1
|
Chau AK, Bracken K, Bai L, Pham D, Good L, Maillard RA. Conformational changes in Protein Kinase A along its activation cycle are rooted in the folding energetics of cyclic-nucleotide binding domains. J Biol Chem 2023:104790. [PMID: 37150322 DOI: 10.1016/j.jbc.2023.104790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023] Open
Abstract
Cyclic-nucleotide binding (CNB) domains are structurally and evolutionarily conserved signaling modules that regulate proteins with diverse folds and functions. Despite a wealth of structural information, the mechanisms by which CNB domains couple cyclic-nucleotide binding to conformational changes involved in signal transduction remain unknown. Here we combined single-molecule and computational approaches to investigate the conformation and folding energetics of the two CNB domains of the regulatory subunit of protein kinase A (PKA). We found that the CNB domains exhibit different conformational and folding signatures in the apo state, when bound to cAMP, or when bound to the PKA catalytic subunit, underscoring their ability to adapt to different binding partners. Moreover, we show while the two CNB domains have near-identical structures, their thermodynamic coupling signatures are divergent, leading to distinct cAMP responses and differential mutational effects. Specifically, we demonstrate the mutation W260A exerts local and allosteric effects that impact multiple steps of the PKA activation cycle. Taken together, these results highlight the complex interplay between folding energetics, conformational dynamics, and thermodynamic signatures that underlies structurally conserved signaling modules in response to ligand binding and mutational effects.
Collapse
Affiliation(s)
- Amy K Chau
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Katherine Bracken
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Lihui Bai
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Dominic Pham
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Lydia Good
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Rodrigo A Maillard
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
2
|
Sharma R, Kim JJ, Qin L, Henning P, Akimoto M, VanSchouwen B, Kaur G, Sankaran B, MacKenzie KR, Melacini G, Casteel DE, Herberg FW, Kim CW. An auto-inhibited state of protein kinase G and implications for selective activation. eLife 2022; 11:79530. [PMID: 35929723 PMCID: PMC9417419 DOI: 10.7554/elife.79530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
Cyclic GMP-dependent protein kinases (PKGs) are key mediators of the nitric oxide/cyclic guanosine monophosphate (cGMP) signaling pathway that regulates biological functions as diverse as smooth muscle contraction, cardiac function, and axon guidance. Understanding how cGMP differentially triggers mammalian PKG isoforms could lead to new therapeutics that inhibit or activate PKGs, complementing drugs that target nitric oxide synthases and cyclic nucleotide phosphodiesterases in this signaling axis. Alternate splicing of PRKG1 transcripts confers distinct leucine zippers, linkers, and auto-inhibitory (AI) pseudo-substrate sequences to PKG Iα and Iβ that result in isoform-specific activation properties, but the mechanism of enzyme auto-inhibition and its alleviation by cGMP is not well understood. Here, we present a crystal structure of PKG Iβ in which the AI sequence and the cyclic nucleotide-binding (CNB) domains are bound to the catalytic domain, providing a snapshot of the auto-inhibited state. Specific contacts between the PKG Iβ AI sequence and the enzyme active site help explain isoform-specific activation constants and the effects of phosphorylation in the linker. We also present a crystal structure of a PKG I CNB domain with an activating mutation linked to Thoracic Aortic Aneurysms and Dissections. Similarity of this structure to wildtype cGMP-bound domains and differences with the auto-inhibited enzyme provide a mechanistic basis for constitutive activation. We show that PKG Iβ auto-inhibition is mediated by contacts within each monomer of the native full-length dimeric protein, and using the available structural and biochemical data we develop a model for the regulation and cooperative activation of PKGs.
Collapse
Affiliation(s)
- Rajesh Sharma
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
| | - Jeong Joo Kim
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
| | - Liying Qin
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
| | - Philipp Henning
- Department of Biochemistry, University of Kassel, kassel, Germany
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Ontario, Canada
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Ontario, Canada
| | - Gundeep Kaur
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Kevin R MacKenzie
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Fritz W Herberg
- Department of Biochemistry, University of Kassel, kassel, Germany
| | - Choel W Kim
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
3
|
Kondapuram M, Frieg B, Yüksel S, Schwabe T, Sattler C, Lelle M, Schweinitz A, Schmauder R, Benndorf K, Gohlke H, Kusch J. Functional and structural characterization of interactions between opposite subunits in HCN pacemaker channels. Commun Biol 2022; 5:430. [PMID: 35534535 PMCID: PMC9085832 DOI: 10.1038/s42003-022-03360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Hyperpolarization-activated and cyclic nucleotide (HCN) modulated channels are tetrameric cation channels. In each of the four subunits, the intracellular cyclic nucleotide-binding domain (CNBD) is coupled to the transmembrane domain via a helical structure, the C-linker. High-resolution channel structures suggest that the C-linker enables functionally relevant interactions with the opposite subunit, which might be critical for coupling the conformational changes in the CNBD to the channel pore. We combined mutagenesis, patch-clamp technique, confocal patch-clamp fluorometry, and molecular dynamics (MD) simulations to show that residue K464 of the C-linker is relevant for stabilizing the closed state of the mHCN2 channel by forming interactions with the opposite subunit. MD simulations revealed that in the K464E channel, a rotation of the intracellular domain relative to the channel pore is induced, which is similar to the cAMP-induced rotation, weakening the autoinhibitory effect of the unoccupied CL-CNBD region. We suggest that this CL-CNBD rotation is considerably involved in activation-induced affinity increase but only indirectly involved in gate modulation. The adopted poses shown herein are in excellent agreement with previous structural results. Interactions between opposite subunits of HCN channels are relevant for stabilizing the auto-inhibited state of the channel. Like cAMP-binding, K464E-mutation breaks these interactions to favor a channel’s pre-activated state.
Collapse
Affiliation(s)
- Mahesh Kondapuram
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Benedikt Frieg
- John von Neumann-Institut für Computing (NIC), Jülich Supercomputing Centre (JSC), and Institut für Biologische Informationsprozesse (IBI-7: Strukturbiochemie), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Sezin Yüksel
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Tina Schwabe
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Christian Sattler
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Marco Lelle
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Andrea Schweinitz
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Ralf Schmauder
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Klaus Benndorf
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Holger Gohlke
- John von Neumann-Institut für Computing (NIC), Jülich Supercomputing Centre (JSC), and Institut für Biologische Informationsprozesse (IBI-7: Strukturbiochemie), Forschungszentrum Jülich GmbH, Jülich, Germany. .,Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany. .,Institut für Bio- und Geowissenschaften (IBG-4: Bioinformatik), Forschungszentrum Jülich GmbH, Jülich, Germany.
| | - Jana Kusch
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany.
| |
Collapse
|
4
|
Shimizu M, Mi X, Toyoda F, Kojima A, Ding WG, Fukushima Y, Omatsu-Kanbe M, Kitagawa H, Matsuura H. Propofol, an Anesthetic Agent, Inhibits HCN Channels through the Allosteric Modulation of the cAMP-Dependent Gating Mechanism. Biomolecules 2022; 12:biom12040570. [PMID: 35454159 PMCID: PMC9032835 DOI: 10.3390/biom12040570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
Propofol is a broadly used intravenous anesthetic agent that can cause cardiovascular effects, including bradycardia and asystole. A possible mechanism for these effects is slowing cardiac pacemaker activity due to inhibition of the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels. However, it remains unclear how propofol affects the allosteric nature of the voltage- and cAMP-dependent gating mechanism in HCN channels. To address this aim, we investigated the effect of propofol on HCN channels (HCN4 and HCN2) in heterologous expression systems using a whole-cell patch clamp technique. The extracellular application of propofol substantially suppressed the maximum current at clinical concentrations. This was accompanied by a hyperpolarizing shift in the voltage dependence of channel opening. These effects were significantly attenuated by intracellular loading of cAMP, even after considering the current modification by cAMP in opposite directions. The differential degree of propofol effects in the presence and absence of cAMP was rationalized by an allosteric gating model for HCN channels, where we assumed that propofol affects allosteric couplings between the pore, voltage-sensor, and cyclic nucleotide-binding domain (CNBD). The model predicted that propofol enhanced autoinhibition of pore opening by unliganded CNBD, which was relieved by the activation of CNBD by cAMP. Taken together, these findings reveal that propofol acts as an allosteric modulator of cAMP-dependent gating in HCN channels, which may help us to better understand the clinical action of this anesthetic drug.
Collapse
Affiliation(s)
- Morihiro Shimizu
- Department of Anesthesiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (M.S.); (A.K.); (Y.F.); (H.K.)
| | - Xinya Mi
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
| | - Futoshi Toyoda
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
| | - Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (M.S.); (A.K.); (Y.F.); (H.K.)
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
- Correspondence: ; Tel.: +81-77-548-2152; Fax: +81-77-548-2348
| | - Yutaka Fukushima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (M.S.); (A.K.); (Y.F.); (H.K.)
| | - Mariko Omatsu-Kanbe
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
| | - Hirotoshi Kitagawa
- Department of Anesthesiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (M.S.); (A.K.); (Y.F.); (H.K.)
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
| |
Collapse
|
5
|
Huang J, Byun JA, VanSchouwen B, Henning P, Herberg FW, Kim C, Melacini G. Dynamical Basis of Allosteric Activation for the Plasmodium falciparum Protein Kinase G. J Phys Chem B 2021; 125:6532-6542. [PMID: 34115498 DOI: 10.1021/acs.jpcb.1c03622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) is required for the progression of the Plasmodium's life cycle and is therefore a promising malaria drug target. PfPKG includes four cGMP-binding domains (CBD-A to CBD-D). CBD-D plays a crucial role in PfPKG regulation as it is the primary determinant for the inhibition and cGMP-dependent activation of the catalytic domain. Hence, it is critical to understand how CBD-D is allosterically regulated by cGMP. Although the apo versus holo conformational changes of CBD-D have been reported, information on the intermediates of the activation pathway is currently lacking. Here, we employed molecular dynamics simulations to model four key states along the thermodynamic cycle for the cGMP-dependent activation of the PfPKG CBD-D domain. The simulations were compared to NMR data, and they revealed that the PfPKG CBD-D activation pathway samples a compact intermediate in which the N- and C-terminal helices approach the central β-barrel. In addition, by comparing the cGMP-bound active and inactive states, the essential binding interactions that differentiate these states were identified. The identification of structural and dynamical features unique to the cGMP-bound inactive state provides a promising basis to design PfPKG-selective allosteric inhibitors as a viable treatment for malaria.
Collapse
Affiliation(s)
- Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Jung Ah Byun
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Philipp Henning
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Friedrich W Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Choel Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
6
|
Boulton S, Van K, VanSchouwen B, Augustine J, Akimoto M, Melacini G. Allosteric Mechanisms of Nonadditive Substituent Contributions to Protein-Ligand Binding. Biophys J 2020; 119:1135-1146. [PMID: 32882185 DOI: 10.1016/j.bpj.2020.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Quantifying chemical substituent contributions to ligand-binding free energies is challenging due to nonadditive effects. Protein allostery is a frequent cause of nonadditivity, but the underlying allosteric mechanisms often remain elusive. Here, we propose a general NMR-based approach to elucidate such mechanisms and we apply it to the HCN4 ion channel, whose cAMP-binding domain is an archetypal conformational switch. Using NMR, we show that nonadditivity arises not only from concerted conformational transitions, but also from conformer-specific effects, such as steric frustration. Our results explain how affinity-reducing functional groups may lead to affinity gains if combined. Surprisingly, our approach also reveals that nonadditivity depends markedly on the receptor conformation. It is negligible for the inhibited state but highly significant for the active state, opening new opportunities to tune potency and agonism of allosteric effectors.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Katherine Van
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Jerry Augustine
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada.
| |
Collapse
|
7
|
Page DA, Magee KEA, Li J, Jung M, Young EC. Cytoplasmic Autoinhibition in HCN Channels is Regulated by the Transmembrane Region. J Membr Biol 2020; 253:153-166. [PMID: 32146488 PMCID: PMC7150657 DOI: 10.1007/s00232-020-00111-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/16/2020] [Indexed: 12/25/2022]
Abstract
Hyperpolarization-activated cation-nonselective (HCN) channels regulate electrical activity in the brain and heart in a cAMP-dependent manner. The voltage-gating of these channels is mediated by a transmembrane (TM) region but is additionally regulated by direct binding of cAMP to a cyclic nucleotide-binding (CNB) fold in the cytoplasmic C-terminal region. Cyclic AMP potentiation has been explained by an autoinhibition model which views the unliganded CNB fold as an inhibitory module whose influence is disrupted by cAMP binding. However, the HCN2 subtype uses two other CNB fold-mediated mechanisms called open-state trapping and Quick-Activation to respectively slow the deactivation kinetics and speed the activation kinetics, against predictions of an autoinhibition model. To test how these multiple mechanisms are influenced by the TM region, we replaced the TM region of HCN2 with that of HCN4. This HCN4 TM-replacement preserved cAMP potentiation but augmented the magnitude of autoinhibition by the unliganded CNB fold; it moreover disrupted open-state trapping and Quick-Activation so that autoinhibition became the dominant mechanism contributed by the C-terminal region to determine kinetics. Truncation within the CNB fold partially relieved this augmented autoinhibition. This argues against the C-terminal region acting like a portable module with consistent effects on TM regions of different subtypes. Our findings provide evidence that functional interactions between the HCN2 TM region and C-terminal region govern multiple CNB fold-mediated mechanisms, implying that the molecular mechanisms of autoinhibition, open-state trapping, and Quick-Activation include participation of TM region structures.
Collapse
Affiliation(s)
- Dana A Page
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Kaylee E A Magee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.,Department of Biology, Kwantlen Polytechnic University, 12666 72 Avenue, Surrey, BC, V3W 2M8, Canada
| | - Jessica Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Matthew Jung
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Edgar C Young
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
8
|
Akimoto M, VanSchouwen B, Melacini G. The structure of the apo cAMP-binding domain of HCN4 - a stepping stone toward understanding the cAMP-dependent modulation of the hyperpolarization-activated cyclic-nucleotide-gated ion channels. FEBS J 2018; 285:2182-2192. [PMID: 29444387 DOI: 10.1111/febs.14408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/31/2018] [Accepted: 02/09/2018] [Indexed: 12/14/2022]
Abstract
The hyperpolarization-activated cyclic-nucleotide-gated (HCN) ion channels control nerve impulse transmission and cardiac pacemaker activity. The modulation by cAMP is critical for the regulatory function of HCN in both neurons and cardiomyocytes, but the underlying mechanism is not fully understood. Here, we show how the structure of the apo cAMP-binding domain of the HCN4 isoform has contributed to a model for the cAMP-dependent modulation of the HCN ion-channel. This model recapitulates the structural and dynamical changes that occur along the thermodynamic cycle arising from the coupling of cAMP-binding and HCN self-association equilibria. The proposed model addresses some of the questions previously open about the auto-inhibition of HCN and its cAMP-induced activation, while opening new opportunities for selectively targeting HCN through allosteric ligands. A remaining challenge is the investigation of HCN dimers and their regulatory role. Overcoming this challenge will require the integration of crystallography, cryo electron microscopy, NMR, electrophysiology and simulations.
Collapse
Affiliation(s)
- Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, ON, Canada
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, ON, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, ON, Canada
| |
Collapse
|
9
|
VanSchouwen B, Melacini G. Role of Dimers in the cAMP-Dependent Activation of Hyperpolarization-Activated Cyclic-Nucleotide-Modulated (HCN) Ion Channels. J Phys Chem B 2018; 122:2177-2190. [PMID: 29461059 DOI: 10.1021/acs.jpcb.7b10125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hyperpolarization-activated cyclic-nucleotide-modulated (HCN) ion channels control rhythmicity in neurons and cardiomyocytes. Cyclic AMP (cAMP) modulates HCN activity through the cAMP-induced formation of a tetrameric gating ring spanning the intracellular region (IR) of HCN. Although evidence from confocal patch-clamp fluorometry indicates that the cAMP-dependent gating of HCN occurs through a dimer of dimers, the structural and dynamical basis of cAMP allostery in HCN dimers has so far remained elusive. Thus, here we examine how dimers influence IR structural dynamics, and the role that such structural dynamics play in HCN allostery. To this end, we performed molecular dynamics (MD) simulations of HCN4 IR dimers in their fully apo, fully holo, and partially cAMP-bound states, resulting in a total simulated time of 1.2 μs. Comparative analyses of these MD trajectories, as well as previous monomer and tetramer simulations utilized as benchmarks for comparison, reveal that dimers markedly sensitize the HCN IR to cAMP-modulated allostery. Our results indicate that dimerization fine-tunes the IR dynamics to enhance, relative to both monomers and tetramers, the allosteric intra- and interprotomer coupling between the cAMP-binding domain and tetramerization domain components of the IR. The resulting allosteric model provides a viable rationalization of electrophysiological data on the role of IR dimers in HCN activation.
Collapse
Affiliation(s)
- Bryan VanSchouwen
- Department of Chemistry and Chemical Biology and ‡Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology and ‡Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
10
|
VanSchouwen B, Melacini G. Regulation of HCN Ion Channels by Non-canonical Cyclic Nucleotides. Handb Exp Pharmacol 2017; 238:123-133. [PMID: 28181007 DOI: 10.1007/164_2016_5006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The hyperpolarization-activated cyclic-nucleotide-modulated (HCN) proteins are cAMP-regulated ion channels that play a key role in nerve impulse transmission and heart rate modulation in neuronal and cardiac cells, respectively. Although they are regulated primarily by cAMP, other cyclic nucleotides such as cGMP, cCMP, and cUMP serve as partial agonists for the HCN2 and HCN4 isoforms. By competing with cAMP for binding, these non-canonical ligands alter ion channel gating, and in turn, modulate the cAMP-dependent activation profiles. The partial activation of non-canonical cyclic nucleotides can be rationalized by either a partial reversal of a two-state inactive/active conformational equilibrium, or by sampling of a third conformational state with partial activity. Furthermore, different mechanisms and degrees of activation have been observed upon binding of non-canonical cyclic nucleotides to HCN2 versus HCN4, suggesting that these ligands control HCN ion channels in an isoform-specific manner. While more work remains to be done to achieve a complete understanding of ion channel modulation by non-canonical cyclic nucleotides, it is already clear that such knowledge will ultimately prove invaluable in achieving a more complete understanding of ion channel signaling in vivo, as well as in the development of therapeutics designed to selectively modulate ion channel gating.
Collapse
Affiliation(s)
- Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4M1
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4M1. .,Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4M1.
| |
Collapse
|
11
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
12
|
VanSchouwen B, Ahmed R, Milojevic J, Melacini G. Functional dynamics in cyclic nucleotide signaling and amyloid inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1529-1543. [PMID: 28911813 DOI: 10.1016/j.bbapap.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022]
Abstract
It is now established that understanding the molecular basis of biological function requires atomic resolution maps of both structure and dynamics. Here, we review several illustrative examples of functional dynamics selected from our work on cyclic nucleotide signaling and amyloid inhibition. Although fundamentally diverse, a central aspect common to both fields is that function can only be rationalized by considering dynamic equilibria between distinct states of the accessible free energy landscape. The dynamic exchange between ground and excited states of signaling proteins is essential to explain auto-inhibition and allosteric activation. The dynamic exchange between non-toxic monomeric species and toxic oligomers of amyloidogenic proteins provides a foundation to understand amyloid inhibition. NMR ideally probes both types of dynamic exchange at atomic resolution. Specifically, we will show how NMR was utilized to reveal the dynamical basis of cyclic nucleotide affinity, selectivity, agonism and antagonism in multiple eukaryotic cAMP and cGMP receptors. We will also illustrate how NMR revealed the mechanism of action of plasma proteins that act as extracellular chaperones and inhibit the self-association of the prototypical amyloidogenic Aβ peptide. The examples outlined in this review illustrate the widespread implications of functional dynamics and the power of NMR as an indispensable tool in molecular pharmacology and pathology.
Collapse
Affiliation(s)
- Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Julijana Milojevic
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
13
|
Boulton S, Akimoto M, Akbarizadeh S, Melacini G. Free energy landscape remodeling of the cardiac pacemaker channel explains the molecular basis of familial sinus bradycardia. J Biol Chem 2017; 292:6414-6428. [PMID: 28174302 DOI: 10.1074/jbc.m116.773697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/28/2017] [Indexed: 12/21/2022] Open
Abstract
The hyperpolarization-activated and cyclic nucleotide-modulated ion channel (HCN) drives the pacemaker activity in the heart, and its malfunction can result in heart disorders. One such disorder, familial sinus bradycardia, is caused by the S672R mutation in HCN, whose electrophysiological phenotypes include a negative shift in the channel activation voltage and an accelerated HCN deactivation. The outcomes of these changes are abnormally low resting heart rates. However, the molecular mechanism underlying these electrophysiological changes is currently not fully understood. Crystallographic investigations indicate that the S672R mutation causes limited changes in the structure of the HCN intracellular gating tetramer, but its effects on protein dynamics are unknown. Here, we utilize comparative S672R versus WT NMR analyses to show that the S672R mutation results in extensive perturbations of the dynamics in both apo- and holo-forms of the HCN4 isoform, reflecting how S672R remodels the free energy landscape for the modulation of HCN4 by cAMP, i.e. the primary cyclic nucleotide modulator of HCN channels. We show that the S672R mutation results in a constitutive shift of the dynamic auto-inhibitory equilibrium toward inactive states of HCN4 and broadens the free-energy well of the apo-form, enhancing the millisecond to microsecond dynamics of the holo-form at sites critical for gating cAMP binding. These S672R-induced variations in dynamics provide a molecular basis for the electrophysiological phenotypes of this mutation and demonstrate that the pathogenic effects of the S672R mutation can be rationalized primarily in terms of modulations of protein dynamics.
Collapse
Affiliation(s)
- Stephen Boulton
- From the Departments of Biochemistry and Biomedical Sciences and
| | - Madoka Akimoto
- Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sam Akbarizadeh
- Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Giuseppe Melacini
- From the Departments of Biochemistry and Biomedical Sciences and .,Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
14
|
Foster CA, West AH. Use of restrained molecular dynamics to predict the conformations of phosphorylated receiver domains in two-component signaling systems. Proteins 2016; 85:155-176. [PMID: 27802580 PMCID: PMC5242315 DOI: 10.1002/prot.25207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/22/2016] [Accepted: 10/25/2016] [Indexed: 01/22/2023]
Abstract
Two‐component signaling (TCS) is the primary means by which bacteria, as well as certain plants and fungi, respond to external stimuli. Signal transduction involves stimulus‐dependent autophosphorylation of a sensor histidine kinase and phosphoryl transfer to the receiver domain of a downstream response regulator. Phosphorylation acts as an allosteric switch, inducing structural and functional changes in the pathway's components. Due to their transient nature, phosphorylated receiver domains are challenging to characterize structurally. In this work, we provide a methodology for simulating receiver domain phosphorylation to predict conformations that are nearly identical to experimental structures. Using restrained molecular dynamics, phosphorylated conformations of receiver domains can be reliably sampled on nanosecond timescales. These simulations also provide data on conformational dynamics that can be used to identify regions of functional significance related to phosphorylation. We first validated this approach on several well‐characterized receiver domains and then used it to compare the upstream and downstream components of the fungal Sln1 phosphorelay. Our results demonstrate that this technique provides structural insight, obtained in the absence of crystallographic or NMR information, regarding phosphorylation‐induced conformational changes in receiver domains that regulate the output of their associated signaling pathway. To our knowledge, this is the first time such a protocol has been described that can be broadly applied to TCS proteins for predictive purposes. Proteins 2016; 85:155–176. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Clay A Foster
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Ann H West
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
15
|
VanSchouwen B, Melacini G. Structural Basis of Tonic Inhibition by Dimers of Dimers in Hyperpolarization-Activated Cyclic-Nucleotide-Modulated (HCN) Ion Channels. J Phys Chem B 2016; 120:10936-10950. [DOI: 10.1021/acs.jpcb.6b07735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bryan VanSchouwen
- Department
of Chemistry and Chemical Biology, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Giuseppe Melacini
- Department
of Chemistry and Chemical Biology, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4M1, Canada
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
16
|
Cyclic Purine and Pyrimidine Nucleotides Bind to the HCN2 Ion Channel and Variably Promote C-Terminal Domain Interactions and Opening. Structure 2016; 24:1629-1642. [PMID: 27568927 DOI: 10.1016/j.str.2016.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/21/2022]
Abstract
Cyclic AMP is thought to facilitate the opening of the HCN2 channel by binding to a C-terminal domain and promoting or inhibiting interactions between subunits. Here, we correlated the ability of cyclic nucleotides to promote interactions of isolated HCN2 C-terminal domains in solution with their ability to facilitate channel opening. Cyclic IMP, a cyclic purine nucleotide, and cCMP, a cyclic pyrimidine nucleotide, bind to a C-terminal domain containing the cyclic nucleotide-binding domain but, in contrast to other cyclic nucleotides examined, fail to promote its oligomerization, and produce only modest facilitation of opening of the full-length channel. Comparisons between ligand bound structures identify a region between the sixth and seventh β strands and the distal C helix as important for facilitation and tight binding. We propose that promotion of interactions between the C-terminal domains by a given ligand contribute to its ability to facilitate opening of the full-length channel.
Collapse
|
17
|
Boulton S, Melacini G. Advances in NMR Methods To Map Allosteric Sites: From Models to Translation. Chem Rev 2016; 116:6267-304. [PMID: 27111288 DOI: 10.1021/acs.chemrev.5b00718] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last five years have witnessed major developments in the understanding of the allosteric phenomenon, broadly defined as coupling between remote molecular sites. Such advances have been driven not only by new theoretical models and pharmacological applications of allostery, but also by progress in the experimental approaches designed to map allosteric sites and transitions. Among these techniques, NMR spectroscopy has played a major role given its unique near-atomic resolution and sensitivity to the dynamics that underlie allosteric couplings. Here, we highlight recent progress in the NMR methods tailored to investigate allostery with the goal of offering an overview of which NMR approaches are best suited for which allosterically relevant questions. The picture of the allosteric "NMR toolbox" is provided starting from one of the simplest models of allostery (i.e., the four-state thermodynamic cycle) and continuing to more complex multistate mechanisms. We also review how such an "NMR toolbox" has assisted the elucidation of the allosteric molecular basis for disease-related mutations and the discovery of novel leads for allosteric drugs. From this overview, it is clear that NMR plays a central role not only in experimentally validating transformative theories of allostery, but also in tapping the full translational potential of allosteric systems.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| |
Collapse
|
18
|
Mapping the Free Energy Landscape of PKA Inhibition and Activation: A Double-Conformational Selection Model for the Tandem cAMP-Binding Domains of PKA RIα. PLoS Biol 2015; 13:e1002305. [PMID: 26618408 PMCID: PMC4664472 DOI: 10.1371/journal.pbio.1002305] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/22/2015] [Indexed: 01/31/2023] Open
Abstract
Protein Kinase A (PKA) is the major receptor for the cyclic adenosine monophosphate (cAMP) secondary messenger in eukaryotes. cAMP binds to two tandem cAMP-binding domains (CBD-A and -B) within the regulatory subunit of PKA (R), unleashing the activity of the catalytic subunit (C). While CBD-A in RIα is required for PKA inhibition and activation, CBD-B functions as a “gatekeeper” domain that modulates the control exerted by CBD-A. Preliminary evidence suggests that CBD-B dynamics are critical for its gatekeeper function. To test this hypothesis, here we investigate by Nuclear Magnetic Resonance (NMR) the two-domain construct RIα (91–379) in its apo, cAMP2, and C-bound forms. Our comparative NMR analyses lead to a double conformational selection model in which each apo CBD dynamically samples both active and inactive states independently of the adjacent CBD within a nearly degenerate free energy landscape. Such degeneracy is critical to explain the sensitivity of CBD-B to weak interactions with C and its high affinity for cAMP. Binding of cAMP eliminates this degeneracy, as it selectively stabilizes the active conformation within each CBD and inter-CBD contacts, which require both cAMP and W260. The latter is contributed by CBD-B and mediates capping of the cAMP bound to CBD-A. The inter-CBD interface is dispensable for intra-CBD conformational selection, but is indispensable for full activation of PKA as it occludes C-subunit recognition sites within CBD-A. In addition, the two structurally homologous cAMP-bound CBDs exhibit marked differences in their residual dynamics profiles, supporting the notion that conservation of structure does not necessarily imply conservation of dynamics. Protein Kinase A (PKA) is the major receptor for the cAMP secondary messenger in eukaryotes. This study shows how PKA's regulatory subunit dynamically samples a degenerate free energy landscape that controls affinities for the catalytic subunit and cAMP; intra-domain conformational selection by cAMP controls inter-domain interactions and PKA activation. Cyclic adenosine monophosphate (cAMP) is a messenger molecule produced within cells to control cellular metabolism in response to external stimuli. Protein Kinase A (PKA) is the major receptor for cAMP. cAMP binds to tandem cAMP-binding domains (CBD-A and -B) within the regulatory subunits of PKA (R), unleashing the activity of the catalytic subunit (C). While CBD-A is required for C-subunit inhibition and activation, in RIα CBD-B functions as a “gatekeeper” domain that modulates the control exerted by CBD-A. However, it is not currently clear how ligand binding and dynamics of CBD-B mediate its gatekeeper function. We comparatively analyzed by Nuclear Magnetic Resonance (NMR) a two-domain construct of the regulatory subunit RIα with no ligand, with cAMP2 bound, and the C-bound form. These data show that both CBDs can exist in a system of uncorrelated conformational selection as both can independently sample activated and inactivated states (in what is known as a nearly degenerate free energy landscape). This explains why both RIα CBDs exhibit a higher cAMP-affinity than other cAMP receptors. Once cAMP has bound, the degeneracy is lost and dissociation of the kinase subunit is promoted through a combination of intra-domain conformational selection and changes in inter-CBD orientation. The proposed model—a double-conformational selection model—provides a general framework to interpret the effect of PKA mutations that have been reported in rare human disorders such as Carney complex and Acrodysostosis.
Collapse
|
19
|
VanSchouwen B, Selvaratnam R, Giri R, Lorenz R, Herberg FW, Kim C, Melacini G. Mechanism of cAMP Partial Agonism in Protein Kinase G (PKG). J Biol Chem 2015; 290:28631-41. [PMID: 26370085 DOI: 10.1074/jbc.m115.685305] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 11/06/2022] Open
Abstract
Protein kinase G (PKG) is a major receptor of cGMP and controls signaling pathways often distinct from those regulated by cAMP. Hence, the selective activation of PKG by cGMP versus cAMP is critical. However, the mechanism of cGMP-versus-cAMP selectivity is only limitedly understood. Although the C-terminal cyclic nucleotide-binding domain B of PKG binds cGMP with higher affinity than cAMP, the intracellular concentrations of cAMP are typically higher than those of cGMP, suggesting that the cGMP-versus-cAMP selectivity of PKG is not controlled uniquely through affinities. Here, we show that cAMP is a partial agonist for PKG, and we elucidate the mechanism for cAMP partial agonism through the comparative NMR analysis of the apo, cGMP-, and cAMP-bound forms of the PKG cyclic nucleotide-binding domain B. We show that although cGMP activation is adequately explained by a two-state conformational selection model, the partial agonism of cAMP arises from the sampling of a third, partially autoinhibited state.
Collapse
Affiliation(s)
| | | | - Rajanish Giri
- From the Departments of Chemistry and Chemical Biology and
| | - Robin Lorenz
- the Department of Biochemistry, Kassel University, Heinrich Plett Strasse 40, 34132 Kassel, Germany, and
| | - Friedrich W Herberg
- the Department of Biochemistry, Kassel University, Heinrich Plett Strasse 40, 34132 Kassel, Germany, and
| | - Choel Kim
- the Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | - Giuseppe Melacini
- From the Departments of Chemistry and Chemical Biology and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada,
| |
Collapse
|
20
|
Moleschi KJ, Akimoto M, Melacini G. Measurement of State-Specific Association Constants in Allosteric Sensors through Molecular Stapling and NMR. J Am Chem Soc 2015; 137:10777-85. [PMID: 26247242 DOI: 10.1021/jacs.5b06557] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allostery is a ubiquitous mechanism to control biological function and arises from the coupling of inhibitory and binding equilibria. The extent of coupling reflects the inactive vs active state selectivity of the allosteric effector. Hence, dissecting allosteric determinants requires quantification of state-specific association constants. However, observed association constants are typically population-averages, reporting on overall affinities but not on allosteric coupling. Here we propose a general method to measure state-specific association constants in allosteric sensors based on three key elements, i.e., state-selective molecular stapling through disulfide bridges, competition binding saturation transfer experiments and chemical shift correlation analyses to gauge state populations. The proposed approach was applied to the prototypical cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA-RIα), for which the structures of the inactive and active states are available, as needed to design the state-selective disulfide bridges. Surprisingly, the PKA-RIα state-specific association constants are comparable to those of a structurally homologous domain with ∼10(3)-fold lower cAMP-affinity, suggesting that the affinity difference arises primarily from changes in the position of the dynamic apo inhibitory equilibrium.
Collapse
Affiliation(s)
- Kody J Moleschi
- Department of Chemistry and Chemical Biology, and ‡Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, and ‡Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, and ‡Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|