1
|
Jiang Y, Chen J, Du Y, Fan M, Shen L. Immune modulation for the patterns of epithelial cell death in inflammatory bowel disease. Int Immunopharmacol 2025; 154:114462. [PMID: 40186907 DOI: 10.1016/j.intimp.2025.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/23/2025] [Accepted: 03/08/2025] [Indexed: 04/07/2025]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disease of the intestine whose primary pathological presentation is the destruction of the intestinal epithelium. The intestinal epithelium, located between the lumen and lamina propria, transmits luminal microbial signals to the immune cells in the lamina propria, which also modulate the intestinal epithelium. In IBD patients, intestinal epithelial cells (IECs) die dysfunction and the mucosal barrier is disrupted, leading to the recruitment of immune cells and the release of cytokines. In this review, we describe the structure and functions of the intestinal epithelium and mucosal barrier in the physiological state and under IBD conditions, as well as the patterns of epithelial cell death and how immune cells modulate the intestinal epithelium providing a reference for clinical research and drug development of IBD. In addition, according to the targeting of epithelial apoptosis and necroptotic pathways and the regulation of immune cells, we summarized some new methods for the treatment of IBD, such as necroptosis inhibitors, microbiome regulation, which provide potential ideas for the treatment of IBD. This review also describes the potential for integrating AI-driven approaches into innovation in IBD treatments.
Collapse
Affiliation(s)
- Yuting Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaoyao Du
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Minwei Fan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Arumugam P, Saha K, Nighot P. Intestinal Epithelial Tight Junction Barrier Regulation by Novel Pathways. Inflamm Bowel Dis 2025; 31:259-271. [PMID: 39321109 DOI: 10.1093/ibd/izae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Indexed: 09/27/2024]
Abstract
Intestinal epithelial tight junctions (TJs), a dynamically regulated barrier structure composed of occludin and claudin family of proteins, mediate the interaction between the host and the external environment by allowing selective paracellular permeability between the luminal and serosal compartments of the intestine. TJs are highly dynamic structures and can undergo constant architectural remodeling in response to various external stimuli. This is mediated by an array of intracellular signaling pathways that alters TJ protein expression and localization. Dysfunctional regulation of TJ components compromising the barrier homeostasis is an important pathogenic factor for pathological conditions including inflammatory bowel disease (IBD). Previous studies have elucidated the significance of TJ barrier integrity and key regulatory mechanisms through various in vitro and in vivo models. In recent years, considerable efforts have been made to understand the crosstalk between various signaling pathways that regulate formation and disassembly of TJs. This review provides a comprehensive view on the novel mechanisms that regulate the TJ barrier and permeability. We discuss the latest evidence on how ion transport, cytoskeleton and extracellular matrix proteins, signaling pathways, and cell survival mechanism of autophagy regulate intestinal TJ barrier function. We also provide a perspective on the context-specific outcomes of the TJ barrier modulation. The knowledge on the diverse TJ barrier regulatory mechanisms will provide further insights on the relevance of the TJ barrier defects and potential target molecules/pathways for IBD.
Collapse
Affiliation(s)
- Priya Arumugam
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Kushal Saha
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| |
Collapse
|
3
|
Fu Y, Ding X, Zhang M, Feng C, Yan Z, Wang F, Xu J, Lin X, Ding X, Wang L, Fan Y, Li T, Yin Y, Liang X, Xu C, Chen S, Pulous FE, Gennert D, Pun FW, Kamya P, Ren F, Aliper A, Zhavoronkov A. Intestinal mucosal barrier repair and immune regulation with an AI-developed gut-restricted PHD inhibitor. Nat Biotechnol 2024:10.1038/s41587-024-02503-w. [PMID: 39663371 DOI: 10.1038/s41587-024-02503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024]
Abstract
Hypoxia-inducible factor prolyl hydroxylase (PHD) inhibitors have been approved for treating renal anemia yet have failed clinical testing for inflammatory bowel disease because of a lack of efficacy. Here we used a multimodel multimodal generative artificial intelligence platform to design an orally gut-restricted selective PHD1 and PHD2 inhibitor that exhibits favorable safety and pharmacokinetic profiles in preclinical studies. ISM012-042 restores intestinal barrier function and alleviates gut inflammation in multiple experimental colitis models.
Collapse
Affiliation(s)
- Yanyun Fu
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
- Insilico Medicine Hong Kong, Ltd., Hong Kong, China
- Insilico Medicine AI, Ltd., Abu Dhabi, UAE
| | - Xiao Ding
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
- Insilico Medicine AI, Ltd., Abu Dhabi, UAE
| | - Man Zhang
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
- Insilico Medicine Hong Kong, Ltd., Hong Kong, China
| | - Chunlei Feng
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Ziqi Yan
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Feng Wang
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Jianyu Xu
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Xiaoxia Lin
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Xiaoyu Ding
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Ling Wang
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Yaya Fan
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Taotao Li
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Yushu Yin
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Xing Liang
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Chenxi Xu
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Shan Chen
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
| | - Fadi E Pulous
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine US, Inc., New York, NY, USA
| | - David Gennert
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine US, Inc., New York, NY, USA
| | - Frank W Pun
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Hong Kong, Ltd., Hong Kong, China
| | - Petrina Kamya
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Canada, Inc., Montréal, Québec, Canada
| | - Feng Ren
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine Shanghai, Ltd., Shanghai, China
- Insilico Medicine Hong Kong, Ltd., Hong Kong, China
- Insilico Medicine AI, Ltd., Abu Dhabi, UAE
| | - Alex Aliper
- Insilico Medicine US, Inc., Boston, MA, USA
- Insilico Medicine AI, Ltd., Abu Dhabi, UAE
| | - Alex Zhavoronkov
- Insilico Medicine US, Inc., Boston, MA, USA.
- Insilico Medicine Shanghai, Ltd., Shanghai, China.
- Insilico Medicine Hong Kong, Ltd., Hong Kong, China.
- Insilico Medicine US, Inc., New York, NY, USA.
| |
Collapse
|
4
|
Galkin F, Pulous FE, Fu Y, Zhang M, Pun FW, Ren F, Zhavoronkov A. Roles of hypoxia-inducible factor-prolyl hydroxylases in aging and disease. Ageing Res Rev 2024; 102:102551. [PMID: 39447706 DOI: 10.1016/j.arr.2024.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The prolyl hydroxylase domain-containing (PHD or EGL9-homologs) enzyme family is mainly known for its role in the cellular response to hypoxia. HIF-PH inhibitors can stabilize hypoxia-inducible factors (HIFs), activating transcriptional programs that promote processes such as angiogenesis and erythropoiesis to adapt to changes in oxygen levels. HIF-PH inhibitors have been clinically approved for treating several types of anaemia. While most discussions of the HIF-PH signalling axis focus on hypoxia, there is a growing recognition of its importance under normoxic conditions. Recent advances in PHD biology have highlighted the potential of targeting this pathway therapeutically for a range of aging-related diseases. In this article, we review these recent discoveries, situate them within the broader context of aging and disease, and explore current therapeutic strategies that target PHD enzymes for these indications.
Collapse
Affiliation(s)
- Fedor Galkin
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE
| | - Fadi E Pulous
- Insilico Medicine US Inc., 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, United States
| | - Yanyun Fu
- Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China
| | - Frank W Pun
- Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR
| | - Feng Ren
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE; Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China; Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR
| | - Alex Zhavoronkov
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE; Insilico Medicine US Inc., 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, United States; Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR; Insilico Medicine Canada Inc., 1250 René-Lévesque Ouest, Suite 3710, Montréal, Québec H3B 4W8, Canada; Buck Institute for Research on Aging, Novato, CA, United States.
| |
Collapse
|
5
|
Xu M, Shi R, Yang J, Chen H, Liu S, Yu S, Li S, He W, Sy MS, Lu M, Zhang H, Li C. Collagen prolyl 4-hydroxylase subunit α member-induced head and neck squamous cell carcinoma aggressiveness is antagonized by LLGL2 via reduced expression of occludin. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1833-1847. [PMID: 39394821 PMCID: PMC11693864 DOI: 10.3724/abbs.2024140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/22/2024] [Indexed: 10/14/2024] Open
Abstract
There are three isoforms of human collagen prolyl 4-hydroxylases (C-P4Hs), each of which has been reported to play an important role in regulating the progression of a variety of human cancers. By analyzing TGCA datasets on human head and neck squamous cell carcinoma (HNSC), we find that a higher expression of all three C-P4HAs (the α subunit of C-P4Hs) is a superior prognostic indicator than a higher expression of two or a single C-P4HA. Unexpectedly, some patients with higher levels of three C-P4HAs survive longer than patients whose tumors have lower expression of C-P4HAs. Therefore, there may be molecule(s) that can negate the deleterious effects of overexpressing C-P4HAs during cancer progression. By constructing a functional protein interaction network of C-P4HAs and analyzing molecules whose expressions are correlated significantly with that of C-P4HAs, we identify scribble cell polarity complex component 2 (LLGL2) as a factor that antagonizes the effects of overexpressed C-P4HAs on HNSC. Silencing of LLGL2 in the human oral squamous cell line Cal-27 upregulates the expression of occludin and increases cancer cell invasion and migration. In contrast, knocking down C-P4HA alone inhibits cell migration and invasion. Furthermore, simultaneously downregulating three C-P4HAs has more pronounced effects on inhibiting cell migration and invasion. Accordingly, high LLGL2 expression is also a marker indicating improved prognosis in patients with HNSC. These results suggest that the interplay between LLGL2 and C-P4HAs may be targeted to mitigate HNSC tumorigenesis and progression.
Collapse
Affiliation(s)
- Miao Xu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular PathologyCancer Research InstituteSchool of Basic Medical SciencesUniversity of South ChinaHengyang421001China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Run Shi
- School of MedicinePingdingshan UniversityPingdingshan467000China
| | - Jie Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Heng Chen
- Guangzhou Institute of Cancer Researchthe Affiliated Cancer HospitalGuangzhou Medical UniversityGuangzhou510095China
| | - Shihua Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Shupei Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Sasa Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Wenqiang He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Man-Sun Sy
- Department of PathologySchool of MedicineCase Western Reserve UniversityClevelandOhio44106USA
| | - Mingjian Lu
- Department of Interventional RadiologyAffiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou510095China
| | - Huixia Zhang
- Department of Human AnatomySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Chaoyang Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular PathologyCancer Research InstituteSchool of Basic Medical SciencesUniversity of South ChinaHengyang421001China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
- Guangzhou Institute of Cancer Researchthe Affiliated Cancer HospitalGuangzhou Medical UniversityGuangzhou510095China
| |
Collapse
|
6
|
Jucht AE, Scholz CC. PHD1-3 oxygen sensors in vivo-lessons learned from gene deletions. Pflugers Arch 2024; 476:1307-1337. [PMID: 38509356 PMCID: PMC11310289 DOI: 10.1007/s00424-024-02944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Oxygen sensors enable cells to adapt to limited oxygen availability (hypoxia), affecting various cellular and tissue responses. Prolyl-4-hydroxylase domain 1-3 (PHD1-3; also called Egln1-3, HIF-P4H 1-3, HIF-PH 1-3) proteins belong to the Fe2+- and 2-oxoglutarate-dependent dioxygenase superfamily and utilise molecular oxygen (O2) alongside 2-oxoglutarate as co-substrate to hydroxylate two proline residues of α subunits of the dimeric hypoxia inducible factor (HIF) transcription factor. PHD1-3-mediated hydroxylation of HIF-α leads to its degradation and inactivation. Recently, various PHD inhibitors (PHI) have entered the clinics for treatment of renal anaemia. Pre-clinical analyses indicate that PHI treatment may also be beneficial in numerous other hypoxia-associated diseases. Nonetheless, the underlying molecular mechanisms of the observed protective effects of PHIs are only partly understood, currently hindering their translation into the clinics. Moreover, the PHI-mediated increase of Epo levels is not beneficial in all hypoxia-associated diseases and PHD-selective inhibition may be advantageous. Here, we summarise the current knowledge about the relevance and function of each of the three PHD isoforms in vivo, based on the deletion or RNA interference-mediated knockdown of each single corresponding gene in rodents. This information is crucial for our understanding of the physiological relevance and function of the PHDs as well as for elucidating their individual impact on hypoxia-associated diseases. Furthermore, this knowledge highlights which diseases may best be targeted by PHD isoform-selective inhibitors in case such pharmacologic substances become available.
Collapse
Affiliation(s)
- Agnieszka E Jucht
- Institute of Physiology, University of Zurich, Zurich, 8057, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475, Greifswald, Germany.
| |
Collapse
|
7
|
Akinsuyi OS, Xhumari J, Ojeda A, Roesch LFW. Gut permeability among Astronauts during Space missions. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:171-180. [PMID: 38670644 DOI: 10.1016/j.lssr.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/02/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024]
Abstract
The space environment poses substantial challenges to human physiology, including potential disruptions in gastrointestinal health. Gut permeability has only recently become widely acknowledged for its potential to cause adverse effects on a systemic level, rendering it a critical factor to investigate in the context of spaceflight. Here, we propose that astronauts experience the onset of leaky gut during space missions supported by transcriptomic and metagenomic analysis of human and murine samples. A genetic map contributing to intestinal permeability was constructed from a systematic review of current literature. This was referenced against our re-analysis of three independent transcriptomic datasets which revealed significant changes in gene expression patterns associated with the gut barrier. Specifically, in astronauts during flight, we observed a substantial reduction in the expression genes that are crucial for intestinal barrier function, goblet cell development, gut microbiota modulation, and immune responses. Among rodent spaceflight studies, differential expression of cytokines, chemokines, and genes which regulate mucin production and post-translational modifications suggest a similar dysfunction of intestinal permeability. Metagenomic analysis of feces from two murine studies revealed a notable reduction probiotic, short chain fatty acid-producing bacteria and an increase in the Gram-negative pathogens, including Citrobacter rodentium, Enterobacter cloacea, Klebsiella aerogenes, and Proteus hauseri which promote LPS circulation, a recipe for barrier disruption and systemic inflammatory activation. These findings emphasize the critical need to understand the underlying mechanisms and develop interventions to maintain gastrointestinal health in space.
Collapse
Affiliation(s)
- Oluwamayowa S Akinsuyi
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Jessica Xhumari
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Amanda Ojeda
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Luiz F W Roesch
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA.
| |
Collapse
|
8
|
Chen H, Liu H, Sun Y, Su M, Lin J, Wang J, Lin J, Zhao X. Analysis of fecal microbiota and related clinical indicators in ICU patients with sepsis. Heliyon 2024; 10:e28480. [PMID: 38586361 PMCID: PMC10998127 DOI: 10.1016/j.heliyon.2024.e28480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Background To analyze the characteristics of fecal microbiota disturbance in the intensive care unit (ICU) patients with sepsis and the correlation with related clinical indicators. Methods This study included 31 patients with sepsis admitted to the emergency ICU ward between September 2019 and December 2021. They were divided into Group without septic shock (ND_NS group, 7 cases) and Group with septic shock (ND_S group, 24 cases) according to the presence or absence of septic shock. Furthermore, we divided these 31 sepsis patients into Clinical Improvement group (21 cases) and Death or DAMA group (10 cases) based on clinical outcome, 15 cases of Physical Examiner recruited in the same period were included as control group: ND_HC group (15 cases). The fecal samples of the patients with sepsis within 24 h of admission and random fecal samples of the control group were collected and analyzed by 16S rDNA gene sequencing used for the analysis of fecal microbiota. At the same time, the relevant clinical data of these patients with sepsis were also collected for analysis. Results There were 15 cases with drug-resistant bacteria in the ND_S group and only 2 cases in the ND_NS group (P = 0.015). There were significant differences in APACHE II score, length of ICU stay, lactate level, and oxygenation index of patients between the Death or DAMA group and Clinical Improvement group (all P < 0.05). For phylum level, the abundance of Firmicutes, Actinobacteria, and Bacteroidetes decreased in the ND group compared with the ND_HC group, while the abundance of Proteobacteria increased (P < 0.05). For genus level, the relative abundance of Escherichia-Shigella and Klebsiella were significantly increased in the ND group compared with the ND_HC group (P < 0.05). The top six genera in relative abundance in the ND_S group were Escherichia-Shigella, Enterococcus, Bifidobacterium, Lactobacillus, Akkermansia, and Klebsiella. Compared with the Clinical Improvement group, the relative abundance of Escherichia-Shigella and Klebsiella in the Death or DAMA group showed an increasing trend with no significant significance, while the relative abundance of Enterococcus and Faecalibacterium decreased in the Death or DAMA group (P < 0.05). Alpha diversity analysis showed that compared with the ND_HC group, the alpha diversity of the fecal microbiota in the ND group decreased. There were significant differences in the Observed_species index, Chao1 index, and ACE index of patients between the ND_HC group and ND group (all P < 0.05). Moreover, compared with the ND_NS group, the Alpha diversity of the ND_S group was more abundant. PCoA analysis showed significant differences in microbial community structure between the ND group and ND_HC group (P = 0.001). There also were significant differences in microbial community structure between the ND_S group and ND_NS group (P = 0.008). LEfSe analysis showed that compared with the ND_HC group, there were significant differences in the species of the ND group, including Enterobacteriaceae, Escherichia-Shigella, Enterococcus, Elizabethkingia, and Family_XIII_AD3011_group. Conclusions ICU patients with sepsis suffered intestinal microecological disturbances with significantly decreased abundance of fecal microbiota, diversity, and beneficial symbiotic bacteria. For these patients, the ratio of pathogenic bacteria, including Escherichia-Shigella and Klebsiella increased and became the main bacterial genus in some samples. Moreover, the increasing trend of these two pathogenic bacteria may be correlated with the development of septic shock and the risk of death in patients with sepsis.
Collapse
Affiliation(s)
- Huaying Chen
- Emergency Intensive Care Unit, Zhongshan Hospital of Xiamen University, No.201, South Hubin Road, Xiamen, 361000, Fujian, China
| | - Huiheng Liu
- Emergency Intensive Care Unit, Zhongshan Hospital of Xiamen University, No.201, South Hubin Road, Xiamen, 361000, Fujian, China
| | - Yujing Sun
- Emergency Intensive Care Unit, Zhongshan Hospital of Xiamen University, No.201, South Hubin Road, Xiamen, 361000, Fujian, China
| | - Meiqin Su
- Department of Pharmacy, Zhongshan Hospital of Xiamen University, No.201, South Hubin Road, Xiamen, 361000, Fujian, China
| | - Jinzhou Lin
- Emergency Intensive Care Unit, Zhongshan Hospital of Xiamen University, No.201, South Hubin Road, Xiamen, 361000, Fujian, China
| | - Junsheng Wang
- Emergency Intensive Care Unit, Zhongshan Hospital of Xiamen University, No.201, South Hubin Road, Xiamen, 361000, Fujian, China
| | - Jueying Lin
- Emergency Intensive Care Unit, Zhongshan Hospital of Xiamen University, No.201, South Hubin Road, Xiamen, 361000, Fujian, China
| | - Xiaoyan Zhao
- Emergency Intensive Care Unit, Zhongshan Hospital of Xiamen University, No.201, South Hubin Road, Xiamen, 361000, Fujian, China
| |
Collapse
|
9
|
Solanki S, Shah YM. Hypoxia-Induced Signaling in Gut and Liver Pathobiology. ANNUAL REVIEW OF PATHOLOGY 2024; 19:291-317. [PMID: 37832943 DOI: 10.1146/annurev-pathmechdis-051122-094743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Oxygen (O2) is essential for cellular metabolism and biochemical reactions. When the demand for O2 exceeds the supply, hypoxia occurs. Hypoxia-inducible factors (HIFs) are essential to activate adaptive and survival responses following hypoxic stress. In the gut (intestines) and liver, the presence of oxygen gradients or physiologic hypoxia is necessary to maintain normal homeostasis. While physiologic hypoxia is beneficial and aids in normal functions, pathological hypoxia is harmful as it exacerbates inflammatory responses and tissue dysfunction and is a hallmark of many cancers. In this review, we discuss the role of gut and liver hypoxia-induced signaling, primarily focusing on HIFs, in the physiology and pathobiology of gut and liver diseases. Additionally, we examine the function of HIFs in various cell types during gut and liver diseases, beyond intestinal epithelial and hepatocyte HIFs. This review highlights the importance of understanding hypoxia-induced signaling in the pathogenesis of gut and liver diseases and emphasizes the potential of HIFs as therapeutic targets.
Collapse
Affiliation(s)
- Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA;
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Li Y, Yuan T, Zhang H, Liu S, Lun J, Guo J, Wang Y, Zhang Y, Fang J. PHD3 inhibits colon cancer cell metastasis through the occludin-p38 pathway. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1749-1757. [PMID: 37814811 PMCID: PMC10679873 DOI: 10.3724/abbs.2023103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/06/2023] [Indexed: 10/11/2023] Open
Abstract
Prolyl hydroxylase 3 (PHD3) hydroxylates HIFα in the presence of oxygen, leading to HIFα degradation. PHD3 inhibits tumorigenesis. However, the underlying mechanism is not well understood. Herein, we demonstrate that PHD3 inhibits the metastasis of colon cancer cells through the occludin-p38 MAPK pathway independent of its hydroxylase activity. We find that PHD3 inhibits colon cancer cell metastasis in the presence of the PHD inhibitor DMOG, and prolyl hydroxylase-deficient PHD3(H196A) suppresses cell metastasis as well. PHD3 controls the stability of the tight junction protein occludin in a hydroxylase-independent manner. We further find that PHD3-inhibited colon cancer cell metastasis is rescued by knockdown of occludin and that occludin acts as a negative regulator of cell metastasis, implying that PHD3 suppresses metastasis through occludin. Furthermore, knockdown of occludin induces phosphorylation of p38 MAPK, and the p38 inhibitor SB203580 impedes cell migration and invasion induced by occludin knockdown, indicating that occludin functions through p38. Moreover, knockdown of occludin enhances the expression of MKK3/6, the upstream kinase of p38, while overexpression of occludin decreases its expression. Our results suggest that PHD3 inhibits the metastasis of colon cancer cells through the occludin-p38 pathway independent of its hydroxylase activity. These findings reveal a previously undiscovered mechanism underlying the regulation of cancer cell metastasis by PHD3 and highlight a noncanonical hydroxylase-independent function of PHD3 in the suppression of cancer cells.
Collapse
Affiliation(s)
- Yuyao Li
- Department of Oncologythe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao Cancer InstituteQingdao266071China
| | - Tanglong Yuan
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Synthetic BiologyMinistry of Agriculture and Rural AffairsAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518000China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao UniversityJinan250014China
| | - Shuting Liu
- Department of Oncologythe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao Cancer InstituteQingdao266071China
| | - Jie Lun
- Department of Oncologythe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao Cancer InstituteQingdao266071China
| | - Jing Guo
- Department of Oncologythe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao Cancer InstituteQingdao266071China
| | - Yu Wang
- Department of Oncologythe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao Cancer InstituteQingdao266071China
| | - Yuying Zhang
- School of Public HealthQingdao UniversityQingdao266071China
| | - Jing Fang
- Department of Oncologythe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao Cancer InstituteQingdao266071China
| |
Collapse
|
11
|
Li H, Ye XF, Su YS, He W, Zhang JB, Zhang Q, Zhan LB, Jing XH. Mechanism of Acupuncture and Moxibustion on Promoting Mucosal Healing in Ulcerative Colitis. Chin J Integr Med 2023; 29:847-856. [PMID: 35412218 DOI: 10.1007/s11655-022-3531-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
The latest guideline about ulcerative colitis (UC) clinical practice stresses that mucosal healing, rather than anti-inflammation, is the main target in UC clinical management. Current mucosal dysfunction mainly closely relates to the endoscopic intestinal wall (mechanical barrier) injury with the imbalance between intestinal epithelial cells (IECs) regeneration and death, as well as tight junction (TJ) dysfunction. It is suggested that biological barrier (gut microbiota), chemical barrier (mucus protein layer, MUC) and immune barrier (immune cells) all take part in the imbalance, leading to mechanical barrier injury. Lots of experimental studies reported that acupuncture and moxibustion on UC recovery by adjusting the gut microbiota, MUC and immune cells on multiple targets and pathways, which contributes to the balance of IEC regeneration and death, as well as TJ structure recovery in animals. Moreover, the validity and superiority of acupuncture and moxibustion were also demonstrated in clinic. This study aims to review the achievements of acupuncture and moxibustion on mucosal healing and analyse the underlying mechanisms.
Collapse
Affiliation(s)
- Han Li
- Department of Acupuncture and Moxibustion, Changzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu Province, 213002, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Feng Ye
- Department of Acupuncture and Moxibustion, Changzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu Province, 213002, China
| | - Yang-Shuai Su
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei He
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jian-Bin Zhang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Acupuncture and Moxibustion, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 211005, China
| | - Qi Zhang
- Department of Acupuncture and Moxibustion, Changzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu Province, 213002, China
| | - Li-Bin Zhan
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Liaoning University of Chinese Medicine, Shenyang, 116600, China
| | - Xiang-Hong Jing
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
12
|
Abstract
Inflammatory bowel disease (IBD) is an idiopathic disease of disordered chronic inflammation in the intestines that affects many people across the world. While the disease is still being better characterized, greater progress has been made in understanding the many components that intersect in the disease. Among these components are the many pieces that compose the intestinal epithelial barrier, the various cytokines and immune cells, and the population of microbes that reside in the intestinal lumen. Since their discovery, the hypoxia-inducible factors (HIFs) have been found to play an expansive role in physiology as well as diseases such as inflammation due to their role in oxygen sensing-related gene transcription, and metabolic control. Making use of existing and developing paradigms in the immuno-gastroenterology of IBD, we summarized that hypoxic signaling plays as another component in the status and progression of IBD, which may include possible functions at the origins of inflammatory dysregulation. © 2023 American Physiological Society. Compr Physiol 13:4767-4783, 2023.
Collapse
Affiliation(s)
- Michael Morales
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
13
|
Xue Y, Cui A, Wei S, Ma F, Liu Z, Fang X, Huo S, Sun X, Li W, Hu Z, Liu Y, Cai G, Su W, Zhao J, Yan X, Gao C, Wen J, Zhang H, Li H, Liu Y, Lin X, Xu Y, Fu W, Fang J, Li Y. Proline hydroxylation of CREB-regulated transcriptional coactivator 2 controls hepatic glucose metabolism. Proc Natl Acad Sci U S A 2023; 120:e2219419120. [PMID: 37252972 PMCID: PMC10266032 DOI: 10.1073/pnas.2219419120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Prolyl hydroxylase domain (PHD) enzymes change HIF activity according to oxygen signal; whether it is regulated by other physiological conditions remains largely unknown. Here, we report that PHD3 is induced by fasting and regulates hepatic gluconeogenesis through interaction and hydroxylation of CRTC2. Pro129 and Pro615 hydroxylation of CRTC2 following PHD3 activation is necessary for its association with cAMP-response element binding protein (CREB) and nuclear translocation, and enhanced binding to promoters of gluconeogenic genes by fasting or forskolin. CRTC2 hydroxylation-stimulated gluconeogenic gene expression is independent of SIK-mediated phosphorylation of CRTC2. Liver-specific knockout of PHD3 (PHD3 LKO) or prolyl hydroxylase-deficient knockin mice (PHD3 KI) show attenuated fasting gluconeogenic genes, glycemia, and hepatic capacity to produce glucose during fasting or fed with high-fat, high-sucrose diet. Importantly, Pro615 hydroxylation of CRTC2 by PHD3 is increased in livers of fasted mice, diet-induced insulin resistance or genetically obese ob/ob mice, and humans with diabetes. These findings increase our understanding of molecular mechanisms linking protein hydroxylation to gluconeogenesis and may offer therapeutic potential for treating excessive gluconeogenesis, hyperglycemia, and type 2 diabetes.
Collapse
Affiliation(s)
- Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Shuang Wei
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Xia Fang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | | | - Xiaoyang Sun
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai200031, China
| | - Wenjing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Zhimin Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yuxiao Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Genxiang Cai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Weitong Su
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Jiuxiang Zhao
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai200031, China
| | - Xi Yan
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai200031, China
| | - Chenlin Gao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Jian Wen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
- Department of General Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Hong Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai200031, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Xu Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Wenguang Fu
- Department of General Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Jing Fang
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao266071, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| |
Collapse
|
14
|
Saha K, Subramenium Ganapathy A, Wang A, Michael Morris N, Suchanec E, Ding W, Yochum G, Koltun W, Nighot M, Ma T, Nighot P. Autophagy Reduces the Degradation and Promotes Membrane Localization of Occludin to Enhance the Intestinal Epithelial Tight Junction Barrier against Paracellular Macromolecule Flux. J Crohns Colitis 2023; 17:433-449. [PMID: 36219473 PMCID: PMC10069622 DOI: 10.1093/ecco-jcc/jjac148] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Functional loss of the gut epithelium's paracellular tight junction [TJ] barrier and defective autophagy are factors potentiating inflammatory bowel disease [IBD]. Previously, we showed the role of autophagy in enhancing the intestinal TJ barrier via pore-forming claudin-2 degradation. How autophagy regulates the TJ barrier-forming proteins remains unknown. Here, we investigated the role of autophagy in the regulation of occludin, a principal TJ component involved in TJ barrier enhancement. RESULTS Autophagy induction using pharmacological activators and nutrient starvation increased total occludin levels in intestinal epithelial cells, mouse colonocytes and human colonoids. Autophagy induction enriched membrane occludin levels and reduced paracellular permeability of macromolecules. Autophagy-mediated TJ barrier enhancement was contingent on the presence of occludin as OCLN-/- nullified its TJ barrier-enhancing effect against macromolecular flux. Autophagy inhibited the constitutive degradation of occludin by preventing its caveolar endocytosis from the membrane and protected against inflammation-induced TJ barrier loss. Autophagy enhanced the phosphorylation of ERK-1/2 and inhibition of these kinases in Caco-2 cells and human colonic mucosa prevented the macromolecular barrier-enhancing effects of autophagy. In vivo, autophagy induction by rapamycin enhanced occludin levels in wild-type mouse intestines and protected against lipopolysaccharide- and tumour necrosis factor-α-induced TJ barrier loss. Disruption of autophagy with acute Atg7 knockout in adult mice decreased intestinal occludin levels, increasing baseline colonic TJ permeability and exacerbating the effect of experimental colitis. CONCLUSION Our data suggest a novel role of autophagy in promoting the intestinal TJ barrier by increasing occludin levels in an ERK1/2 mitogen-activated protein kinase-dependent mechanism.
Collapse
Affiliation(s)
- Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ashwinkumar Subramenium Ganapathy
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Alexandra Wang
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nathan Michael Morris
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Eric Suchanec
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Wei Ding
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gregory Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Walter Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Meghali Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Thomas Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
15
|
Chen L, Zhu M, Liu Y, Yang Z, Li H, Mu H, Liu S, Wu B. Perfluorobutanesulfonate exposure induces metabolic disturbances in different regions of mouse gut. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161261. [PMID: 36587682 DOI: 10.1016/j.scitotenv.2022.161261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Perfluorobutanesulfonate (PFBS), an alternative to perfluorooctanesulfonate (PFOS), has raised many health concerns. However, PFBS toxicity in the mammalian gut remains unclear. C57BL/6 mice were exposed to 10 μg/L and 500 μg/L PFBS or 500 μg/L PFOS in their water supply for 28 days. PFBS toxicity in the ileum and colon was explored and compared to that of PFOS. Biochemical analysis showed that tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels increased in the ileum exposed to 10 μg/L PFBS, whereas no significant changes were observed in those levels in the colon. Catalase (CAT) activity, malondialdehyde (MDA), TNF-α, and IL-1β levels increased and glutathione (GSH) levels decreased in the ileum of the 500 μg/L-PFBS group, whereas only MDA levels increased in the colon of the 500 μg/L-PFBS group. The results showed that more severe damage occurred in the ileum than in the colon after PFBS exposure, and these align with the 500 μg/L-PFOS group exposure as well. Furthermore, metabolomic analysis revealed glutathione metabolism as a vital factor in inducing PFBS and PFOS toxicities in the ileum. Steroid hormone and amino acid metabolisms were other important factors involved in PFBS and PFOS toxicities, respectively. In the colon, GSH, pyrimidine, and glucose (especially galactose) metabolism was the main contributor to PFBS toxicity, and sulfur amino acid metabolism was the main pathway for PFOS toxicity. This study provides more evidence of the health hazards due to low-dose PFBS exposure in the mammalian gut.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Mengyuan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Yafeng Liu
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Zhongchao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Huan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Hongxin Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Su Liu
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
16
|
Guo Y, Li X, Geng C, Song S, Xie X, Wang C. Vitamin D receptor involves in the protection of intestinal epithelial barrier function via up-regulating SLC26A3. J Steroid Biochem Mol Biol 2023; 227:106231. [PMID: 36462760 DOI: 10.1016/j.jsbmb.2022.106231] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/13/2022] [Accepted: 07/15/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Vitamin D receptor (VDR) and SLC26A3 (DRA) have been identified as pivotal protective factors in maintaining gut homeostasis in IBD patients. However, the specific mechanism underlying the increased intestinal susceptibility to inflammation induced by the loss of VDR and whether DRA participates in the role of VDR regulating intestinal epithelial barrier function are undefined. AIM The current study is undertaken to elucidate the regulatory effects of VDR on DRA and VDR prevents intestinal epithelial barrier dysfunction via up-regulating the expression of DRA. METHODS WT and VDR-/- mice are used as models for intestinal epithelial response. Paracellular permeability is measured by TEER and FD-4 assays. Immunohistochemistry, immunofluorescence, qPCR and immunoblotting are performed to determine the effects of VDR and DRA on gut epithelial barrier function. RESULTS VDR-/- mice exhibits significant hyperpermeability of intestine with greatly decreased levels of ZO-1 and Claudin1 proteins. DRA is located on the intestinal epithelial apical membrane and is tightly modulated by VDR in vivo and in vitro via activating ERK1/2 MAPK signaling pathway. Notably, the current study for the first time demonstrates that VDR maintains intestinal epithelial barrier integrity via up-regulating DRA expression and the lack of DRA induced by VDR knockdown leads to a more susceptive condition for intestine to DSS-induced colitis. CONCLUSION Our study provides evidence and deep comprehension regarding the role of VDR in modulating DRA expression in gut homeostasis and makes novel contributions to better generally understanding the links between VDR, DRA and intestinal epithelial barrier function.
Collapse
Affiliation(s)
- Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Shuailing Song
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoxi Xie
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Jia R, Han J, Liu X, Li K, Lai W, Bian L, Yan J, Xi Z. Exposure to Polypropylene Microplastics via Oral Ingestion Induces Colonic Apoptosis and Intestinal Barrier Damage through Oxidative Stress and Inflammation in Mice. TOXICS 2023; 11:127. [PMID: 36851002 PMCID: PMC9962291 DOI: 10.3390/toxics11020127] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 05/30/2023]
Abstract
Extensive environmental pollution by microplastics has increased the risk of human exposure to plastics. However, the biosafety of polypropylene microplastics (PP-MPs), especially of PP particles < 10 μm, in mammals has not been studied. Thus, here, we explored the mechanism of action and effect of exposure to small and large PP-MPs, via oral ingestion, on the mouse intestinal tract. Male C57BL/6 mice were administered PP suspensions (8 and 70 μm; 0.1, 1.0, and 10 mg/mL) for 28 days. PP-MP treatment resulted in inflammatory pathological damage, ultrastructural changes in intestinal epithelial cells, imbalance of the redox system, and inflammatory reactions in the colon. Additionally, we observed damage to the tight junctions of the colon and decreased intestinal mucus secretion and ion transporter expression. Further, the apoptotic rate of colonic cells significantly increased after PP-MP treatment. The expression of pro-inflammatory and pro-apoptosis proteins significantly increased in colon tissue, while the expression of anti-inflammatory and anti-apoptosis proteins significantly decreased. In summary, this study demonstrates that PP-MPs induce colonic apoptosis and intestinal barrier damage through oxidative stress and activation of the TLR4/NF-κB inflammatory signal pathway in mice, which provides new insights into the toxicity of MPs in mammals.
Collapse
Affiliation(s)
- Rui Jia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jie Han
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhuge Xi
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
18
|
Hypoxia and Intestinal Inflammation: Common Molecular Mechanisms and Signaling Pathways. Int J Mol Sci 2023; 24:ijms24032425. [PMID: 36768744 PMCID: PMC9917195 DOI: 10.3390/ijms24032425] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The gastrointestinal tract (GI) has a unique oxygenation profile. It should be noted that the state of hypoxia can be characteristic of both normal and pathological conditions. Hypoxia-inducible factors (HIF) play a key role in mediating the response to hypoxia, and they are tightly regulated by a group of enzymes called HIF prolyl hydroxylases (PHD). In this review, we discuss the involvement of inflammation hypoxia and signaling pathways in the pathogenesis of inflammatory bowel disease (IBD) and elaborate in detail on the role of HIF in multiple immune reactions during intestinal inflammation. We emphasize the critical influence of tissue microenvironment and highlight the existence of overlapping functions and immune responses mediated by the same molecular mechanisms. Finally, we also provide an update on the development of corresponding therapeutic approaches that would be useful for treatment or prophylaxis of inflammatory bowel disease.
Collapse
|
19
|
Lun J, Zhang H, Guo J, Yu M, Fang J. Hypoxia inducible factor prolyl hydroxylases in inflammatory bowel disease. Front Pharmacol 2023; 14:1045997. [PMID: 37201028 PMCID: PMC10187758 DOI: 10.3389/fphar.2023.1045997] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease that is characterized by intestinal inflammation. Epithelial damage and loss of intestinal barrier function are believed to be the hallmark pathologies of the disease. In IBD, the resident and infiltrating immune cells consume much oxygen, rendering the inflamed intestinal mucosa hypoxic. In hypoxia, the hypoxia-inducible factor (HIF) is induced to cope with the lack of oxygen and protect intestinal barrier. Protein stability of HIF is tightly controlled by prolyl hydroxylases (PHDs). Stabilization of HIF through inhibition of PHDs is appearing as a new strategy of IBD treatment. Studies have shown that PHD-targeting is beneficial to the treatment of IBD. In this Review, we summarize the current understanding of the role of HIF and PHDs in IBD and discuss the therapeutic potential of targeting PHD-HIF pathway for IBD treatment.
Collapse
Affiliation(s)
- Jie Lun
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Jing Guo
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Yu
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Fang
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang,
| |
Collapse
|
20
|
Redox and Metabolic Regulation of Intestinal Barrier Function and Associated Disorders. Int J Mol Sci 2022; 23:ijms232214463. [PMID: 36430939 PMCID: PMC9699094 DOI: 10.3390/ijms232214463] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
The intestinal epithelium forms a physical barrier assembled by intercellular junctions, preventing luminal pathogens and toxins from crossing it. The integrity of tight junctions is critical for maintaining intestinal health as the breakdown of tight junction proteins leads to various disorders. Redox reactions are closely associated with energy metabolism. Understanding the regulation of tight junctions by cellular metabolism and redox status in cells may lead to the identification of potential targets for therapeutic interventions. In vitro and in vivo models have been utilized in investigating intestinal barrier dysfunction and in particular the free-living soil nematode, Caenorhabditis elegans, may be an important alternative to mammalian models because of its convenience of culture, transparent body for microscopy, short generation time, invariant cell lineage and tractable genetics.
Collapse
|
21
|
Li T, Lu M, Xu B, Chen H, Li J, Zhu Z, Yu M, Zheng J, Peng P, Wu S. Multiple perspectives reveal the gut toxicity of polystyrene microplastics on Eisenia fetida: Insights into community signatures of gut bacteria and their translocation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156352. [PMID: 35654182 DOI: 10.1016/j.scitotenv.2022.156352] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/13/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The gut is the primary pathway by which soil animals are exposed to microplastics (MPs). However, the gut toxicity of MPs has not been elucidated in earthworms. Herein, we aimed to study the gut toxicity (e.g., gut barrier dysfunction, gut bacterial translocation, and pathogen invasion) of polystyrene microplastics (PS-MPs) on Eisenia fetida and its relationship with gut bacteria. We found that PS-MPs exposure caused gut barrier damage to Eisenia fetida. This damage included apparent injury of gut epithelial cells and significantly lower transcription levels of genes coding for gut tight junction (TJ)-related proteins. We then observed significantly increased levels of bacterial lipopolysaccharide (LPS) and gut bacterial load, indicating the occurrence of gut bacterial translocation and related barrier damage. Subsequently, antibacterial immune responses were activated and accompanied by a failure of the antioxidant defense system, indicating that pathogen invasion might occur. Gut barrier damage could weaken host selective pressures (deterministic process) on gut bacteria, such as particular pathogens. Indeed, members of Proteobacteria, e.g., Aeromonas and Escherichia/Shigella, regarded as potential opportunistic pathogens, were remarkable signatures of groups exposed to PS-MPs. These potential opportunistic gut bacteria were pivotal contributors to gut TJ damage and gut bacterial translocation resulting from PS-MPs exposure. In addition, the gut bacterial networks of PS-MPs exposure groups were more uncomplicated than those of the control group, but more negative interactions were easy to observe. In conclusion, our work sheds light on the molecular mechanism of earthworm gut toxicity caused by PS-MPs exposure and provides a prospective risk assessment of MPs in soil ecosystems.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengtian Lu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Baohua Xu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Chen
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhenzhen Zhu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengwei Yu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiaoyang Zheng
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peilong Peng
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shijin Wu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
22
|
Lun J, Wang Y, Gao Q, Wang Y, Zhang H, Fang J. PHD3 inhibits cell proliferation through hydroxylation of PAX2 at proline 9. Acta Biochim Biophys Sin (Shanghai) 2022; 54:708-715. [PMID: 35920196 PMCID: PMC9827955 DOI: 10.3724/abbs.2022043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The oncoprotein transcription factor paired box 2 (PAX2) is aberrantly expressed in cancers, but the underlying mechanism remains elusive. Prolyl hydroxylase 3 (PHD3) hydroxylates the proline residue of HIFα, mediating HIFα degradation. The von Hippel-Lindau protein (pVHL) is an E3 ligase which mediates ubiquitination and degradation of hydroxylated HIFα. PHD3 and pVHL are found to inhibit the expression of PAX2, however, the molecular mechanism is unclear. Here we demonstrate that PHD3 hydroxylates PAX2 at proline 9, which is required for pVHL to mediate PAX2 ubiquitination and degradation. Overexpression of PHD3 enhances prolyl hydroxylation, ubiquitination and degradation of PAX2 with little effect on those of PAX2(P9A). PHD3 does not influence PAX2 expression in VHL-null cells. pVHL binds to PAX2 and enhances PAX2 ubiquitination and degradation. However, pVHL does not bind with PAX2(P9A) and cannot enhance its ubiquitination and degradation. Our results suggest that proline 9 hydroxylation is a prerequisite for PAX2 degradation by pVHL. Functional studies indicate that introduction of PAX2 into PAX2-null COS-7 cells promotes cell proliferation, which is suppressed by co-expression of PHD3 but not by hydroxylase-deficient PHD3(H196A). PHD3 inhibits PAX2-induced, but not PAX2(P9A)-induced proliferation of COS-7 cells. These results suggest that PHD3 hydroxylates PAX2, followed by pVHL-mediated PAX2 ubiquitination and degradation. This study also suggests that PHD3 inhibits cell proliferation through downregulating PAX2.
Collapse
Affiliation(s)
- Jie Lun
- Cancer Institutethe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao266061China
| | - Yuxin Wang
- Shanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghai200031China
| | - Qiang Gao
- Shanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghai200031China
| | - Yu Wang
- Cancer Institutethe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao266061China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care HospitalJinan250014China
| | - Jing Fang
- Cancer Institutethe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao266061China,Correspondence address. Tel: +86-532-82991017; E-mail:
| |
Collapse
|
23
|
Yang Y, Zheng X, Wang Y, Tan X, Zou H, Feng S, Zhang H, Zhang Z, He J, Cui B, Zhang X, Wu Z, Dong M, Cheng W, Tao S, Wei H. Human Fecal Microbiota Transplantation Reduces the Susceptibility to Dextran Sulfate Sodium-Induced Germ-Free Mouse Colitis. Front Immunol 2022; 13:836542. [PMID: 35237276 PMCID: PMC8882623 DOI: 10.3389/fimmu.2022.836542] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
In clinical practice, fecal microbiota transplantation (FMT) has been used to treat inflammatory bowel disease (IBD), and has shown certain effects. However, the selection of FMT donors and the mechanism underlying the effect of FMT intervention in IBD require further exploration. In this study, dextran sodium sulfate (DSS)-induced colitis mice were used to determine the differences in the protection of colitis symptoms, inflammation, and intestinal barrier, by FMT from two donors. Intriguingly, pre-administration of healthy bacterial fluid significantly relieved the symptoms of colitis compared to the ulcerative colitis (UC) bacteria. In addition, healthy donor (HD) bacteria significantly reduced the levels of inflammatory markers Myeloperoxidase (MPO) and Eosinophil peroxidase (EPO), and various pro-inflammatory factors, in colitis mice, and increased the secretion of the anti-inflammatory factor IL-10. Metagenomic sequencing indicated higher species diversity and higher abundance of anti-inflammatory bacteria in the HD intervention group, including Alistipes putredinis, Akkermansia muciniphila, Bifidobacterium adolescentis, short-chain fatty acids (SCFAs)-producing bacterium Christensenella minuta, and secondary bile acids (SBAs)-producing bacterium Clostridium leptum. In the UC intervention group, the SCFA-producing bacterium Bacteroides stercoris, IBD-related bacterium Ruminococcus gnavus, Enterococcus faecalis, and the conditional pathogen Bacteroides caccae, were more abundant. Metabolomics analysis showed that the two types of FMT significantly modulated the metabolism of DSS-induced mice. Moreover, compared with the UC intervention group, indoleacetic acid and unsaturated fatty acids (DHA, DPA, and EPA) with anti-inflammatory effects were significantly enriched in the HD intervention group. In summary, these results indicate that FMT can alleviate the symptoms of colitis, and the effect of HD intervention is better than that of UC intervention. This study offers new insights into the mechanisms of FMT clinical intervention in IBD.
Collapse
Affiliation(s)
- Yapeng Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojiao Zheng
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yuqing Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiang Tan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huicong Zou
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuaifei Feng
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hang Zhang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zeyue Zhang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinhui He
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bota Cui
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xueying Zhang
- Intestinal Microenvironment Treatment Center, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Zhifeng Wu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Miaomiao Dong
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Cheng
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shiyu Tao
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hong Wei
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Jiang Y, Duan LJ, Fong GH. Oxygen-sensing mechanisms in development and tissue repair. Development 2021; 148:273632. [PMID: 34874450 DOI: 10.1242/dev.200030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Under normoxia, hypoxia inducible factor (HIF) α subunits are hydroxylated by PHDs (prolyl hydroxylase domain proteins) and subsequently undergo polyubiquitylation and degradation. Normal embryogenesis occurs under hypoxia, which suppresses PHD activities and allows HIFα to stabilize and regulate development. In this Primer, we explain molecular mechanisms of the oxygen-sensing pathway, summarize HIF-regulated downstream events, discuss loss-of-function phenotypes primarily in mouse development, and highlight clinical relevance to angiogenesis and tissue repair.
Collapse
Affiliation(s)
- Yida Jiang
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Li-Juan Duan
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
25
|
Wang C, Weng Y, Tu W, Jin C, Jin Y. Maternal exposure to sodium ρ-perfluorous nonenoxybenzene sulfonate during pregnancy and lactation disrupts intestinal barrier and may cause obstacles to the nutrient transport and metabolism in F0 and F1 generations of mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148775. [PMID: 34323766 DOI: 10.1016/j.scitotenv.2021.148775] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Sodium ρ-perfluorous nonenoxybenzene sulfonate (OBS), a novel kind of perfluoroalkyl and polyfluoroalkyl compound, has been widely detected in the environment. The toxicity of OBS to living organisms has become a public concern. A growing body of research showed that maternal exposure to environmental pollutants caused intestinal and metabolic diseases that could be conserved across offspring. Here, female C57BL/6 mice were treated OBS at dietary levels of 0.0 mg/L (CON), 0.5 mg/L (OBS-L) and 5.0 mg/L (OBS-H) during the gestation and lactation periods. The results demonstrated that OBS treatment not only induced significant changes in the mucus secretion and ionic transport, but also disrupted the expression of antimicrobial peptides (AMPs) in the intestine of F0 and F1 generations. Additionally, OBS exposure altered bile acids metabolism and affected the transcriptional levels of critical genes involved in bile acids synthesis, signaling transfer, transportation and apical uptake. Together, all these results indicated that OBS exposure was perceived as a major stress by the intestinal epithelium that strongly affected the intestinal barrier function (including mucus, CFTR, AMPs, inflammation), and ultimately led to imbalance in the metabolism of bile acids (BAs). Moreover, we found that maternal OBS exposure had a more obvious toxicity effect on the male offspring in this experiment. Taken together, maternal OBS exposure during pregnancy and lactation had the intestinal and metabolism toxic effects on the dams and offspring, indicating that effects of maternal exposure on the toxicity of offspring could not be ignored.
Collapse
Affiliation(s)
- Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029, China.
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
26
|
The role of mucosal barriers in human gut health. Arch Pharm Res 2021; 44:325-341. [PMID: 33890250 DOI: 10.1007/s12272-021-01327-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022]
Abstract
The intestinal mucosa is continuously exposed to a large number of commensal or pathogenic microbiota and foreign food antigens. The intestinal epithelium forms a dynamic physicochemical barrier to maintain immune homeostasis. To efficiently absorb nutrients from food, the epithelium in the small intestine has thin, permeable layers spread over a vast surface area. Epithelial cells are renewed from the crypt toward the villi, accompanying epithelial cell death and shedding, to control bacterial colonization. Tight junction and adherens junction proteins provide epithelial cell-cell integrity. Microbial signals are recognized by epithelial cells via toll-like receptors. Environmental signals from short-chain fatty acids derived from commensal microbiota metabolites, aryl hydrocarbon receptors, and hypoxia-induced factors fortify gut barrier function. Here we summarize recent findings regarding various environmental factors for gut barrier function. Further, we discuss the role of gut barriers in the pathogenesis of human intestinal disease and the challenges of therapeutic strategies targeting gut barrier restoration.
Collapse
|
27
|
Yu M, Lun J, Zhang H, Zhu L, Zhang G, Fang J. The non-canonical functions of HIF prolyl hydroxylases and their dual roles in cancer. Int J Biochem Cell Biol 2021; 135:105982. [PMID: 33894356 DOI: 10.1016/j.biocel.2021.105982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
The hypoxia-inducible factor (HIF) prolyl hydroxylases (PHDs) are dioxygenases using oxygen and 2-oxoglutarate as co-substrates. Under normoxia, PHDs hydroxylate the conserved prolyl residues of HIFα, leading to HIFα degradation. In hypoxia PHDs are inactivated, which results in HIFα accumulation. The accumulated HIFα enters nucleus and initiates gene transcription. Many studies have shown that PHDs have substrates other than HIFα, implying that they have HIF-independent non-canonical functions. Besides modulating protein stability, the PHDs-mediated prolyl hydroxylation affects protein-protein interaction and protein activity for alternative substrates. Increasing evidence indicates that PHDs also have hydroxylase-independent functions. They influence protein stability, enzyme activity, and protein-protein interaction in a hydroxylase-independent manner. These findings highlight the functional diversity and complexity of PHDs. Due to having inhibitory activity on HIFα, PHDs are proposed to act as tumor suppressors. However, research shows that PHDs exert either tumor-promoting or tumor-suppressing features. Here, we try to summarize the current understanding of PHDs hydroxylase-dependent and -independent functions and their roles in cancer.
Collapse
Affiliation(s)
- Mengchao Yu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Jie Lun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital, Jinan, 250014, China
| | - Lei Zhu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Gang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China.
| | - Jing Fang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China.
| |
Collapse
|
28
|
Dengler F, Sova S, Salo AM, Mäki JM, Koivunen P, Myllyharju J. Expression and Roles of Individual HIF Prolyl 4-Hydroxylase Isoenzymes in the Regulation of the Hypoxia Response Pathway along the Murine Gastrointestinal Epithelium. Int J Mol Sci 2021; 22:4038. [PMID: 33919829 PMCID: PMC8070794 DOI: 10.3390/ijms22084038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
The HIF prolyl 4-hydroxylases (HIF-P4H) control hypoxia-inducible factor (HIF), a powerful mechanism regulating cellular adaptation to decreased oxygenation. The gastrointestinal epithelium subsists in "physiological hypoxia" and should therefore have an especially well-designed control over this adaptation. Thus, we assessed the absolute mRNA expression levels of the HIF pathway components, Hif1a, HIF2a, Hif-p4h-1, 2 and 3 and factor inhibiting HIF (Fih1) in murine jejunum, caecum and colon epithelium using droplet digital PCR. We found a higher expression of all these genes towards the distal end of the gastrointestinal tract. We detected mRNA for Hif-p4h-1, 2 and 3 in all parts of the gastrointestinal tract. Hif-p4h-2 had significantly higher expression levels compared to Hif-p4h-1 and 3 in colon and caecum epithelium. To test the roles each HIF-P4H isoform plays in the gut epithelium, we measured the gene expression of classical HIF target genes in Hif-p4h-1-/-, Hif-p4h-2 hypomorph and Hif-p4h-3-/- mice. Only Hif-p4h-2 hypomorphism led to an upregulation of HIF target genes, confirming a predominant role of HIF-P4H-2. However, the abundance of Hif-p4h-1 and 3 expression in the gastrointestinal epithelium implies that these isoforms may have specific functions as well. Thus, the development of selective inhibitors might be useful for diverging therapeutic needs.
Collapse
Affiliation(s)
- Franziska Dengler
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine, 1210 Vienna, Austria
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland; (S.S.); (A.M.S.); (J.M.M.); (P.K.); (J.M.)
- Institute of Veterinary Physiology, University of Leipzig, 04103 Leipzig, Germany
| | - Sofia Sova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland; (S.S.); (A.M.S.); (J.M.M.); (P.K.); (J.M.)
| | - Antti M. Salo
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland; (S.S.); (A.M.S.); (J.M.M.); (P.K.); (J.M.)
| | - Joni M. Mäki
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland; (S.S.); (A.M.S.); (J.M.M.); (P.K.); (J.M.)
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland; (S.S.); (A.M.S.); (J.M.M.); (P.K.); (J.M.)
| | - Johanna Myllyharju
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland; (S.S.); (A.M.S.); (J.M.M.); (P.K.); (J.M.)
| |
Collapse
|
29
|
Huang Y, Wang C, Tian X, Mao Y, Hou B, Sun Y, Gu X, Ma Z. Pioglitazone Attenuates Experimental Colitis-Associated Hyperalgesia through Improving the Intestinal Barrier Dysfunction. Inflammation 2021; 43:568-578. [PMID: 31989391 PMCID: PMC7170986 DOI: 10.1007/s10753-019-01138-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Impaired intestinal mucosal integrity during colitis involves the peroxisome proliferator-activated receptor-γ (PPARγ), an important anti-inflammatory factor in intestinal mucosa homoeostasis, which is a potential target in colitis. Recurrent chronic pain is a vital pathogenetic feature of colitis. Nevertheless, potential functions of PPARγ in the colitis-associated hyperalgesia remain unclear. This study aimed to investigate biological roles of pioglitazone in relieving colitis-associated pain hypersensitivity by a PPARγ tight junction protein-dependent mechanism during the course of dextran sodium sulfate (DSS)-induced intestinal inflammation. The DSS-induced colitis model was generated in C57BL/6 mice. Changes in colitis induced the injury of intestinal mucosal barrier and hyperalgesia after a 6-day treatment of pioglitazone (25 mg/kg, IP injection) were assessed through immunofluorescent, hematoxylin and eosin (H&E) staining, western blot analysis, and determination of paw withdrawal mechanical threshold. A significant reduction of paw withdrawal mechanical threshold occurred after DSS treatment. Follow-up data showed that systematic administration of PPARγ agonist pioglitazone ameliorated the DSS-induced colitis and the development of colitis-associated hyperalgesia by repairing the intestinal mucosal barrier. The tight junction proteins ZO-1 and Claudin-5 were upregulated by PPARγ signaling, which in turn promoted the improvement of intestinal barrier function. Moreover, pioglitazone inhibited phosphorylation of ERK and NF-κB in the colon and decreased the levels of inflammatory cytokines in both colon spine tissues. Furthermore, systemically pioglitazone treatment inhibited the activation of microglia and astrocytes, as well as DSS-induced phosphorylation of NR2B subunit in spinal cord, which was correspondingly consistent with the pain behavior. Pioglitazone ameliorates DSS-induced colitis and attenuates colitis-associated mechanical hyperalgesia, with improving integrity of the intestinal mucosal barrier by directly upregulating tight junction proteins. The PPARγ-tight junction protein signaling might be a potential therapeutic target for the treatment of colitis-associated chronic pain.
Collapse
Affiliation(s)
- Yulin Huang
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Chenchen Wang
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Xinyu Tian
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Yanting Mao
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Bailin Hou
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Yu'e Sun
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Xiaoping Gu
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China.
| | - Zhengliang Ma
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China.
| |
Collapse
|
30
|
Kim YI, Yi EJ, Kim YD, Lee AR, Chung J, Ha HC, Cho JM, Kim SR, Ko HJ, Cheon JH, Hong YR, Chang SY. Local Stabilization of Hypoxia-Inducible Factor-1α Controls Intestinal Inflammation via Enhanced Gut Barrier Function and Immune Regulation. Front Immunol 2021; 11:609689. [PMID: 33519819 PMCID: PMC7840603 DOI: 10.3389/fimmu.2020.609689] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Intestinal epithelial cells are adapted in mucosal hypoxia and hypoxia-inducible factors in these cells can fortify barrier integrity to support mucosal tissue healing. Here we investigated whether hypoxia-related pathways could be proposed as potential therapeutic targets for inflammatory bowel disease. We developed a novel hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitor, CG-598 which stabilized HIF-1α in the gut tissue. Treatment of CG-598 did not affect extra-intestinal organs or cause any significant adverse effects such as erythropoiesis. In the experimental murine colitis model, CG-598 ameliorated intestinal inflammation with reduction of inflammatory lesions and pro-inflammatory cytokines. CG-598 treatment fortified barrier function by increasing the expression of intestinal trefoil factor, CD73, E-cadherin and mucin. Also, IL-10 and IL-22 were induced from lamina propria CD4+ T-cells. The effectiveness of CG-598 was comparable to other immunosuppressive therapeutics such as TNF-blockers or JAK inhibitors. These results suggest that CG-598 could be a promising therapeutic candidate to treat inflammatory bowel disease.
Collapse
Affiliation(s)
- Young-In Kim
- Laboratory of Microbiology, College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea
| | - Eun-Je Yi
- Laboratory of Microbiology, College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea
| | - Young-Dae Kim
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - A Reum Lee
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Jiwoung Chung
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Hae Chan Ha
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Joong Myung Cho
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Seong-Ryeol Kim
- Laboratory of Microbiology and Immunology, Department of Pharmacy, Kangwon National University, Chuncheon-si, South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, Department of Pharmacy, Kangwon National University, Chuncheon-si, South Korea
| | - Jae-Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Rae Hong
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea
| |
Collapse
|
31
|
Kling L, Schreiber A, Eckardt KU, Kettritz R. Hypoxia-inducible factors not only regulate but also are myeloid-cell treatment targets. J Leukoc Biol 2020; 110:61-75. [PMID: 33070368 DOI: 10.1002/jlb.4ri0820-535r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Hypoxia describes limited oxygen availability at the cellular level. Myeloid cells are exposed to hypoxia at various bodily sites and even contribute to hypoxia by consuming large amounts of oxygen during respiratory burst. Hypoxia-inducible factors (HIFs) are ubiquitously expressed heterodimeric transcription factors, composed of an oxygen-dependent α and a constitutive β subunit. The stability of HIF-1α and HIF-2α is regulated by oxygen-sensing prolyl-hydroxylases (PHD). HIF-1α and HIF-2α modify the innate immune response and are context dependent. We provide a historic perspective of HIF discovery, discuss the molecular components of the HIF pathway, and how HIF-dependent mechanisms modify myeloid cell functions. HIFs enable myeloid-cell adaptation to hypoxia by up-regulating anaerobic glycolysis. In addition to effects on metabolism, HIFs control chemotaxis, phagocytosis, degranulation, oxidative burst, and apoptosis. HIF-1α enables efficient infection defense by myeloid cells. HIF-2α delays inflammation resolution and decreases antitumor effects by promoting tumor-associated myeloid-cell hibernation. PHDs not only control HIF degradation, but also regulate the crosstalk between innate and adaptive immune cells thereby suppressing autoimmunity. HIF-modifying pharmacologic compounds are entering clinical practice. Current indications include renal anemia and certain cancers. Beneficial and adverse effects on myeloid cells should be considered and could possibly lead to drug repurposing for inflammatory disorders.
Collapse
Affiliation(s)
- Lovis Kling
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Adrian Schreiber
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph Kettritz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
32
|
Yoon H, Spinelli JB, Zaganjor E, Wong SJ, German NJ, Randall EC, Dean A, Clermont A, Paulo JA, Garcia D, Li H, Rombold O, Agar NYR, Goodyear LJ, Shaw RJ, Gygi SP, Auwerx J, Haigis MC. PHD3 Loss Promotes Exercise Capacity and Fat Oxidation in Skeletal Muscle. Cell Metab 2020; 32:215-228.e7. [PMID: 32663458 PMCID: PMC8065255 DOI: 10.1016/j.cmet.2020.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/04/2019] [Accepted: 06/21/2020] [Indexed: 12/14/2022]
Abstract
Rapid alterations in cellular metabolism allow tissues to maintain homeostasis during changes in energy availability. The central metabolic regulator acetyl-CoA carboxylase 2 (ACC2) is robustly phosphorylated during cellular energy stress by AMP-activated protein kinase (AMPK) to relieve its suppression of fat oxidation. While ACC2 can also be hydroxylated by prolyl hydroxylase 3 (PHD3), the physiological consequence thereof is poorly understood. We find that ACC2 phosphorylation and hydroxylation occur in an inverse fashion. ACC2 hydroxylation occurs in conditions of high energy and represses fatty acid oxidation. PHD3-null mice demonstrate loss of ACC2 hydroxylation in heart and skeletal muscle and display elevated fatty acid oxidation. Whole body or skeletal muscle-specific PHD3 loss enhances exercise capacity during an endurance exercise challenge. In sum, these data identify an unexpected link between AMPK and PHD3, and a role for PHD3 in acute exercise endurance capacity and skeletal muscle metabolism.
Collapse
Affiliation(s)
- Haejin Yoon
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jessica B Spinelli
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Elma Zaganjor
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Samantha J Wong
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Natalie J German
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Elizabeth C Randall
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Boston, MA, USA
| | - Afsah Dean
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| | - Allen Clermont
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel Garcia
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA, USA
| | - Hao Li
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Olivia Rombold
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Nathalie Y R Agar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Boston, MA, USA; Departments of Neurosurgery and Cancer Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| | - Reuben J Shaw
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA, USA
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Nighot P, Ma T. Endocytosis of Intestinal Tight Junction Proteins: In Time and Space. Inflamm Bowel Dis 2020; 27:283-290. [PMID: 32497180 PMCID: PMC7813749 DOI: 10.1093/ibd/izaa141] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Eukaryotic cells take up macromolecules and particles from the surrounding milieu and also internalize membrane proteins via a precise process of endocytosis. The role of endocytosis in diverse physiological processes such as cell adhesion, cell signaling, tissue remodeling, and healing is well recognized. The epithelial tight junctions (TJs), present at the apical lateral membrane, play a key role in cell adhesion and regulation of paracellular pathway. These vital functions of the TJ are achieved through the dynamic regulation of the presence of pore and barrier-forming proteins within the TJ complex on the plasma membrane. In response to various intracellular and extracellular clues, the TJ complexes are actively regulated by intracellular trafficking. The intracellular trafficking consists of endocytosis and recycling cargos to the plasma membrane or targeting them to the lysosomes for degradation. Increased intestinal TJ permeability is a pathological factor in inflammatory bowel disease (IBD), and the TJ permeability could be increased due to the altered endocytosis or recycling of TJ proteins. This review discusses the current information on endocytosis of intestinal epithelial TJ proteins. The knowledge of the endocytic regulation of the epithelial TJ barrier will provide further understanding of pathogenesis and potential targets for IBD and a wide variety of human disease conditions.
Collapse
Affiliation(s)
- Prashant Nighot
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA,Address correspondence to: Prashant Nighot, Department of Medicine, College of Medicine, Pennsylvania State University, 500 University Drive, Room C5814B, Hershey, PA, 17033, USA. E-mail:
| | - Thomas Ma
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA
| |
Collapse
|
34
|
Singh V, Gowda CP, Singh V, Ganapathy AS, Karamchandani DM, Eshelman MA, Yochum GS, Nighot P, Spiegelman VS. The mRNA-binding protein IGF2BP1 maintains intestinal barrier function by up-regulating occludin expression. J Biol Chem 2020; 295:8602-8612. [PMID: 32385106 DOI: 10.1074/jbc.ac120.013646] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an mRNA-binding protein that has an oncofetal pattern of expression. It is also expressed in intestinal tissue, suggesting that it has a possible role in intestinal homeostasis. To investigate this possibility, here we generated Villin CreERT2:Igf2bp1flox/flox mice, which enabled induction of an IGF2BP1 knockout specifically in intestinal epithelial cells (IECs) of adult mice. Using gut barrier and epithelial permeability assays and several biochemical approaches, we found that IGF2BP1 ablation in the adult intestinal epithelium causes mild active colitis and mild-to-moderate active enteritis. Moreover, the IGF2BP1 deletion aggravated dextran sodium sulfate-induced colitis. We also found that IGF2BP1 removal compromises barrier function of the intestinal epithelium, resulting from altered protein expression at tight junctions. Mechanistically, IGF2BP1 interacted with the mRNA of the tight-junction protein occludin (Ocln), stabilizing Ocln mRNA and inducing expression of occludin in IECs. Furthermore, ectopic occludin expression in IGF2BP1-knockdown cells restored barrier function. We conclude that IGF2BP1-dependent regulation of occludin expression is an important mechanism in intestinal barrier function maintenance and in the prevention of colitis.
Collapse
Affiliation(s)
- Vikash Singh
- Division of Hematology and Oncology, Pediatric Department, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Chethana P Gowda
- Division of Hematology and Oncology, Pediatric Department, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Vishal Singh
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Dipti M Karamchandani
- Department of Pathology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Melanie A Eshelman
- Department of Biochemistry & Molecular Biology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Gregory S Yochum
- Department of Biochemistry & Molecular Biology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA.,Department of Surgery, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Prashant Nighot
- Department of Medicine, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Vladimir S Spiegelman
- Division of Hematology and Oncology, Pediatric Department, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
35
|
Xu YM, Gao Q, Zhang JZ, Lu YT, Xing DM, Qin YQ, Fang J. Prolyl hydroxylase 3 controls the intestine goblet cell generation through stabilizing ATOH1. Cell Death Differ 2020; 27:2131-2142. [PMID: 31959916 DOI: 10.1038/s41418-020-0490-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/28/2022] Open
Abstract
Intestinal epithelia self-renew constantly and generate differentiated cells such as secretary goblet cells. The intestine goblet cells secrete gel-forming mucins that form mucus to create a barrier of defense. We reported previously that loss of prolyl hydroxylase (PHD) 3 led to disruption of the intestinal epithelial barrier function. However, the underlying mechanism remains elusive. Here, we demonstrate that PHD3 controls the generation of intestine goblet cell. We found that genetic ablation of Phd3 in mice intestine epithelial cells reduced the amount of goblet cells. Mechanistically, PHD3 bounds the E3 ubiquitin ligase HUWE1 and prevented HUWE1 from mediating ubiquitination and degradation of ATOH1, an essential driver for goblet cell differentiation. The prolyl hydroxylase activity-deficient variant PHD3(H196A) also prevented ATOH1 destruction. A genetic intestine epithelial PHD3(H196A)-knockin had no effect on ATOH1 expression or goblet cell amount in mice, suggesting that the PHD3 prolyl hydroxylase activity is dispensable for its ability to control ATOH1 expression and goblet cell generation. In dextran sulfate sodium (DSS)-induced experimental colitis, PHD3-knockout rather than PHD3(H196A)-knockin sensitized the mice to DSS treatment. Our results reveal an additional critical mechanism underlying the regulation of ATOH1 expression and goblet cell generation and highlight that PHD3 plays a role in controlling intestine goblet cell generation in a hydroxylase-independent manner.
Collapse
Affiliation(s)
- Yi-Ming Xu
- Shanghai Institute for Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiang Gao
- Shanghai Institute for Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jin-Zhao Zhang
- Shanghai Institute for Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yun-Tao Lu
- Shanghai Institute for Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dong-Ming Xing
- Cancer Institute, the Affiliated Hospital of Qingdao University, Qingdao, 266061, China.,Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Yan-Qing Qin
- Shanghai Institute for Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Fang
- Cancer Institute, the Affiliated Hospital of Qingdao University, Qingdao, 266061, China. .,Cancer Institute, Qingdao University, Qingdao, 266061, China.
| |
Collapse
|
36
|
Wang C, Zhang Y, Deng M, Wang X, Tu W, Fu Z, Jin Y. Bioaccumulation in the gut and liver causes gut barrier dysfunction and hepatic metabolism disorder in mice after exposure to low doses of OBS. ENVIRONMENT INTERNATIONAL 2019; 129:279-290. [PMID: 31146162 DOI: 10.1016/j.envint.2019.05.056] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 05/23/2023]
Abstract
The compound sodium ρ-perfluorous nonenoxybenzene sulfonate (OBS), a new kind of perfluoroalkyl and polyfluoroalkyl compound, is a surfactant for increasing oil production, and it has been widely detected in various organisms. Because of its wide use, OBS is detectable in the environment. However, knowledge about the biological toxicity of OBS to animals is very limited. Here, male mice were exposed to 0, 0.1, 1 or 10 μg/L of OBS for 6 weeks via drinking water. It was demonstrated that OBS was highly bioaccumulated both in the liver and gut in the mice after low doses of OBS exposure. Curiously, a low dose of OBS exposure also caused gut barrier dysfunction by decreasing mucus secretion and altering Ionic transport in the gut via the CFTR pathway. In addition, liver function was influenced by OBS at both the histopathological and physiological levels. Hepatic transcriptomics and metabolomics analysis showed a total of 1157 genes, and multiple metabolites changed significantly in the livers of mice exposed to low-dose OBS for 6 weeks. The functions of these changed genes and metabolites are tightly related to glycolysis, fatty acid synthesis, fatty acid transport, and β-oxidation. All these results indicate that the liver and gut are important target tissues for OBS exposure. Importantly, it is possible that high levels of bioaccumulation of OBS in the gut and liver might directly cause gut barrier dysfunction and hepatic metabolism disorder in mice.
Collapse
Affiliation(s)
- Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yi Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Mi Deng
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029, China
| | - Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029, China.
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
37
|
Xu Y, Gao Q, Xue Y, Li X, Xu L, Li C, Qin Y, Fang J. Prolyl hydroxylase 3 stabilizes the p53 tumor suppressor by inhibiting the p53-MDM2 interaction in a hydroxylase-independent manner. J Biol Chem 2019; 294:9949-9958. [PMID: 31092600 DOI: 10.1074/jbc.ra118.007181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/30/2019] [Indexed: 11/06/2022] Open
Abstract
Prolyl hydroxylase 3 (PHD3) has initially been reported to hydroxylase hypoxia-inducible factor α (HIFα) and mediate HIFα degradation. More recent studies have shown that, in addition to HIFα, PHD3 has also other substrates. Moreover, pHD3 is believed to act as a tumor suppressor, but the underlying mechanism remains to be elucidated. Here, we demonstrate that PHD3 stabilizes p53 in a hydroxylase-independent manner. We found that PHD3 overexpression increases and PHD3 knockdown decreases p53 levels. Mechanistically, PHD3 bound MDM2 proto-oncogene (MDM2) and prevented MDM2 from interacting with p53, thereby inhibiting MDM2-mediated p53 degradation. Interestingly, we found that PHD3 overexpression could enhance p53 in the presence of the prolyl hydroxylase inhibitor dimethyloxalylglycine, and the prolyl hydroxylase activity-deficient variant PHD3-H196A also inhibited the p53-MDM2 interaction and stabilized p53. Genetic ablation of PHD3 decreased p53 protein levels in mice intestinal epithelial cells, but a genetic knockin of PHD3-H196A did not affect p53 protein levels in vivo These results suggest that the prolyl hydroxylase activity of PHD3 is dispensable for its ability to stabilize p53. We found that both PHD3 and PHD3-H196A suppress the expression of the stem cell-associated gene NANOG and inhibited the properties of colon cancer stem cells through p53. Our results reveal an additional critical mechanism underlying the regulation of p53 expression and highlight that PHD3 plays a role in the suppression of colon cancer cell stemness in a hydroxylase-independent manner.
Collapse
Affiliation(s)
- Yiming Xu
- From the Shanghai Institute for Nutrition and Health, Shanghai Institutes for Biological Sciences and
| | - Qiang Gao
- From the Shanghai Institute for Nutrition and Health, Shanghai Institutes for Biological Sciences and
| | - Yaqian Xue
- From the Shanghai Institute for Nutrition and Health, Shanghai Institutes for Biological Sciences and
| | - Xiuxiu Li
- From the Shanghai Institute for Nutrition and Health, Shanghai Institutes for Biological Sciences and
| | - Liang Xu
- the Institute for Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenwei Li
- Shanghai Sunstem Biotechnology, Shanghai 200437, China
| | - Yanqing Qin
- From the Shanghai Institute for Nutrition and Health, Shanghai Institutes for Biological Sciences and
| | - Jing Fang
- the Cancer Institute, Affiliated Hospital of Qingdao University, Qingdao 266061, China, and .,the Cancer Institute, Qingdao University, Qingdao 266061, China
| |
Collapse
|
38
|
Jin Y, Lu L, Tu W, Luo T, Fu Z. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:308-317. [PMID: 30176444 DOI: 10.1016/j.scitotenv.2018.08.353] [Citation(s) in RCA: 603] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/22/2018] [Accepted: 08/25/2018] [Indexed: 05/18/2023]
Abstract
Microplastics (MPs), which are new environmental pollutants with a diameter of <5 mm, have received wide attention in recent years. However, there are still very limited data regarding the risks of MPs to animals, especially higher mammals. In this study, we exposed male mice to 5 μm pristine and fluorescent polystyrene MP for six weeks. The results showed that the polystyrene MP was observed in the guts of mice and could reduce the intestinal mucus secretion and cause damage the intestinal barrier function. In addition, high-throughput sequencing of the V3-V4 region of the 16S rRNA gene was used to explore the change of the gut microbiota composition in the cecal content. At the phylum level, the content of Actinobacteria decreased significantly in the polystyrene MP-treated group. The PD whole-tree indexes of the alpha diversity and principal component analysis (PCA) of the beta diversity indicated that the diversity of gut microbiota was altered after polystyrene MP exposure. At the genus level, a total of 15 types of bacteria changed significantly after exposure to polystyrene MP. Furthermore, the predicted KEGG (Kyoto Encyclopedia of Genes and Genomes) metabolic pathway differences indicated that the main metabolic pathways of the functional genes in the microbial community were significantly influenced by the polystyrene MP. In addition, indexes of amino acid metabolism and bile acid metabolism in the serum were analyzed after polystyrene MP exposure. These results indicated that polystyrene MP caused metabolic disorders. In conclusion, the polystyrene MP induced gut microbiota dysbiosis, intestinal barrier dysfunction and metabolic disorders in mice. This study provided more data on the toxicity of MPs in a terrestrial organism to aid in the assessment of the health risks of polystyrene MP to animals.
Collapse
Affiliation(s)
- Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liang Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Ting Luo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
39
|
Wu LY, He YL, Zhu LL. Possible Role of PHD Inhibitors as Hypoxia-Mimicking Agents in the Maintenance of Neural Stem Cells' Self-Renewal Properties. Front Cell Dev Biol 2018; 6:169. [PMID: 30619851 PMCID: PMC6297135 DOI: 10.3389/fcell.2018.00169] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022] Open
Abstract
Hypoxia is the most critical factor for maintaining stemness. During embryonic development, neural stem cells (NSCs) reside in hypoxic niches, and different levels of oxygen pressure and time of hypoxia exposure play important roles in the development of NSCs. Such hypoxic niches exist in adult brain tissue, where the neural precursors originate. Hypoxia-inducible factors (HIFs) are key transcription heterodimers consisting of regulatory α-subunits (HIF-1α, HIF-2α, HIF-3α) and a constitutive β-subunit (HIF-β). Regulation of downstream targets determines the fate of NSCs. In turn, the stability of HIFs-α is regulated by prolyl hydroxylases (PHDs), whose activity is principally modulated by PHD substrates like oxygen (O2), α-ketoglutarate (α-KG), and the co-factors ascorbate (ASC) and ferrous iron (Fe2+). It follows that the transcriptional activity of HIFs is actually determined by the contents of O2, α-KG, ASC, and Fe2+. In normoxia, HIFs-α are rapidly degraded via the ubiquitin-proteasome pathway, in which PHDs, activated by O2, lead to hydroxylation of HIFs-α at residues 402 and 564, followed by recognition by the tumor suppressor protein von Hippel–Lindau (pVHL) as an E3 ligase and ubiquitin labeling. Conversely, in hypoxia, the activity of PHDs is inhibited by low O2 levels and HIFs-α can thus be stabilized. Hence, suppression of PHD activity in normoxic conditions, mimicking the effect of hypoxia, might be beneficial for preserving the stemness of NSCs, and it is clinically relevant as a therapeutic approach for enhancing the number of NSCs in vitro and for cerebral ischemia injury in vivo. This study will review the putative role of PHD inhibitors on the self-renewal of NSCs.
Collapse
Affiliation(s)
- Li-Ying Wu
- Beijing Institute of Cognition and Brain Sciences, Beijing, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yun-Ling He
- Beijing Institute of Cognition and Brain Sciences, Beijing, China
| | - Ling-Ling Zhu
- Beijing Institute of Cognition and Brain Sciences, Beijing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
40
|
Watts ER, Walmsley SR. Inflammation and Hypoxia: HIF and PHD Isoform Selectivity. Trends Mol Med 2018; 25:33-46. [PMID: 30442494 DOI: 10.1016/j.molmed.2018.10.006] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/16/2022]
Abstract
Cells sense and respond to hypoxia through the activity of the transcription factor HIF (hypoxia-inducible factor) and its regulatory hydroxylases, the prolyl hydroxylase domain enzymes (PHDs). Multiple isoforms of HIFs and PHDs exist, and isoform-selective roles have been identified in the context of the inflammatory environment, which is itself frequently hypoxic. Recent advances in the field have highlighted the complexity of this system, particularly with regards to the cell and context-specific activity of HIFs and PHDs. Because novel therapeutic agents which regulate this pathway are nearing the clinic, understanding the role of HIFs and PHDs in inflammation outcomes is an essential step in avoiding off-target effects and, crucially, in developing new anti-inflammatory strategies.
Collapse
Affiliation(s)
- Emily R Watts
- The University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sarah R Walmsley
- The University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
41
|
Cellular Stress Responses and Gut Microbiota in Inflammatory Bowel Disease. Gastroenterol Res Pract 2018; 2018:7192646. [PMID: 30026758 PMCID: PMC6031203 DOI: 10.1155/2018/7192646] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Progresses in the past two decades have greatly expanded our understanding of inflammatory bowel disease (IBD), an incurable disease with multifaceted and challenging clinical manifestations. The pathogenesis of IBD involves multiple processes on the cellular level, which include the stress response signaling such as endoplasmic reticulum (ER) stress, oxidative stress, and hypoxia. Under physiological conditions, the stress responses play key roles in cell survival, mucosal barrier integrity, and immunomodulation. However, they can also cause energy depletion, trigger cell death and tissue injury, promote inflammatory response, and drive the progression of clinical disease. In recent years, gut microflora has emerged as an essential pathogenic factor and therapeutic target for IBD. Altered compositional and metabolic profiles of gut microbiota, termed dysbiosis, are associated with IBD. Recent studies, although limited, have shed light on how ER stress, oxidative stress, and hypoxic stress interact with gut microorganisms, a potential source of stress in the microenvironment of gastrointestinal tract. Our knowledge of cellular stress responses in intestinal homeostasis as well as their cross-talks with gut microbiome will further our understanding of the pathogenesis of inflammatory bowel disease and probably open avenues for new therapies.
Collapse
|
42
|
Xie Y, Yuan T, Qin Y, Weng Z, Fang J. Prolyl hydroxylase 2 is dispensable for homeostasis of intestinal epithelium in mice. Acta Biochim Biophys Sin (Shanghai) 2018; 50:540-546. [PMID: 29688249 DOI: 10.1093/abbs/gmy037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Prolyl hydroxylases (PHD1-3) hydroxylate hypoxia inducible factor α (HIFα), leading to HIFα ubiquitination and degradation. Recent studies indicated that administration of generic inhibitors of PHDs improved mice colitis, suggesting that suppression of PHD activity by these inhibitors may be a potential strategy for the treatment of inflammatory bowel diseases. However, the exact role of each member of PHD family in homeostasis of intestinal epithelium remains elusive. The aim of this work is to study the possible role of PHD2 by using mice with genetic ablation of Phd2 in intestinal epithelial cells (IECs). We found that deletion of PHD2 in IECs did not lead to spontaneous enteritis or colitis in mice. Deletion of PHD2 in IECs did not confer upon mice higher susceptibility to dextran sodium sulfate-induced colitis. Furthermore, in a colitis-associated colon cancer model, the PHD2-conditional knockout mice had similar susceptibility to azoxymethane (AOM)-induced colonic tumorigenesis as control mice did. Our results suggest that PHD2 is dispensable for maintenance of intestinal epithelium homeostasis in mice.
Collapse
Affiliation(s)
- Yinghui Xie
- Laboratory for Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Tanglong Yuan
- Laboratory for Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanqing Qin
- Laboratory for Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhonghui Weng
- Laboratory for Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Fang
- Laboratory for Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
43
|
SLC26A3 (DRA) prevents TNF-alpha-induced barrier dysfunction and dextran sulfate sodium-induced acute colitis. J Transl Med 2018; 98:462-476. [PMID: 29330471 DOI: 10.1038/s41374-017-0005-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/08/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
SLC26A3 encodes a Cl-/HCO3- ion transporter that is also known as downregulated in adenoma (DRA) and is involved in HCO3-/mucus formation. The role of DRA in the epithelial barrier has not been previously established. In this study, we investigated the in vivo and in vitro mechanisms of DRA in the colon epithelial barrier. Immunofluorescence (IF) and co-immunoprecipitation (co-IP) studies reveal that DRA binds directly to tight junction (TJ) proteins and affects the expression of TJ proteins in polarized Caco-2BBe cells. Similarly, DRA colocalizes with ZO-1 in the intestinal epithelium. Knockdown or overexpression of DRA leads to alterations in TJ proteins and epithelial permeability. In addition, TNF-α treatment downregulates DRA by activating NF-кB and subsequently affecting intestinal epithelial barrier integrity. Furthermore, overexpression of DRA partly reverses the TNF-α-induced damage by stabilizing TJ proteins. Neutralization of TNF-α in dextran sulfate sodium (DSS)-induced colitis mice demonstrates improved the outcomes, and the therapeutic effect of the TNF-α neutralizing mAb is mediated in part by the preservation of DRA expression. These data suggest that DRA may be one of the therapeutic targets of TNF-α. Moreover, DRA delivered by adenovirus vector significantly prevents the exacerbation of colitis and improves epithelial barrier function by promoting the recovery of TJ proteins in DSS-treated mice. In conclusion, DRA plays a role in protecting the epithelial barrier and may be a therapeutic target in gut homeostasis.
Collapse
|
44
|
Kanda M, Shimizu D, Tanaka H, Shibata M, Iwata N, Hayashi M, Kobayashi D, Tanaka C, Yamada S, Fujii T, Nakayama G, Sugimoto H, Koike M, Fujiwara M, Kodera Y. Metastatic pathway-specific transcriptome analysis identifies MFSD4 as a putative tumor suppressor and biomarker for hepatic metastasis in patients with gastric cancer. Oncotarget 2017; 7:13667-79. [PMID: 26872374 PMCID: PMC4924669 DOI: 10.18632/oncotarget.7269] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 01/29/2016] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) with hepatic metastasis remains a fatal disease. Global expression profiling was conducted using tissues from patients who had GC with synchronous hepatic metastasis, and major facilitator superfamily domain containing 4 (MFSD4) was identified as a candidate biomarker for hepatic metastasis in GC. Functional and expression analyses of this molecule in GC cell lines and clinical samples were conducted. We analyzed MFSD4 expression, DNA methylation, and copy number. RNA interference experiments evaluated the effects of MFSD4 expression on cell phenotype and apoptosis. We analyzed tissues of 200 patients with GC to assess the diagnostic performance of MFSD4 levels for predicting hepatic recurrence, metastasis, or both. Differential expression of MFSD4 mRNA by GC cell lines correlated positively with the levels of NUDT13 and OCLN mRNAs and inversely with those of BMP2. Hypermethylation of the MFSD4 promoter was detected in cells with lower levels of MFSD4 mRNA. Inhibition of MFSD4 expression significantly increased the invasiveness and motility of GC cells but did not influence cell proliferation or apoptosis. MFSD4 mRNA levels in primary GC tissues were reduced in patients with concomitant hepatic metastasis or recurrence compared with those without. Low levels of MFSD4 mRNA in primary GC tissues were an independent risk factor of hepatic recurrence and metastasis. MFSD4 expression in gastric tissues may represent a useful biomarker for identification of patients at high risk for hepatic recurrence, metastasis, or both.
Collapse
Affiliation(s)
- Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruyoshi Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Shibata
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Iwata
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Sugimoto
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
45
|
Van Welden S, Selfridge AC, Hindryckx P. Intestinal hypoxia and hypoxia-induced signalling as therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol 2017; 14:596-611. [PMID: 28853446 DOI: 10.1038/nrgastro.2017.101] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue hypoxia occurs when local oxygen demand exceeds oxygen supply. In chronic inflammatory conditions such as IBD, the increased oxygen demand by resident and gut-infiltrating immune cells coupled with vascular dysfunction brings about a marked reduction in mucosal oxygen concentrations. To counter the hypoxic challenge and ensure their survival, mucosal cells induce adaptive responses, including the activation of hypoxia-inducible factors (HIFs) and modulation of nuclear factor-κB (NF-κB). Both pathways are tightly regulated by oxygen-sensitive prolyl hydroxylases (PHDs), which therefore represent promising therapeutic targets for IBD. In this Review, we discuss the involvement of mucosal hypoxia and hypoxia-induced signalling in the pathogenesis of IBD and elaborate in detail on the role of HIFs, NF-κB and PHDs in different cell types during intestinal inflammation. We also provide an update on the development of PHD inhibitors and discuss their therapeutic potential in IBD.
Collapse
Affiliation(s)
- Sophie Van Welden
- Department of Gastroenterology, Ghent University, De Pintelaan 185, 1K12-E, 9000 Ghent, Belgium
| | - Andrew C Selfridge
- Robarts Clinical Trials West, 4350 Executive Drive 210, San Diego, California 92121, USA
| | - Pieter Hindryckx
- Department of Gastroenterology, Ghent University, De Pintelaan 185, 1K12-E, 9000 Ghent, Belgium
| |
Collapse
|
46
|
Zhang H, Zhang B, Zhang X, Wang X, Wu K, Guan Q. Effects of cathelicidin-derived peptide from reptiles on lipopolysaccharide-induced intestinal inflammation in weaned piglets. Vet Immunol Immunopathol 2017; 192:41-53. [PMID: 29042014 DOI: 10.1016/j.vetimm.2017.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
Cathelicidins are the largest family of antimicrobial peptides. C-BF, which is short for Cathelicidin-Bungarus Fasciatus, was isolated from snake venom. C-BF was found to be the most potential substitutes for antibiotics. In this study, we analyzed the effects of cathelicidin-derived peptide C-BF, on lipopolysaccharide (LPS)-induced intestinal damage in weaned piglets, to evaluate the therapeutic effect of C-BF on infectious disease of piglets. Twenty-four piglets were randomly assigned into four groups: control, C-BF, LPS, and C-BF+LPS. The LPS and C-BF+LPS groups were intraperitoneally injected with LPS at fixed timepoints, while the control and C-BF groups were injected with equal volumes of saline. The C-BF and C-BF+LPS groups were then intraperitoneally injected with antimicrobial peptide C-BF, while the control and LPS groups were injected with equal volumes of saline. All piglets were observed for 15days and then sacrificed for analysis. The results showed that C-BF significantly improved the growth performance of weaned piglets compared with LPS-treated animals (P<0.05), and that C-BF could ameliorate the structural and developmental damage to the small intestine caused by LPS treatment. Further, the level of apoptosis in the LPS group was significantly higher than in the other three groups (P<0.05), as was the invasion of inflammatory cells into the intestinal mucosa of the jejunum (P<0.05), leading to increased secretion of pro-inflammatory cytokines. In conclusion, the study indicates that C-BF treatment may be a potential therapy for LPS/pathogen-induced intestinal injury in piglets.
Collapse
Affiliation(s)
- Haiwen Zhang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Haikou, Hainan, 570228, People's Republic of China; Laboratory of Tropical Animal Breeding, Reproduction and Nutrition, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
| | - Bingxi Zhang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
| | - Xiaomeng Zhang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
| | - Xuemei Wang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Haikou, Hainan, 570228, People's Republic of China; Laboratory of Tropical Animal Breeding, Reproduction and Nutrition, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
| | - Kebang Wu
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Haikou, Hainan, 570228, People's Republic of China; Laboratory of Tropical Animal Breeding, Reproduction and Nutrition, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
| | - Qingfeng Guan
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Haikou, Hainan, 570228, People's Republic of China; Laboratory of Tropical Animal Breeding, Reproduction and Nutrition, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
| |
Collapse
|
47
|
Xia YJ, Jiang XT, Jiang SB, He XJ, Luo JG, Liu ZC, Wang L, Tao HQ, Chen JZ. PHD3 affects gastric cancer progression by negatively regulating HIF1A. Mol Med Rep 2017; 16:6882-6889. [PMID: 28901473 DOI: 10.3892/mmr.2017.7455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/14/2017] [Indexed: 11/05/2022] Open
Abstract
Prolyl hydroxylase 3 (PHD3) is widely accepted as a tumor suppressor; however, the expression of PHD3 in various cancer types remains controversial. The present study aimed to investigate the association between PHD3 expression and the clinicopathological features of gastric cancer using reverse transcription‑quantitative polymerase chain reaction and immunohistochemistry. The effects of PHD3 in gastric cancer cell lines were assessed using western blot analysis and transwell migration assays. The present results revealed that PHD3 expression was increased in adjacent non‑cancerous tissue compared with in gastric cancer tissue, and PHD3 overexpression was correlated with the presence of well‑differentiated cancer cells, early cancer stage classification and the absence of lymph node metastasis. In vitro experiments demonstrated that PHD3 may act as a negative regulator of hypoxia‑inducible factor‑1α and vascular endothelial growth factor, both of which participate in tumor angiogenesis. In conclusion, the present results suggested that PHD3 may act as a tumor suppressor in gastric cancer. Therefore, the targeted regulation of PHD3 may have potential as a novel therapeutic approach for the treatment of patients with gastric cancer.
Collapse
Affiliation(s)
- Ying-Jie Xia
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Xiao-Ting Jiang
- Key Laboratory of Gastroenterology of Zhejiang, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Shi-Bin Jiang
- Key Laboratory of Gastroenterology of Zhejiang, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xu-Jun He
- Key Laboratory of Gastroenterology of Zhejiang, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Jun-Gang Luo
- Key Laboratory of Gastroenterology of Zhejiang, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Zheng-Chuang Liu
- Key Laboratory of Gastroenterology of Zhejiang, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Liang Wang
- Department of Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Hou-Quan Tao
- Key Laboratory of Gastroenterology of Zhejiang, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Jian-Zhong Chen
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
48
|
Schoepflin ZR, Silagi ES, Shapiro IM, Risbud MV. PHD3 is a transcriptional coactivator of HIF-1α in nucleus pulposus cells independent of the PKM2-JMJD5 axis. FASEB J 2017; 31:3831-3847. [PMID: 28495754 PMCID: PMC5572688 DOI: 10.1096/fj.201601291r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/24/2017] [Indexed: 12/17/2022]
Abstract
The role of prolyl hydroxylase (PHD)-3 as a hypoxia inducible factor (HIF)-1α cofactor is controversial and remains unknown in skeletal tissues. We investigated whether PHD3 controls HIF-1 transcriptional activity in nucleus pulposus (NP) cells through the pyruvate kinase muscle (PKM)-2-Jumonji domain--containing protein (JMJD5) axis. PHD3-/- mice (12.5 mo old) showed increased incidence of intervertebral disc degeneration with a concomitant decrease in expression of the HIF-1α targets VEGF-A, glucose transporter-1, and lactate dehydrogenase A. PHD3 silencing decreased hypoxic activation of HIF-1α C-terminal transactivation domain (C-TAD), but not HIF-1α-N-terminal-(N)-TAD or HIF-2α-TAD. Moreover, PHD3 suppression in NP cells resulted in decreased HIF-1α enrichment on target promoters and lower expression of select HIF-1 targets. Contrary to other cell types, manipulation of PKM2 and JMJD5 levels had no effect on HIF-1 activity in NP cells. Likewise, stabilization of tetrameric PKM2 by a chemical approach had no effect on PHD3-dependent HIF-1 activity. Coimmunoprecipitation assays showed lack of association between HIF-1α and PKM2 in NP cells. Results support the role of the PHD3 as a cofactor for HIF-1, independent of PKM2-JMJD5.-Schoepflin, Z. R., Silagi, E. S., Shapiro, I. M., Risbud, M. V. PHD3 is a transcriptional coactivator of HIF-1α in nucleus pulposus cells independent of the PKM2-JMJD5 axis.
Collapse
Affiliation(s)
- Zachary R Schoepflin
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Elizabeth S Silagi
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
49
|
Abstract
BACKGROUND Pouchitis occurs in approximately 50% of patients with ulcerative colitis after ileal pouch-anal anastomosis (IPAA) but the pathogenesis remains unclear. We used a rat model of dextran sulfate sodium (DSS)-induced ileal pouchitis to examine whether intestinal barrier disruption plays a role in the development and progression of the disease. METHODS Rats were randomly divided into DSS (underwent IPAA and administered 5% DSS orally), IPAA (underwent IPAA), and Sham groups (underwent switch abdominal surgery). In the DSS group, levofloxacin intervention and nonintervention subgroups were used to determine the influence of antibiotics on intestinal barrier dysfunction. Hematochezia and fecal scores were recorded. Ileum and pouch specimens were obtained for histological assessment. Immunohistochemistry was performed for myeloperoxidase and occludin protein expression. Levels of interleukin-1β (IL-1β), IL-6, IL-10, and tumor necrosis factor α mRNA were detected by real-time PCR. Plasma D-lactate concentrations were determined with colorimetry. RESULTS Only rats in the DSS group experienced hematochezia, and their fecal and histological scores significantly increased (P < 0.01). Compared with the IPAA and Sham groups, levels of myeloperoxidase, IL-1β, IL-6, tumor necrosis factor α, and plasma D-lactate significantly increased, whereas occludin and IL-10 reduced in the DSS group (P < 0.01). The levofloxacin subgroup showed increased occludin expression and more balanced inflammatory cytokine levels than the nonintervention subgroup. All differences showed linear correlations. CONCLUSIONS The intestinal barrier was disrupted in this rat model of pouchitis. Increased proinflammatory and decreased anti-inflammatory factors aggravated the intestinal barrier damage. Antibiotics may ameliorate this process.
Collapse
|
50
|
Manresa MC, Taylor CT. Hypoxia Inducible Factor (HIF) Hydroxylases as Regulators of Intestinal Epithelial Barrier Function. Cell Mol Gastroenterol Hepatol 2017; 3:303-315. [PMID: 28462372 PMCID: PMC5404106 DOI: 10.1016/j.jcmgh.2017.02.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/09/2017] [Indexed: 12/12/2022]
Abstract
Human health is dependent on the ability of the body to extract nutrients, fluids, and oxygen from the external environment while at the same time maintaining a state of internal sterility. Therefore, the cell layers that cover the surface areas of the body such as the lung, skin, and gastrointestinal mucosa provide vital semipermeable barriers that allow the transport of essential nutrients, fluid, and waste products, while at the same time keeping the internal compartments free of microbial organisms. These epithelial surfaces are highly specialized and differ in their anatomic structure depending on their location to provide appropriate and effective site-specific barrier function. Given this important role, it is not surprising that significant disease often is associated with alterations in epithelial barrier function. Examples of such diseases include inflammatory bowel disease, chronic obstructive pulmonary disease, and atopic dermatitis. These chronic inflammatory disorders often are characterized by diminished tissue oxygen levels (hypoxia). Hypoxia triggers an adaptive transcriptional response governed by hypoxia-inducible factors (HIFs), which are repressed by a family of oxygen-sensing HIF hydroxylases. Here, we review recent evidence suggesting that pharmacologic hydroxylase inhibition may be of therapeutic benefit in inflammatory bowel disease through the promotion of intestinal epithelial barrier function through both HIF-dependent and HIF-independent mechanisms.
Collapse
Key Words
- CD, Crohn’s disease
- DMOG, dimethyloxalylglycine
- DSS, dextran sodium sulfate
- Epithelial Barrier
- FIH, factor inhibiting hypoxia-inducible factor
- HIF, hypoxia-inducible factor
- Hypoxia
- Hypoxia-Inducible Factor (HIF) Hydroxylases
- IBD, inflammatory bowel disease
- IL, interleukin
- Inflammatory Bowel Disease
- NF-κB, nuclear factor-κB
- PHD, hypoxia-inducible factor–prolyl hydroxylases
- TFF, trefoil factor
- TJ, tight junction
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor α
- UC, ulcerative colitis
- ZO, zonula occludens
Collapse
Affiliation(s)
- Mario C. Manresa
- Conway Institute of Biomolecular and Biomedical Research, Belfield, Dublin, Ireland
- Charles Institute of Dermatology, Belfield, Dublin, Ireland
| | - Cormac T. Taylor
- Conway Institute of Biomolecular and Biomedical Research, Belfield, Dublin, Ireland
- Charles Institute of Dermatology, Belfield, Dublin, Ireland
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|