2γ. Herein, we sought to define AP-2γ gene targets in HER2+ breast cancer and identify genes accounting for physiologic effects of growth and invasiveness regulated by AP-2γ. Comparing HER2+ cell lines that demonstrated differential response to growth and invasiveness with knockdown of TFAP2C, we identified a set of 68 differentially expressed target genes. CDH5 and CDKN1A were among the genes differentially regulated by AP-2γ and that contributed to growth and invasiveness. Pathway analysis implicated the MAPK13/p38δ and retinoic acid regulatory nodes, which were confirmed to display divergent responses in different HER2+ cancer lines. To confirm the clinical relevance of the genes identified, the AP-2γ gene signature was found to be highly predictive of outcome in patients with HER2+ breast cancer. We conclude that AP-2γ regulates a set of genes in HER2+ breast cancer that drive cancer growth and invasiveness. The AP-2γ gene signature predicts outcome of patients with HER2+ breast cancer and pathway analysis predicts that subsets of patients will respond to drugs that target the MAPK or retinoic acid pathways. IMPLICATIONS: A set of genes regulated by AP-2γ in HER2+ breast cancer that drive proliferation and invasion were identified and provided a gene signature that is predictive of outcome in HER2+ breast cancer.
Collapse
Affiliation(s)
- Vincent T Wu
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | - Boris Kiriazov
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | - Kelsey E Koch
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | - Vivian W Gu
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Anna C Beck
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | | | - Tiandao Li
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | - Peter Addo
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | | | - Weizhou Zhang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Terry A Braun
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Bartley J Brown
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hamid Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Ronald J Weigel
- Department of Surgery, University of Iowa, Iowa City, Iowa. .,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa.,Department of Biochemistry, University of Iowa, Iowa City, Iowa
| |
Collapse
|
24
|
Horvat L, Madunić J, Grubar M, Antica M, Matulić M. Induction of Urokinase Activity by Retinoic Acid in Two Cell Lines of Neuronal Origin. Biomedicines 2019; 7:biomedicines7030070. [PMID: 31547462 PMCID: PMC6784121 DOI: 10.3390/biomedicines7030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022] Open
Abstract
Retinoic acid is one of the most well-known agents able to induce differentiation in several types of tumours. Unfortunately, most of the tumours are refractive to the differentiation cues. The aim of this investigation was to analyse the effects of prolonged treatment with retinoic acid on two cell lines of neural origin refractive to differentiation. Cells were also treated with retinoic acid in combination with a poly(ADP-ribosyl) polymerase (PARP) inhibitor because PARP1 is a known chromatin modulator and can influence the process of differentiation. The main methods comprised tumour cell line culturing and treatment; analysis of RNA and protein expression after cell treatment; as well as analysis of urokinase activity, migration, and proliferation. Both cell lines continued to proliferate under the prolonged treatment and showed increase in urokinase plasminogen activator activity. Analysis of gene expression and cell phenotype revealed different mechanisms, which only in neuroblastoma H4 cells could indicate the process of epithelial-mesenchymal transition. The data collected indicate that the activity of the urokinase plasminogen activator, although belonging to an extracellular protease, does not necessary lead to epithelial-mesenchymal reprogramming and increase in cell migration but can have different outcomes depending on the intracellular milieu.
Collapse
Affiliation(s)
- Luka Horvat
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, 10000 Zagreb, Croatia; (L.H.); (J.M.)
| | - Josip Madunić
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, 10000 Zagreb, Croatia; (L.H.); (J.M.)
| | - Martina Grubar
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, 10000 Zagreb, Croatia; (L.H.); (J.M.)
| | - Mariastefania Antica
- Division of Molecular Biology, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia;
| | - Maja Matulić
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, 10000 Zagreb, Croatia; (L.H.); (J.M.)
- Correspondence:
| |
Collapse
|
25
|
Culig Z. Epithelial mesenchymal transition and resistance in endocrine-related cancers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1368-1375. [PMID: 31108117 DOI: 10.1016/j.bbamcr.2019.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/26/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Abstract
Epithelial to mesencyhmal transition (EMT) has a central role in tumor metastasis and progression. EMT is regulated by several growth factors and pro-inflammatory cytokines. The most important role in this regulation could be attributed to transforming growth factor-β (TGF-β). In breast cancer, TGF-β effect on EMT could be potentiated by Fos-related antigen, oncogene HER2, epidermal growth factor, or mitogen-activated protein kinase kinase 5 - extracellular-regulated kinase signaling. Several microRNAs in breast cancer have a considerable role either in potentiation or in suppression of EMT thus acting as oncogenic or tumor suppressive modulators. At present, possibilities to target EMT are discussed but the results of clinical translation are still limited. In prostate cancer, many cellular events are regulated by androgenic hormones. Different experimental results on androgenic stimulation or inhibition of EMT have been reported in the literature. Thus, a possibility that androgen ablation therapy leads to EMT thus facilitating tumor progression has to be discussed. Novel therapy agents, such as the anti-diabetic drug metformin or selective estrogen receptor modulator ormeloxifene were used in pre-clinical studies to inhibit EMT in prostate cancer. Taken together, the results of pre-clinical and clinical studies in breast cancer may be helpful in the process of drug development and identify potential risk during the early stage of that process.
Collapse
Affiliation(s)
- Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
26
|
The Use of Nutraceuticals to Counteract Atherosclerosis: The Role of the Notch Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5470470. [PMID: 31915510 PMCID: PMC6935452 DOI: 10.1155/2019/5470470] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Despite the currently available pharmacotherapies, today, thirty percent of worldwide deaths are due to cardiovascular diseases (CVDs), whose primary cause is atherosclerosis, an inflammatory disorder characterized by the buildup of lipid deposits on the inside of arteries. Multiple cellular signaling pathways have been shown to be involved in the processes underlying atherosclerosis, and evidence has been accumulating for the crucial role of Notch receptors in regulating the functions of the diverse cell types involved in atherosclerosis onset and progression. Several classes of nutraceuticals have potential benefits for the prevention and treatment of atherosclerosis and CVDs, some of which could in part be due to their ability to modulate the Notch pathway. In this review, we summarize the current state of knowledge on the role of Notch in vascular health and its modulation by nutraceuticals for the prevention of atherosclerosis and/or treatment of related CVDs.
Collapse
|
27
|
Self-renewal signaling pathways in breast cancer stem cells. Int J Biochem Cell Biol 2019; 107:140-153. [DOI: 10.1016/j.biocel.2018.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/19/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022]
|
28
|
Lokman NA, Ho R, Gunasegaran K, Bonner WM, Oehler MK, Ricciardelli C. Anti-tumour effects of all-trans retinoid acid on serous ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:10. [PMID: 30621740 PMCID: PMC6325857 DOI: 10.1186/s13046-018-1017-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022]
Abstract
Background Annexin A2 is increased in serous ovarian cancer and plays an essential role in ovarian cancer invasion and metastasis. In combination with S100A10, annexin A2 plays an important role in the plasminogen activator system regulating plasmin production. The aim of this study was to investigate the potential utility of all-trans retinoid acid (ATRA), an inhibitor of the annexin A2-S100A10 signalling pathway, as a new therapeutic against serous ovarian cancer. Methods In this study we determined the effects of ATRA treatment (1-5 μM) on annexin A2 and S100A10 expression, plasmin activation, and the ability of ATRA to inhibit serous ovarian cancer cell survival, motility and invasion in vitro. We also employed an ex vivo tissue explant assay to assess response to ATRA treatment in serous ovarian cancers. Cryopreserved serous ovarian cancer tissues were cultured on gelatin sponges for 72 h with ATRA (1 μM). Effects on apoptosis and proliferation were assessed by immunohistochemistry using antibodies to cleaved caspase 3 or Ki67, respectively. Results Survival of serous ovarian cancer cells (OVCAR-3, OV-90, & OAW28) was significantly decreased by ATRA treatment (1-5 μM). ATRA (1 μM) also significantly decreased proliferation (Ki67 positivity, p = 0.0034), S100A10 protein levels (p = 0.0273), and increased cell apoptosis (cleaved caspase-3 positivity, p = 0.0024) in serous ovarian cancer tissues using the ex vivo tissue explant assay. In OAW28 cells, reduced cell survival following ATRA treatment was associated with a reduction of S100A10 mRNA and protein levels, S100A10 and annexin A2 membrane localization, plasmin generation, motility and invasion. In contrast, ATRA inhibited OV-90 cell survival and invasion but did not affect plasmin activation or S100A10 and annexin A2 expression or membrane localization. Conclusions These findings suggest that ATRA inhibits serous ovarian cancer proliferation and invasion via both S100A10 dependant and S100A10 independent mechanisms. Our results show that ATRA has promising potential as a novel therapy against serous ovarian cancer that warrants further evaluation. Electronic supplementary material The online version of this article (10.1186/s13046-018-1017-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Noor A Lokman
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Rachel Ho
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Kavyadharshini Gunasegaran
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Wendy M Bonner
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, 5005, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
29
|
Parejo S, Tschan MP, Muraro MG, Garattini E, Spagnoli GC, Schläfli AM. Assessing Autophagy During Retinoid Treatment of Breast Cancer Cells. Methods Mol Biol 2019; 2019:237-256. [PMID: 31359401 DOI: 10.1007/978-1-4939-9585-1_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Retinoids are derived from vitamin A through a multi-step process. Within a target cell, retinoids regulate gene expression by activating the retinoid acid receptors (RAR) and retinoid x receptors (RXR), which are ligand-dependent transcription factors. Besides its therapeutic use in dermatological disorders, all-trans retinoic acid (ATRA) is successfully utilized to treat acute promyelocytic leukemia (APL) patients. The use of ATRA in APL patients is the first example of clinically useful differentiation therapy. Therapeutic strategies aiming at cancer cell differentiation have great potential for solid tumors, including breast cancer. The few clinical studies conducted with ATRA in breast cancer are rather disappointing. However, these studies did not take into account the heterogeneity of the disease and were conducted on unselected cohorts of patients.We recently showed that ATRA treatment of breast cancer cells induces autophagy, a highly conserved process aiming at degrading and recycling superfluous or harmful cellular components. In addition, autophagy inhibition significantly increases the therapeutic activity of ATRA. This finding is of fundamental importance, since autophagy has a dual role in cancer. Whereas autophagy may be a protective mechanism during the initial phases of cancer development, it may support cancer cell survival in already established tumors. Furthermore, autophagy can lower or enhance therapeutic efficiency, depending on the tumor type and the anticancer agent considered. Therefore, it is important to investigate the role of autophagy in the context of specific tumors and therapeutic approaches. Accurate autophagy studies are challenging given the dynamic nature of the process and the difficulty of measuring the rate of autophagosome degradation (autophagic flux). In this chapter, we provide protocols for a careful assessment of the autophagic flux in ATRA treated 2D and 3D breast cancer cultures.
Collapse
Affiliation(s)
- Sarah Parejo
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Mario P Tschan
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Manuele G Muraro
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giulio C Spagnoli
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
- National Research Council, Institute of Translational Pharmacology, Rome, Italy
| | - Anna M Schläfli
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
30
|
Al-Qassab Y, Grassilli S, Brugnoli F, Vezzali F, Capitani S, Bertagnolo V. Protective role of all-trans retinoic acid (ATRA) against hypoxia-induced malignant potential of non-invasive breast tumor derived cells. BMC Cancer 2018; 18:1194. [PMID: 30497437 PMCID: PMC6267073 DOI: 10.1186/s12885-018-5038-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/04/2018] [Indexed: 12/14/2022] Open
Abstract
Background The presence of hypoxic areas is common in all breast lesions but no data clearly correlate low oxygenation with the acquisition of malignant features by non-invasive cells, particularly by cells from ductal carcinoma in situ (DCIS), the most frequently diagnosed tumor in women. Methods By using a DCIS-derived cell line, we evaluated the effects of low oxygen availability on malignant features of non-invasive breast tumor cells and the possible role of all-trans retinoic acid (ATRA), a well-known anti-leukemic drug, in counteracting the effects of hypoxia. The involvement of the β2 isoform of PI-PLC (PLC-β2), an ATRA target in myeloid leukemia cells, was also investigated by specific modulation of the protein expression. Results We demonstrated that moderate hypoxia is sufficient to induce, in DCIS-derived cells, motility, epithelial-to-mesenchymal transition (EMT) and expression of the stem cell marker CD133, indicative of their increased malignant potential. Administration of ATRA supports the epithelial-like phenotype of DCIS-derived cells cultured under hypoxia and keeps down the number of CD133 positive cells, abrogating almost completely the effects of poor oxygenation. We also found that the mechanisms triggered by ATRA in non-invasive breast tumor cells cultured under hypoxia is in part mediated by PLC-β2, responsible to counteract the effects of low oxygen availability on CD133 levels. Conclusions Overall, we assigned to hypoxia a role in increasing the malignant potential of DCIS-derived cells and we identified in ATRA, currently used in treatment of acute promyelocytic leukemia (APL), an agonist potentially useful in preventing malignant progression of non-invasive breast lesions showing hypoxic areas.
Collapse
Affiliation(s)
- Yasamin Al-Qassab
- Signal Transduction Unit, Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44121, Ferrara, Italy.,College of Medicine, Department of Anatomy, University of Baghdad, Baghdad, Iraq
| | - Silvia Grassilli
- Signal Transduction Unit, Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44121, Ferrara, Italy
| | - Federica Brugnoli
- Signal Transduction Unit, Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44121, Ferrara, Italy
| | - Federica Vezzali
- Signal Transduction Unit, Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44121, Ferrara, Italy
| | - Silvano Capitani
- Signal Transduction Unit, Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44121, Ferrara, Italy.,LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Valeria Bertagnolo
- Signal Transduction Unit, Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44121, Ferrara, Italy.
| |
Collapse
|
31
|
Hermawan A, Putri H. Current report of natural product development against breast cancer stem cells. Int J Biochem Cell Biol 2018; 104:114-132. [DOI: 10.1016/j.biocel.2018.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023]
|
32
|
Redfern AD, Spalding LJ, Thompson EW. The Kraken Wakes: induced EMT as a driver of tumour aggression and poor outcome. Clin Exp Metastasis 2018; 35:285-308. [PMID: 29948647 DOI: 10.1007/s10585-018-9906-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Epithelial mesenchymal transition (EMT) describes the shift of cells from an epithelial form to a contact independent, migratory, mesenchymal form. In cancer the change is linked to invasion and metastasis. Tumour conditions, including hypoxia, acidosis and a range of treatments can trigger EMT, which is implicated in the subsequent development of resistance to those same treatments. Consequently, the degree to which EMT occurs may underpin the entire course of tumour progression and treatment response in a patient. In this review we look past the protective effect of EMT against the initial treatment, to the role of the mesenchymal state, once triggered, in promoting disease growth, spread and future treatment insensitivity. In patients a correlation was found between the propensity of a treatment to induce EMT and failure of that treatment to provide a survival benefit, implicating EMT induction in accelerated tumour progression after treatment cessation. Looking to the mechanisms driving this detrimental effect; increased proliferation, suppressed apoptosis, stem cell induction, augmented angiogenesis, enhanced metastatic dissemination, and immune tolerance, can all result from treatment-induced EMT and could worsen outcome. Evidence also suggests EMT induction with earlier therapies attenuates benefits of later treatments. Looking beyond epithelial tumours, de-differentiation also has therapy-attenuating effects and reversal thereof may yield similar rewards. A range of potential therapies are in development that may address the diverse mechanisms and molecular control systems involved in EMT-induced accelerated progression. Considering the broad reaching effects of mesenchymal shift identified, successful deployment of such treatments could substantially improve patient outcomes.
Collapse
Affiliation(s)
- Andrew D Redfern
- School of Medicine, University of Western Australia (UWA), Harry Perkins Building, Fiona Stanley Hospital Campus, Robin Warren Drive, Murdoch, WA, 6150, Australia.
| | - Lisa J Spalding
- School of Medicine, University of Western Australia (UWA), Harry Perkins Building, Fiona Stanley Hospital Campus, Robin Warren Drive, Murdoch, WA, 6150, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.,Translational Research Institute, Woolloongabba, Australia.,Department of Surgery, University of Melbourne, Melbourne, Australia
| |
Collapse
|
33
|
Patrad E, Niapour A, Farassati F, Amani M. Combination treatment of all-trans retinoic acid (ATRA) and γ-secretase inhibitor (DAPT) cause growth inhibition and apoptosis induction in the human gastric cancer cell line. Cytotechnology 2018; 70:865-877. [PMID: 29417442 PMCID: PMC5851978 DOI: 10.1007/s10616-018-0199-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/24/2018] [Indexed: 01/26/2023] Open
Abstract
Current medication for gastric cancer patients has a low success rate with resistance and side effects. According to recent studies, γ-secretase inhibitors is used as therapeutic drugs in cancer. Moreover, all-trans retinoic acid (ATRA) is a natural compound proposed for the treatment/chemo-prevention of cancers. The aim of this study was to explore the effects of ATRA in combination with N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester (DAPT) as γ-secretase inhibitor on viability and apoptosis of the AGS and MKN-45 derived from human gastric cancer. AGS and MKN-45 gastric cancer cell lines were treated with different concentrations of ATRA or DAPT alone or ATRA plus DAPT. The viability, death detection and apoptosis of cells was examined by MTT assay and Ethidium bromide/acridine orange staining. The distribution of cells in different phases of cell cycle was also evaluated through flow cytometry analyses. In addition, caspase 3/7 activity and the expression of caspase-3 and bcl-2 were examined. DAPT and ATRA alone decreased gastric cancer cells viability in a concentration dependent manner. The combination of DAPT and ATRA exhibited significant synergistic inhibitory effects. The greater percentage of cells were accumulated in G0/G1 phase of cell cycle in combination treatment. The combination of DAPT and ATRA effectively increased the proportion of apoptotic cells and the level of caspase 3/7 activities compared to single treatment. Moreover, augmented caspase-3 up-regulation and bcl-2 down-regulation were found following combined application of DAPT and ATRA. The combination of DAPT and ATRA led to more reduction in viability and apoptosis in respect to DAPT or ATRA alone in the investigated cell lines.
Collapse
Affiliation(s)
- Elham Patrad
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Faris Farassati
- Molecular Medicine Laboratory, Department of Medicine, The University of Kansas Medical School (KUMC), Kansas City, KS, USA
| | - Mojtaba Amani
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
34
|
Gianni M, Fratelli M, Bolis M, Kurosaki M, Zanetti A, Paroni G, Rambaldi A, Borleri G, Rochette-Egly C, Terao M, Garattini E. RARα2 and PML-RAR similarities in the control of basal and retinoic acid induced myeloid maturation of acute myeloid leukemia cells. Oncotarget 2018; 8:37041-37060. [PMID: 27419624 PMCID: PMC5514891 DOI: 10.18632/oncotarget.10556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/01/2016] [Indexed: 02/02/2023] Open
Abstract
Treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid (ATRA) is the first example of targeted therapy. In fact, the oncogenic fusion-protein (PML-RAR) typical of this leukemia contains the retinoid-nuclear-receptor RARα. PML-RAR is responsible for the differentiation block of the leukemic blast. Besides PML-RAR, two endogenous RARα proteins are present in APL blasts, i.e. RARα1 and RARα2. We developed different cell populations characterized by PML-RAR, RARα2 and RARα1 knock-down in the APL-derived NB4 cell-line. Unexpectedly, silencing of PML-RAR and RARα2 results in similar increases in the constitutive expression of several granulocytic differentiation markers. This is accompanied by enhanced expression of the same granulocytic markers upon exposure of the NB4 blasts to ATRA. Silencing of PML-RAR and RARα2 causes also similar perturbations in the whole genome gene-expression profiles of vehicle and ATRA treated NB4 cells. Unlike PML-RAR and RARα2, RARα1 knock-down blocks ATRA-dependent induction of several granulocytic differentiation markers. Many of the effects on myeloid differentiation are confirmed by over-expression of RARα2 in NB4 cells. RARα2 action on myeloid differentiation does not require the presence of PML-RAR, as it is recapitulated also upon knock-down in PML-RAR-negative HL-60 cells. Thus, relative to RARα1, PML-RAR and RARα2 exert opposite effects on APL-cell differentiation. These contrasting actions may be related to the fact that both PML-RAR and RARα2 interact with and inhibit the transcriptional activity of RARα1. The interaction surface is located in the carboxy-terminal domain containing the D/E/F regions and it is influenced by phosphorylation of Ser-369 of RARα1.
Collapse
Affiliation(s)
- Maurizio Gianni
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milano, Italy
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milano, Italy
| | - Marco Bolis
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milano, Italy
| | - Mami Kurosaki
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milano, Italy
| | - Adriana Zanetti
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milano, Italy
| | - Gabriela Paroni
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milano, Italy
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliera Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Gianmaria Borleri
- Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliera Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Cecile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, 67404 Illkirch Cedex, France
| | - Mineko Terao
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milano, Italy
| |
Collapse
|
35
|
Jiao J, Wu H, Chen F, Chen R, Sun B, Wang M. Delivery of coumarin-containing all-trans retinoic acid derivatives via targeted nanoparticles encapsulating indocyanine green for chemo/photothermal/photodynamic therapy of breast cancer. NEW J CHEM 2018. [DOI: 10.1039/c8nj00578h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Development of chemo/photothermal/photodynamic therapy with nanoplatforms offers a promising strategy for effective cancer treatment.
Collapse
Affiliation(s)
- Jia Jiao
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| | - Hongshuai Wu
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| | - Fanghui Chen
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| | - Renjie Chen
- Affiliated Hospital 2
- Nanjing Medical University
- Nanjing 210011
- P. R. China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| | - Mingliang Wang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| |
Collapse
|
36
|
Opdenaker LM, Kowash R, Masters G, Boman BM, Zhang T, Modarai SR. Increased Musashi-2 and Decreased NUMB Protein Levels Observed in Human Colorectal Cancer are reverted to Normal Levels by ATRA-Induced Cell Differentiation. ACTA ACUST UNITED AC 2018; 3. [PMID: 32984754 PMCID: PMC7517600 DOI: 10.33140/ijcrt/03/02/00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Musashi stem cell (SC) proteins (MSI-1 & MSI-2) are known to become over expressed during colorectal tumorigenesis in humans and mice. MSI-1 overexpression induces tumorigenesis through Notch activation via inactivation of NUMB. Previous studies also show that MSI-2 overexpression in mice induces intestinal tumorigenesis but the mechanism is independent of NUMB. However, whether the MSI-2/NUMB pathway contributes to colorectal cancer (CRC) development in humans is still undetermined. Methods: We evaluated expression of MSI-2 and NUMB proteins in matched normal and CRC patient samples, as well as in human CRC cell lines. We also determined whether induction of cellular differentiation by all-trans retinoic acid (ATRA) influences MSI-2 and NUMB expression. Results: Analysis of matched patient tissue samples and CRC cell lines showed that MSI-2 protein expression is significantly increased and NUMB expression is decreased in CRCs compared to the normal colonic tissue. Immunostaining of normal and adenomatous colonic epithelium revealed that MSI-1+ andMSI-2+ SCs reside in the SC niche and they become overpopulated during colon tumorigenesis. Moreover, promoting cellular differentiation by ATRA reduces MSI-2 protein levels, while increasing NUMB protein levels in human CRC cell lines. Conclusions: MSI-2/NUMB protein expression is altered during colon tumorigenesis, and indicates that MSI-2/NUMB signaling in human colonic stem cells is closely linked to normal colonic epithelial homeostasis. Implications: The ability to normalize MSI-2/NUMB signaling by inducing differentiation of cancer SCs suggests a novel therapeutic approach for CRC treatment.
Collapse
Affiliation(s)
- Lynn M Opdenaker
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE.,University of Delaware, Newark, DE
| | - Ryan Kowash
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE.,Dickinson College, Carlisle, PA
| | - Gabriel Masters
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE.,Hamilton College, Clinton, NY
| | - Bruce M Boman
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE.,University of Delaware, Newark, DE
| | - Tao Zhang
- Childrens Hospital of Pennsylvania, Philadelphia PA
| | - Shirin R Modarai
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE.,University of Delaware, Newark, DE
| |
Collapse
|
37
|
Rybakovsky E, Valenzano MC, Deis R, DiGuilio KM, Thomas S, Mullin JM. Improvement of Human-Oral-Epithelial-Barrier Function and of Tight Junctions by Micronutrients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10950-10958. [PMID: 29172516 DOI: 10.1021/acs.jafc.7b04203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The oral epithelium represents a major interface between an organism and its external environment. Improving this barrier at the molecular level can provide an organism added protection from microbial-based diseases. Barrier function of the Gie-3B11-human-gingival-epithelial-cell-culture model is enhanced by the micronutrients zinc, quercetin, retinoic acid, and acetyl-11-keto-β-boswellic acid, as observed by a concentration-dependent increase in transepithelial electrical resistance and a decrease in transepithelial 14C-d-mannitol permeability. With this improvement of tight-junction (TJ)-barrier function (reduced leak) comes a pattern of micronutrient-induced changes in TJ claudin abundance that is specific to each individual micronutrient, along with changes in claudin subcellular localization. These micronutrients were effective not only when administered to both cell surfaces simultaneously but also when administered to the apical surface alone, the surface to which the micronutrients would be presented in routine clinical use. The biomedical implications of micronutrient enhancement of the oral-epithelial barrier are discussed.
Collapse
Affiliation(s)
- Elizabeth Rybakovsky
- Lankenau Institute for Medical Research , 100 East Lancaster Avenue, Wynnewood, Pennsylvania 19096 United States
| | - Mary Carmen Valenzano
- Lankenau Institute for Medical Research , 100 East Lancaster Avenue, Wynnewood, Pennsylvania 19096 United States
| | - Rachael Deis
- Lankenau Institute for Medical Research , 100 East Lancaster Avenue, Wynnewood, Pennsylvania 19096 United States
| | - Katherine M DiGuilio
- Lankenau Institute for Medical Research , 100 East Lancaster Avenue, Wynnewood, Pennsylvania 19096 United States
| | - Sunil Thomas
- Lankenau Institute for Medical Research , 100 East Lancaster Avenue, Wynnewood, Pennsylvania 19096 United States
| | - James M Mullin
- Lankenau Institute for Medical Research , 100 East Lancaster Avenue, Wynnewood, Pennsylvania 19096 United States
| |
Collapse
|
38
|
Aliper A, Jellen L, Cortese F, Artemov A, Karpinsky-Semper D, Moskalev A, Swick AG, Zhavoronkov A. Towards natural mimetics of metformin and rapamycin. Aging (Albany NY) 2017; 9:2245-2268. [PMID: 29165314 PMCID: PMC5723685 DOI: 10.18632/aging.101319] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Abstract
Aging is now at the forefront of major challenges faced globally, creating an immediate need for safe, widescale interventions to reduce the burden of chronic disease and extend human healthspan. Metformin and rapamycin are two FDA-approved mTOR inhibitors proposed for this purpose, exhibiting significant anti-cancer and anti-aging properties beyond their current clinical applications. However, each faces issues with approval for off-label, prophylactic use due to adverse effects. Here, we initiate an effort to identify nutraceuticals-safer, naturally-occurring compounds-that mimic the anti-aging effects of metformin and rapamycin without adverse effects. We applied several bioinformatic approaches and deep learning methods to the Library of Integrated Network-based Cellular Signatures (LINCS) dataset to map the gene- and pathway-level signatures of metformin and rapamycin and screen for matches among over 800 natural compounds. We then predicted the safety of each compound with an ensemble of deep neural network classifiers. The analysis revealed many novel candidate metformin and rapamycin mimetics, including allantoin and ginsenoside (metformin), epigallocatechin gallate and isoliquiritigenin (rapamycin), and withaferin A (both). Four relatively unexplored compounds also scored well with rapamycin. This work revealed promising candidates for future experimental validation while demonstrating the applications of powerful screening methods for this and similar endeavors.
Collapse
Affiliation(s)
- Alexander Aliper
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Leslie Jellen
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Franco Cortese
- Biogerontology Research Foundation, Research Department, Oxford, United Kingdom
- Department of Biomedical and Molecular Science, Queen's University School of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Artem Artemov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | | | - Alexey Moskalev
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, 167982, Russia
| | | | - Alex Zhavoronkov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
- Biogerontology Research Foundation, Research Department, Oxford, United Kingdom
| |
Collapse
|
39
|
Basu M, Khan MW, Chakrabarti P, Das C. Chromatin reader ZMYND8 is a key target of all trans retinoic acid-mediated inhibition of cancer cell proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:450-459. [DOI: 10.1016/j.bbagrm.2017.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/16/2017] [Accepted: 02/11/2017] [Indexed: 01/10/2023]
|
40
|
Yu Y, Nie Y, Feng Q, Qu J, Wang R, Bian L, Xia J. Targeted Covalent Inhibition of Grb2-Sos1 Interaction through Proximity-Induced Conjugation in Breast Cancer Cells. Mol Pharm 2017; 14:1548-1557. [PMID: 28060514 DOI: 10.1021/acs.molpharmaceut.6b00952] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Targeted covalent inhibitors of protein-protein interactions differ from reversible inhibitors in that the former bind and covalently bond the target protein at a specific site of the target. The site specificity is the result of the proximity of two reactive groups at the bound state, for example, one mild electrophile in the inhibitor and a natural cysteine in the target close to the ligand binding site. Only a few pharmaceutically relevant proteins have this structural feature. Grb2, a key adaptor protein in maintaining the ERK activity via binding Sos1 to activated RTKs, is one: the N-terminal SH3 domain of Grb2 (Grb2N-SH3) carries a unique solvent-accessible cysteine Cys32 close to its Sos1-binding site. Here we report the design of a peptide-based antagonist (a reactive peptide) that specifically binds to Grb2N-SH3 and subsequently undergoes a nucleophilic reaction with Cys32 to form a covalent bond thioether, to block Grb2-Sos1 interaction. Through rounds of optimization, we eventually obtained a dimeric reaction reactive peptide that can form a covalent adduct with endogenous Grb2 protein inside the cytosol of SK-BR-3 human breast cancer cells with pronounced inhibitory effect on cell mobility and viability. This work showcases a rational design of Grb2-targeted site-specific covalent inhibitor and its pronounced anticancer effect by targeting Grb2-Sos1 interaction.
Collapse
Affiliation(s)
- Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai, China.,Department of Chemistry, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | - Yunyu Nie
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | - Qian Feng
- Department of Biomedical Engineering, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | - Jiale Qu
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | - Rui Wang
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| |
Collapse
|
41
|
Huang H, Shi H, Liu J, Min Y, Wang Y, Wang AZ, Wang J, Liu Y. Co-delivery of all-trans-retinoic acid enhances the anti-metastasis effect of albumin-bound paclitaxel nanoparticles. Chem Commun (Camb) 2016; 53:212-215. [PMID: 27918025 DOI: 10.1039/c6cc08146k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Co-delivery of all-trans-retinoic acid and paclitaxel using albumin-bound nanoparticles demonstrated a significantly improved anti-metastatic effect to breast cancer both in vitro and in vivo. Notably, the co-delivery nanoparticles exhibited more pronounced therapeutic effects than the combination of two free drugs or two HSA loaded single drugs.
Collapse
Affiliation(s)
- Hai Huang
- CAS Key Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Hongdong Shi
- CAS Key Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Jing Liu
- School of Life Sciences, University of Science and Technology of China, China
| | - Yuanzeng Min
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yucai Wang
- School of Life Sciences, University of Science and Technology of China, China
| | - Andrew Z Wang
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jun Wang
- School of Life Sciences, University of Science and Technology of China, China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
42
|
Papi A, Orlandi M. Role of nuclear receptors in breast cancer stem cells. World J Stem Cells 2016; 8:62-72. [PMID: 27022437 PMCID: PMC4807310 DOI: 10.4252/wjsc.v8.i3.62] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/17/2015] [Accepted: 01/27/2016] [Indexed: 02/06/2023] Open
Abstract
The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells, capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells (CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs (BCSCs) are likely to sustain the growth of the primary tumour mass, as well as to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and pro-inflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the anti-inflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse.
Collapse
Affiliation(s)
- Alessio Papi
- Alessio Papi, Marina Orlandi, Department of Biological, Geological and Environmental Science (BiGea), University of Bologna, 40126 Bologna, Italy
| | - Marina Orlandi
- Alessio Papi, Marina Orlandi, Department of Biological, Geological and Environmental Science (BiGea), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
43
|
Impaired aldehyde dehydrogenase 1 subfamily member 2A-dependent retinoic acid signaling is related with a mesenchymal-like phenotype and an unfavorable prognosis of head and neck squamous cell carcinoma. Mol Cancer 2015; 14:204. [PMID: 26634247 PMCID: PMC4669670 DOI: 10.1186/s12943-015-0476-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/26/2015] [Indexed: 11/30/2022] Open
Abstract
Background An inverse correlation between expression of the aldehyde dehydrogenase 1 subfamily A2 (ALDH1A2) and gene promoter methylation has been identified as a common feature of oropharyngeal squamous cell carcinoma (OPSCC). Moreover, low ALDH1A2 expression was associated with an unfavorable prognosis of OPSCC patients, however the causal link between reduced ALDH1A2 function and treatment failure has not been addressed so far. Methods Serial sections from tissue microarrays of patients with primary OPSCC (n = 101) were stained by immunohistochemistry for key regulators of retinoic acid (RA) signaling, including ALDH1A2. Survival with respect to these regulators was investigated by univariate Kaplan-Meier analysis and multivariate Cox regression proportional hazard models. The impact of ALDH1A2-RAR signaling on tumor-relevant processes was addressed in established tumor cell lines and in an orthotopic mouse xenograft model. Results Immunohistochemical analysis showed an improved prognosis of ALDH1A2high OPSCC only in the presence of CRABP2, an intracellular RA transporter. Moreover, an ALDH1A2highCRABP2high staining pattern served as an independent predictor for progression-free (HR: 0.395, p = 0.007) and overall survival (HR: 0.303, p = 0.002), suggesting a critical impact of RA metabolism and signaling on clinical outcome. Functionally, ALDH1A2 expression and activity in tumor cell lines were related to RA levels. While administration of retinoids inhibited clonogenic growth and proliferation, the pharmacological inhibition of ALDH1A2-RAR signaling resulted in loss of cell-cell adhesion and a mesenchymal-like phenotype. Xenograft tumors derived from FaDu cells with stable silencing of ALDH1A2 and primary tumors from OPSCC patients with low ALDH1A2 expression exhibited a mesenchymal-like phenotype characterized by vimentin expression. Conclusions This study has unraveled a critical role of ALDH1A2-RAR signaling in the pathogenesis of head and neck cancer and our data implicate that patients with ALDH1A2low tumors might benefit from adjuvant treatment with retinoids. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0476-0) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Cui J, Gong M, He Y, Li Q, He T, Bi Y. All-trans retinoic acid inhibits proliferation, migration, invasion and induces differentiation of hepa1-6 cells through reversing EMT in vitro. Int J Oncol 2015; 48:349-57. [PMID: 26548461 DOI: 10.3892/ijo.2015.3235] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/20/2015] [Indexed: 01/24/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has the characristics of tumor invasiveness, frequent intrahepatic spread and extra hepatic metastases, which affects the therapy efficiency and prognosis. Epithelial-mesenchymal transition (EMT) is now recognized as a key process in tumor invasion, metastasis and the generation of cancer initiating cells. All-trans retinoic acid (ATRA) is currently used as a potential chemo-therapeutic or chemo-preventive agent because of its anti-proliferative, pro-apoptotic and antioxidant properties. This study investigated the effects of ATRA at different concentrations on the proliferation, migration, invasion, differentiation and functions of the mouse hepa1-6 hepatocarcinoma cell line and explored whether ATRA regulates EMT in the antitumor process. Trypan blue staining and colony formation assay were used to detect cell proliferation. Wound-healing assay and Transwell Matrigel assay were performed to examine migration. Invasion was assessed by using Transwell invasion assay. In the present study, ATRA significantly inhibited the cell growth, colony formation, migration, and invasion capability of hepa1-6 cells in a dose-dependent manner. Furthermore, ATRA at low concentration (0.1 µmol/l) could generate these influences. After treated in the ATRA medium, the expression of mature hepatic markers ALB (albumin), CK18 (cytokeratin 18), TAT (tyrosine aminotransferase), ApoB (apolipoprotein B) decreased and that of hepatocarcinoma marker AFP (α fetoprotein) increased. At day 7 after ATRA induction, hepa1-6 cells showed comparable indocyanine green (ICG) uptake and glycogen storage function to the blank control. The mRNA expression of mesenchymal markers N-cadherin, vimentin, snail and twist decreased, while expression of epithelial marker E-cadherin increased in hepa1-6 cells after treated with ATRA. Therefore, this study demonstrates that ATRA remarkably suppressed the proliferation, migration, invasion of hepa1-6 hepatocarcinoma cell line and effectively induced its differentiation and liver functions in vitro through the reversal of EMT. HCC may be more sensitive to ATRA than other cancers, suggesting the prospective usefulness of ATRA in the treatment of HCC.
Collapse
Affiliation(s)
- Jiejie Cui
- Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Mengjia Gong
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Stem Cell Therapy Engineering Technical Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yun He
- Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Qilin Li
- Department of Ultrasound, The Third People's Hospital of Chongqing, Chongqing 400014, P.R. China
| | - Tongchuan He
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Stem Cell Therapy Engineering Technical Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yang Bi
- Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
45
|
Mayati A, Le Vee M, Moreau A, Jouan E, Bucher S, Stieger B, Denizot C, Parmentier Y, Fardel O. Protein kinase C-dependent regulation of human hepatic drug transporter expression. Biochem Pharmacol 2015; 98:703-17. [PMID: 26462574 DOI: 10.1016/j.bcp.2015.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/07/2015] [Indexed: 12/13/2022]
Abstract
Hepatic drug transporters are now recognized as major actors of hepatobiliary elimination of drugs. Characterization of their regulatory pathways is therefore an important issue. In this context, the present study was designed to analyze the potential regulation of human hepatic transporter expression by protein kinase C (PKC) activation. Treatment by the reference PKC activator phorbol 12-myristate 13-acetate (PMA) for 48h was shown to decrease mRNA expression of various sinusoidal transporters, including OATP1B1, OATP2B1, NTCP, OCT1 and MRP3, but to increase that of OATP1B3, whereas mRNA expression of canalicular transporters was transiently enhanced (MDR1), decreased (BSEP and MRP2) or unchanged (BCRP) in human hepatoma HepaRG cells. The profile of hepatic transporter mRNA expression changes in PMA-treated HepaRG cells was correlated to that found in PMA-exposed primary human hepatocytes and was similarly observed in response to the PKC-activating marketed drug ingenol mebutate. It was associated with concomitant repression of OATP1B1 and OATP2B1 protein expression and reduction of OATP, OCT1, NTCP and MRP2 activity. The use of chemical PKC inhibitors further suggested a contribution of novel PKCs isoforms to PMA-mediated regulations of transporter mRNA expression. PMA was finally shown to cause epithelial-mesenchymal transition (EMT) in HepaRG cells and exposure to various additional EMT inducers, i.e., hepatocyte growth factor, tumor growth factor-β1 or the HNF4α inhibitor BI6015, led to transporter expression alterations highly correlated to those triggered by PMA. Taken together, these data highlight PKC-dependent regulation of human hepatic drug transporter expression, which may be closely linked to EMT triggered by PKC activation.
Collapse
Affiliation(s)
- Abdullah Mayati
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Marc Le Vee
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Amélie Moreau
- Centre de Pharmacocinétique, Technologie Servier, 25-27 Rue Eugène Vignat, 45000 Orléans, France
| | - Elodie Jouan
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Simon Bucher
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Claire Denizot
- Centre de Pharmacocinétique, Technologie Servier, 25-27 Rue Eugène Vignat, 45000 Orléans, France
| | - Yannick Parmentier
- Centre de Pharmacocinétique, Technologie Servier, 25-27 Rue Eugène Vignat, 45000 Orléans, France
| | - Olivier Fardel
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Biologie, Centre Hospitalier Universitaire, 2 Rue Henri Le Guilloux, 35033 Rennes, France.
| |
Collapse
|