1
|
Luo F, Chen T, Chen S, Bai D, Li X. Regulation of osteoclast-mediated bone resorption by lipids. Bone 2025; 193:117423. [PMID: 39933643 DOI: 10.1016/j.bone.2025.117423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Hyperactivation of osteoclasts has been identified as a significant etiological factor in several bone resorption-related disorders, including osteoporosis, periodontitis, arthritis, and bone metastasis of tumors. It has been demonstrated that the severity of these diseases is influenced by lipids that regulate osteoclast differentiation and activity through specific signaling pathways and cytokine levels. The regulatory mechanisms of different types of lipids on osteoclastogenesis vary across diverse disease contexts in bone resorption regulated by osteoclasts. This review presents an overview of the mechanisms underlying osteoclast formation and summarizes the pathways through which various lipids regulate osteoclastogenesis in different pathological contexts. We also discuss effective therapeutic strategies for osteolytic diseases based on modulation of lipid metabolism.
Collapse
Affiliation(s)
- Fang Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tianyi Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Sharma S, Ghosh R, Marianesan AB, Hussain S, Pandey JD, Kumar M. Nanostructured lipid carriers in Rheumatoid Arthritis: treatment, advancements and applications. Inflammopharmacology 2025; 33:941-958. [PMID: 40025299 DOI: 10.1007/s10787-025-01669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 03/04/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects the joints and causes pain, swelling, and deformity. Current treatments, including nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and disease-modifying antirheumatic drugs, often have limited efficacy and adverse side effects. Nanostructured lipid carriers (NLCs) are promising drug delivery agents for treating RA. NLCs are comprised of solid and liquid lipids, forming a nanostructured matrix that enhances drug solubility, stability, and controlled release. They offer advantages over traditional carriers such as improved skin penetration, increased bioavailability, and reduced systemic side effects. Topical NLC formulations show improved stability and skin absorption, targeting drugs specifically to the affected joints, thus reducing the required dose and systemic exposure. Studies on NLCs for delivering anti-inflammatory and antirheumatic drugs, such as methotrexate, indomethacin, and curcumin, in RA animal models indicate the potential for improved therapeutic efficacy and safety. NLCs represent a promising approach for targeted RA drug delivery, offering better efficacy, fewer side effects, and higher patient compliance. However, further research is needed to optimize NLC formulations and evaluate their clinical efficacy and safety in RA patients. The development of NLC-based drug delivery systems for RA treatment may lead to more effective and well-tolerated therapies, thereby improving the quality of life of patients with this debilitating disease.
Collapse
Affiliation(s)
- Swarnika Sharma
- Hari College of Pharmacy, Malhipur Road Jandheri, Saharanpur, Uttar Pradesh, India
| | - Rashmi Ghosh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | | | - Sumaya Hussain
- College of Pharmacy,, Stephens Group of Institutions, Jammu, 181102, Jammu and Kashmir, India
| | - Jai Deo Pandey
- Rajarshi Rananjay Sinh College of Pharmacy, Maharaja Bhawan Baksh Singh Nagar, Amethi, Uttar Pradesh, 227405, India
| | - Manish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India.
| |
Collapse
|
3
|
Chen J, Zhi F, Zhao G, Su M, Geng H, Song W, Chu Y, Zhang H. Brucella osteoarthritis: recent progress and future directions. Front Microbiol 2025; 16:1522537. [PMID: 39967734 PMCID: PMC11833182 DOI: 10.3389/fmicb.2025.1522537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025] Open
Abstract
Brucellosis is a common zoonosis, and Brucella osteoarthritis is the most common chronic complication of brucellosis. Development of brucellosis osteoarthritis involves multiple organs, tissues, and cells. Brucella grows and multiplies in intrinsic cells of the skeleton, including osteoblasts, osteocyte and osteoclasts, which results in sustained release of bacteria that leads to exacerbation of the immune response. Concurrently, activation of the immune system caused by invasion with Brucella may affect the dynamic balance of the skeleton. A variety of in vitro and in vivo models have been employed to study Brucella osteoarthritis, such as using bone marrow-derived macrophages to establish cell models and mice to develop animal models of Brucella osteoarthritis. However, limited studies on the molecular pathological mechanisms of Brucella osteoarthritis have been performed and inadequate animal models have been developed due to the challenging parameters of Brucella research. This paper reviews recent advances in the clinical features, molecular pathological mechanisms, and animal models of Brucella osteoarticular infections. This review underscores the complexity of the pathogenesis of Brucella osteoarticular infections and highlights inflammation as a contributing factor to bone loss caused by Brucella. Additionally, the significant proliferation of Brucella in skeletal resident cells also is an important factor leading to bone loss. A deeper understanding of the molecular pathological mechanism of Brucella osteoarthrosis and their animal models could provide robust support for the prevention and treatment of Brucella osteoarticular disease.
Collapse
Affiliation(s)
- Jinlei Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Feijie Zhi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Guanghai Zhao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Mengru Su
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Hao Geng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Wei Song
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Haihong Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| |
Collapse
|
4
|
Dong Q, Zhou J, Feng M, Kong L, Fang B, Zhang Z. A review of bacterial and osteoclast differentiation in bone infection. Microb Pathog 2024; 197:107102. [PMID: 39505086 DOI: 10.1016/j.micpath.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/18/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Bone infections are characterized by bacterial invasion of the bone microenvironment and subsequent bone structure deterioration. This holds significance because osteoclasts, which are the only cells responsible for bone resorption, are abnormally stimulated during bone infections. Multiple communication factors secreted by bone stromal cells regulate the membrane of osteoclast progenitor cells, thereby maintaining bone homeostasis through the expression of many types of receptors. During infection, the immunoinflammatory response triggered by bacterial invasion and multiple virulence factors of bacterial origin can disrupt osteoclast homeostasis. Therefore, clarifying the pathways through which bacteria affect osteoclasts can offer a theoretical basis for preventing and treating bone infections. This review summarizes studies investigating bone destruction caused by different bacterial infections. In conclusion, bacteria can affect osteoclast metabolic activity through multiple pathways, including direct contact, release of virulence factors, induction of immunoinflammatory responses, influence on bone stromal cell metabolism, and intracellular infections.
Collapse
Affiliation(s)
- Qi Dong
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jiuqin Zhou
- Department of Infectious Disease of Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Mingzhe Feng
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Lingqiang Kong
- Department of Orthopedics, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 312030, China.
| | - Bin Fang
- Department of Orthopedics, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China.
| | - Zhen Zhang
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
5
|
Zhao Y, Yang K, Ferreira TA, Kang X, Feng X, Katz J, Michalek SM, Zhang P. Activation of liver X receptors suppresses the abundance and osteoclastogenic potential of osteoclast precursors and periodontal bone loss. Mol Oral Microbiol 2024; 39:125-135. [PMID: 38108557 PMCID: PMC11096071 DOI: 10.1111/omi.12447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Liver-X receptors (LXRs) are essential nuclear hormone receptors involved in cholesterol and lipid metabolism. They are also believed to regulate inflammation and physiological and pathological bone turnover. We have previously shown that infection with the periodontal pathogen Porphyromonas gingivalis (Pg) in mice increases the abundance of CD11b+c-fms+Ly6Chi cells in bone marrow (BM), spleen (SPL), and peripheral blood. These cells also demonstrated enhanced osteoclastogenic activity and a distinctive gene profile following Pg infection. Here, we investigated the role of LXRs in regulating these osteoclast precursors (OCPs) and periodontal bone loss. We found that Pg infection downregulates the gene expression of LXRs, as well as ApoE, a transcription target of LXRs, in CD11b+c-fms+Ly6Chi OCPs. Activation of LXRs by treatment with GW3965, a selective LXR agonist, significantly decreased Pg-induced accumulation of CD11b+c-fms+Ly6Chi population in BM and SPL. GW3965 treatment also significantly suppressed the osteoclastogenic potential of these OCPs induced by Pg infection. Furthermore, the activation of LXRs reduces the abundance of OCPs systemically in BM and locally in the periodontium, as well as mitigates gingival c-fms expression and periodontal bone loss in a ligature-induced periodontitis model. These data implicate a novel role of LXRs in regulating OCP abundance and osteoclastogenic potential in inflammatory bone loss.
Collapse
Affiliation(s)
- Yanfang Zhao
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kai Yang
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thalyta Amanda Ferreira
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Xu Feng
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jannet Katz
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suzanne M Michalek
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ping Zhang
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
6
|
Shi X, Ni H, Tang L, Li M, Wu Y, Xu Y. Identification of molecular subgroups in osteomyelitis induced by staphylococcus aureus infection through gene expression profiles. BMC Med Genomics 2023; 16:149. [PMID: 37370094 DOI: 10.1186/s12920-023-01568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) infection-induced osteomyelitis (OM) is an inflammatory bone disease accompanied by persistent bone destruction, and the treatment is challenging because of its tendency to recur. Present study was aimed to explore the molecular subgroups of S. aureus infection-induced OM and to deepen the mechanistic understanding for molecularly targeted treatment of OM. METHODS Integration of 164 OM samples and 60 healthy samples from three datasets of the Gene Expression Omnibus (GEO) database. OM patients were classified into different molecular subgroups based on unsupervised algorithms and correlations of clinical characteristics between subgroups were analyzed. Next, The CIBERSORT algorithm was used to evaluate the proportion of immune cell infiltration in different OM subgroups. Weighted gene co-expression analysis (WGCNA) was used to identify different gene modules and explore the relationship with clinical characteristics, and further annotated OM subgroups and gene modules by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. RESULTS Two subgroups with excellent consistency were identified in this study, subgroup and hospital length of stay were independent predictors of OM. Compared with subgroup I, OM patients in subgroup II had longer hospital length of stay and more severe disease. Meanwhile, the infiltration proportions of monocytes and macrophages M0 were higher in patients of OM subgroup II. Finally, combined with the characteristics of the KEGG enrichment modules, the expression of osteoclast differentiation-related genes such as CTSK was upregulated in OM subgroup II, which may be closely associated with more severe OM patients. CONCLUSION The current study showed that OM subgroup II had longer hospital length of stay and more severe disease, the osteoclast differentiation pathway and the main target CTSK contribute to our deeper understanding for the molecular mechanisms associated with S. aureus infection-induced OM, and the construction of molecular subgroups suggested the necessity for different subgroups of patients to receive individualized treatment.
Collapse
Affiliation(s)
- Xiangwen Shi
- Kunming Medical University, Kunming, China, 650500
- Laboratory of Yunnan Traumatology and Orthopedics Clinical Medical Center, Yunnan Orthopedics and Sports Rehabilitation Clinical Medical Research Center, Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, Yunnan, P.R. China, 650100
| | - Haonan Ni
- Kunming Medical University, Kunming, China, 650500
| | - Linmeng Tang
- Bone and Joint Imaging Center, Department of Medical imaging, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China, 075000
| | - Mingjun Li
- Kunming Medical University, Kunming, China, 650500
| | - Yipeng Wu
- Laboratory of Yunnan Traumatology and Orthopedics Clinical Medical Center, Yunnan Orthopedics and Sports Rehabilitation Clinical Medical Research Center, Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, Yunnan, P.R. China, 650100.
| | - Yongqing Xu
- Laboratory of Yunnan Traumatology and Orthopedics Clinical Medical Center, Yunnan Orthopedics and Sports Rehabilitation Clinical Medical Research Center, Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, Yunnan, P.R. China, 650100.
| |
Collapse
|
7
|
Seebach E, Kraus FV, Elschner T, Kubatzky KF. Staphylococci planktonic and biofilm environments differentially affect osteoclast formation. Inflamm Res 2023:10.1007/s00011-023-01745-9. [PMID: 37329360 DOI: 10.1007/s00011-023-01745-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 05/15/2023] [Indexed: 06/19/2023] Open
Abstract
INTRODUCTION The pathophysiology of chronic implant-related bone infections is characterized by an increase in osteoclast numbers and enhanced bone resorption. Biofilms are a major reason for chronicity of such infections as the biofilm matrix protects bacteria against antibiotics and impairs the function of immune cells. Macrophages are osteoclast precursor cells and therefore linked to inflammation and bone destruction. OBJECTIVE AND METHOD Investigations on the impact of biofilms on the ability of macrophages to form osteoclasts are yet missing and we, therefore, analyzed the effect of Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) planktonic and biofilm environments on osteoclastogenesis using RAW 264.7 cells and conditioned media (CM). RESULTS Priming with the osteoclastogenic cytokine RANKL before CM addition enabled the cells to differentiate into osteoclasts. This effect was highest in SE planktonic or SA biofilm CM. Simultaneous stimulation with CM and RANKL, however, suppressed osteoclast formation and resulted in formation of inflammation-associated multinucleated giant cells (MGCs) which was most pronounced in SE planktonic CM. CONCLUSION Our data indicate that the biofilm environment and its high lactate levels are not actively promoting osteoclastogenesis. Hence, the inflammatory immune response against planktonic bacterial factors through Toll-like receptors seems to be the central cause for the pathological osteoclast formation. Therefore, immune stimulation or approaches that aim at biofilm disruption need to consider that this might result in enhanced inflammation-mediated bone destruction.
Collapse
Affiliation(s)
- Elisabeth Seebach
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | - Franziska V Kraus
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Department of Internal Medicine 5 - Hematology Oncology Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Tabea Elschner
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Institute for Cardiovascular Sciences and Institute of Neurovascular Cell Biology (INVZ), University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Katharina F Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Li F, Yao JH, Li L, Nie Q, Cao JJ, Ning XR. MiRNA-23a-5p is the biomarkers for gouty arthritis and promotes inflammation in rats of gouty arthritis via MyD88/NF-κB pathway by induction TLR2. Arch Rheumatol 2022; 37:536-546. [PMID: 36879567 PMCID: PMC9985376 DOI: 10.46497/archrheumatol.2022.9236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/05/2021] [Indexed: 03/08/2023] Open
Abstract
Objectives In this study, we aimed to examine the efficacy of micro ribonucleic acid (miRNA)-23a-5p in gouty arthritis and to investigate its possible mechanism. Materials and methods Gouty arthritis in rat was established by intraarticular injection of 0.2 mL monosodium urate crystal (20 mg/mL) inside knee joint cavity. THP-1 cell was induced using lipopolysaccharides (LPS) for in vitro model. Results Serum miRNA-23a-5p expression levels were increased in rats of gouty arthritis. However, overexpression of miRNA-23a-5p promoted inflammation and induced myeloid differential protein-88 (MyD88)/nuclear factor-kappa B (NF-κB) pathway by induction toll-like receptor-2 (TLR2) in vitro. The inhibition of TLR2 attenuated the pro-inflammation effects of miRNA-23a-5p in inflammation in in vitro model of gouty arthritis. Conclusion Our findings demonstrate that miRNA-23a-5p is a biomarker for gouty arthritis and promotes inflammation in rats of gouty arthritis via MyD88/NF-κB pathway by targeting TLR2.
Collapse
Affiliation(s)
- Fang Li
- Department of Rheumatism and Immunology, Hebei General Hospital, Shijiazhuang, China
| | - Jian-Hua Yao
- Department of Geratology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Li
- Department Ultrasonograph, Hebei General Hospital, Shijiazhuang, China
| | - Qian Nie
- Hebei General Hospital, Medicai Examination Center, Shijiazhuang, China
| | - Jing-Jing Cao
- Department of Rheumatism and Immunology, Hebei General Hospital, Shijiazhuang, China
| | - Xiao-Ran Ning
- Department of Rheumatism and Immunology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
9
|
Petronglo JR, Putnam NE, Ford CA, Cruz-Victorio V, Curry JM, Butrico CE, Fulbright LE, Johnson JR, Peck SH, Fatah SR, Cassat JE. Context-Dependent Roles for Toll-Like Receptors 2 and 9 in the Pathogenesis of Staphylococcus aureus Osteomyelitis. Infect Immun 2022; 90:e0041722. [PMID: 36226943 PMCID: PMC9670883 DOI: 10.1128/iai.00417-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is the major causative agent of bacterial osteomyelitis, an invasive infection of bone. Inflammation generated by the immune response to S. aureus contributes to bone damage by altering bone homeostasis. Increases in the differentiation of monocyte lineage cells into bone-resorbing osteoclasts (osteoclastogenesis) promote bone loss in the setting of osteomyelitis. In this study, we sought to define the role of Toll-like receptor (TLR) signaling in the pathogenesis of S. aureus osteomyelitis. We hypothesized that S. aureus-sensing TLRs 2 and 9, both of which are known to alter osteoclastogenesis in vitro, promote pathological changes to bone, including increased osteoclast abundance, bone loss, and altered callus formation during osteomyelitis. Stimulation of osteoclast precursors with S. aureus supernatant increased osteoclastogenesis in a TLR2-dependent, but not a TLR9-dependent, manner. However, in vivo studies using a posttraumatic murine model of osteomyelitis revealed that TLR2-null mice experienced similar bone damage and increased osteoclastogenesis compared to wild type (WT) mice. Therefore, we tested the hypothesis that compensation between TLR2 and TLR9 contributes to osteomyelitis pathogenesis. We found that mice deficient in both TLR2 and TLR9 (Tlr2/9-/-) have decreased trabecular bone loss in response to infection compared to WT mice. However, osteoclastogenesis is comparable between WT and Tlr2/9-/- mice, suggesting that alternative mechanisms enhance osteoclastogenesis in vivo during osteomyelitis. Indeed, we discovered that osteoclast precursors intracellularly infected with S. aureus undergo significantly increased osteoclast formation, even in the absence of TLR2 and TLR9. These results suggest that TLR2 and TLR9 have context-dependent roles in the alteration of bone homeostasis during osteomyelitis.
Collapse
Affiliation(s)
- Jenna R. Petronglo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Nicole E. Putnam
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Caleb A. Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Virginia Cruz-Victorio
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Jacob M. Curry
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Casey E. Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Laura E. Fulbright
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Joshua R. Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Sun H. Peck
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Sana R. Fatah
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - James E. Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Liu XH, Ding JY, Zhu ZH, Wu XC, Song YJ, Xu XL, Ding DF. Recent advances in enzyme-related biomaterials for arthritis treatment. Front Chem 2022; 10:988051. [PMID: 36051622 PMCID: PMC9424673 DOI: 10.3389/fchem.2022.988051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 12/27/2022] Open
Abstract
Arthritis is a group of highly prevalent joint disorders, and osteoarthritis (OA) and rheumatoid arthritis are the two most common types. The high prevalence of arthritis causes severe burdens on individuals, society and the economy. Currently, the primary treatment of arthritis is to relieve symptoms, but the development of arthritis cannot be effectively prevented. Studies have revealed that the disrupted balance of enzymes determines the pathological changes in arthritis. In particular, the increased levels of matrix metalloproteinases and the decreased expression of endogenous antioxidant enzymes promote the progression of arthritis. New therapeutic strategies have been developed based on the expression characteristics of these enzymes. Biomaterials have been designed that are responsive when the destructive enzymes MMPs are increased or have the activities of the antioxidant enzymes that play a protective role in arthritis. Here, we summarize recent studies on biomaterials associated with MMPs and antioxidant enzymes involved in the pathological process of arthritis. These enzyme-related biomaterials have been shown to be beneficial for arthritis treatment, but there are still some problems that need to be solved to improve efficacy, especially penetrating the deeper layer of articular cartilage and targeting osteoclasts in subchondral bone. In conclusion, enzyme-related nano-therapy is challenging and promising for arthritis treatment.
Collapse
Affiliation(s)
- Xin-Hao Liu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Ying Ding
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Heng Zhu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi-Chen Wu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jia Song
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- *Correspondence: Xiao-Ling Xu, ; Dao-Fang Ding,
| | - Dao-Fang Ding
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiao-Ling Xu, ; Dao-Fang Ding,
| |
Collapse
|
11
|
Qiu J, Jiang T, Yang G, Gong Y, Zhang W, Zheng X, Chen H, Hong Z. Neratinib Exerts Dual Effects on Cartilage Degradation and Osteoclast Production in Osteoarthritis by Inhibiting the Activation of the MAPK/NF-κB Signaling Pathways. Biochem Pharmacol 2022; 205:115155. [PMID: 35820500 DOI: 10.1016/j.bcp.2022.115155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/04/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Abstract
Osteoarthritis (OA) is a degenerative disease caused by the progressive destruction of cartilage and subchondral bone. [1] Studies have shown that by inhibiting the degradation of cartilage cells and the loss of subchondral bone, OA can be prevented and treated. Neratinib, as a small molecule compound with anti-inflammatory and anti-tumor properties, is a very effective inhibitor of IL-1β-induced chondrocyte inflammation and anabolic metabolism. By investigating the effect of neratinib in ATDC5 chondrocytes, the study finds that neratinib reduces inflammation by inhibiting the MAPK and NF-κB signaling pathways, and at the same time reduces pyrolysis (indicated by the results of reverse transcription quantitative PCR and western blotting). For anabolic metabolism, after high-density cell culture, IL-1β-induced catalytic changes and degradation of the extracellular matrix were evaluated by toluidine blue staining. Since osteoclasts are key participants in the process of subchondral bone remodeling in OA, we also studied the effect of neratinib on the maturation of osteoclasts. The results showed that neratinib also acts as an anti-osteoclast agent in vitro. By inhibiting the NF-κB and MAPK pathways, it reduces the expression of osteoclast-related genes, thereby inhibiting RANKL-induced osteoclastogenesis. The results of in vivo animal experiments supported the conclusions from the experiments in vitro. Neratinib inhibited both the destruction of medial meniscus induced cartilage degradation and osteoclast formation, which proves that neratinib has a dual effect, protecting cartilage and inhibiting osteoclast formation. These results indicate that neratinib can be a brand-new latent strategy for the treatment of OA.
Collapse
Affiliation(s)
- Jianxin Qiu
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Ting Jiang
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Guangyong Yang
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Yuhang Gong
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Weikang Zhang
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiaohang Zheng
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Haixiao Chen
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.
| | - Zhenghua Hong
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.
| |
Collapse
|
12
|
Mamun-Or-Rashid ANM, Lucy TT, Yagi M, Yonei Y. Inhibitory Effects of Astaxanthin on CML-HSA-Induced Inflammatory and RANKL-Induced Osteoclastogenic Gene Expression in RAW 264.7 Cells. Biomedicines 2021; 10:biomedicines10010054. [PMID: 35052734 PMCID: PMC8772757 DOI: 10.3390/biomedicines10010054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023] Open
Abstract
Objective: Elevated levels of serum Nε-carboxymethyllysine (CML), a well-known advanced glycation end-product (AGE), were observed in patients with inflammation or osteoporosis. Astaxanthin was reported to possess anti-inflammatory and antioxidant effects. In the present study, we investigated the effects of commercially available dietary supplement AstaReal ACTR (ASR) capsule content as astaxanthin on CML-HSA-induced inflammatory and receptor activator of nuclear factor-kappa-Β ligand (RANKL)-induced osteoclastogenic gene expression. Methods: RAW 264.7 murine macrophage cells were stimulated with CML-HSA to trigger inflammatory gene expression and treated with either a vehicle control or varied concentrations of astaxanthin. Inflammatory gene expression was measured using an enzyme-linked immunosorbent assay (ELISA) or qPCR. We triggered osteoclastogenesis using RANKL, and osteoclastogenic gene expression was measured through tartrate-resistant acid phosphatase (TRAP) activity, staining, immunofluorescence, and qPCR analyses. Results: CML-HSA showed a stimulatory effect on inflammatory gene expression, and astaxanthin reduced the expression by at least two-fold. The levels of autoinflammatory gene expression were reduced by astaxanthin. The RANKL-induced osteoclastogenesis was significantly inhibited by astaxanthin, with reductions in the activation of nuclear factor-κB (NF-κB), the expression of NFATc1 (nuclear factor of activated T cells 1), multinucleated cell formation, and the expression of mature osteoclast marker genes. Conclusion: Astaxanthin has potential as a remedy for CML-HSA-induced inflammation and RANKL-induced excessive bone loss.
Collapse
|
13
|
Sun Y, Li J, Xie X, Gu F, Sui Z, Zhang K, Yu T. Macrophage-Osteoclast Associations: Origin, Polarization, and Subgroups. Front Immunol 2021; 12:778078. [PMID: 34925351 PMCID: PMC8672114 DOI: 10.3389/fimmu.2021.778078] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/15/2021] [Indexed: 12/31/2022] Open
Abstract
Cellular associations in the bone microenvironment are involved in modulating the balance between bone remodeling and resorption, which is necessary for maintaining a normal bone morphology. Macrophages and osteoclasts are both vital components of the bone marrow. Macrophages can interact with osteoclasts and regulate bone metabolism by secreting a variety of cytokines, which make a significant contribution to the associations. Although, recent studies have fully explored either macrophages or osteoclasts, indicating the significance of these two types of cells. However, it is of high importance to report the latest discoveries on the relationships between these two myeloid-derived cells in the field of osteoimmunology. Therefore, this paper reviews this topic from three novel aspects of the origin, polarization, and subgroups based on the previous work, to provide a reference for future research and treatment of bone-related diseases.
Collapse
Affiliation(s)
- Yang Sun
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Jiangbi Li
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xiaoping Xie
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Feng Gu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Zhenjiang Sui
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Ke Zhang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Tiecheng Yu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Fan Z, Pathak JL, Ge L. The Potential Role of RP105 in Regulation of Inflammation and Osteoclastogenesis During Inflammatory Diseases. Front Cell Dev Biol 2021; 9:713254. [PMID: 34414191 PMCID: PMC8369417 DOI: 10.3389/fcell.2021.713254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammatory diseases have a negative impact on bone homeostasis via exacerbated local and systemic inflammation. Bone resorbing osteoclasts are mainly derived from hematopoietic precursors and bone marrow monocytes. Induced osteoclastogenesis during inflammation, autoimmunity, metabolic diseases, and cancers is associated with bone loss and osteoporosis. Proinflammatory cytokines, pathogen-associated molecular patterns, or endogenous pathogenic factors induce osteoclastogenic differentiation by binding to the Toll-like receptor (TLR) family expressed on surface of osteoclast precursors. As a non-canonical member of the TLRs, radioprotective 105 kDa (RP105 or CD180) and its ligand, myeloid differentiation protein 1 (MD1), are involved in several bone metabolic disorders. Reports from literature had demonstrated RP105 as an important activator of B cells, bone marrow monocytes, and macrophages, which regulates inflammatory cytokines release from immune cells. Reports from literature had shown the association between RP105 and other TLRs, and the downstream signaling mechanisms of RP105 with different “signaling-competent” partners in immune cells during different disease conditions. This review is focused to summarize: (1) the role of RP105 on immune cells’ function and inflammation regulation (2) the potential regulatory roles of RP105 in different disease-mediated osteoclast activation and the underlying mechanisms, and (3) the different “signaling-competent” partners of RP105 that regulates osteoclastogenesis.
Collapse
Affiliation(s)
- Zhou Fan
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Janak L Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linhu Ge
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Interleukin-20 Acts as a Promotor of Osteoclastogenesis and Orthodontic Tooth Movement. Stem Cells Int 2021; 2021:5539962. [PMID: 34122555 PMCID: PMC8172288 DOI: 10.1155/2021/5539962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives Bones constitute organs that are engaged in constant self-remodelling. Osteoblast and osteoclast homeostasis during remodelling contribute to overall skeletal status. Orthodontics is a clinical discipline that involves the investigation and implementation of moving teeth through the bone. The application of mechanical force to the teeth causes an imbalance between osteogenesis and osteogenesis in alveolar bone, leading to tooth movement. Osteoimmunology comprises the crosstalk between the immune and skeletal systems that regulate osteoclast–osteoblast homeostasis. Interleukin- (IL-) 20, an IL-10 family member, is regarded as a proinflammatory factor for autoimmune diseases and has been implicated in bone loss disease. However, the mechanism by which IL-20 regulates osteoclast differentiation and osteoclastogenesis activation remains unclear. This study investigated the effects of IL-20 on osteoclast differentiation in a rat model; it explored the underlying molecular mechanism in vitro and the specific effects on orthodontic tooth movement in vivo. Methods For in vitro analyses, primary rat bone marrow-derived macrophages (BMMs) were prepared from Sprague–Dawley rats for osteoclast induction. After BMMs had been treated with combinations of recombinant IL-20 protein, siRNA, and plasmids, the expression levels of osteoclast-specific factors and signalling pathway proteins were detected through real-time polymerase chain reaction, western blotting, and immunofluorescence staining. For in vivo analyses, IL-20 was injected into the rat intraperitoneal cavity after the establishment of a rat orthodontic tooth movement (OTM) model. OTM distance was detected by Micro-CT and HE staining; the expression levels of protein were detected through immunofluorescence staining. Results In vitro analyses showed that a low concentration of IL-20 promoted preosteoclast proliferation and osteoclastogenesis. However, a high concentration of IL-20 inhibited BMM proliferation and osteoclastogenesis. IL-20 knockdown decreased the expression of osteoclast specific-markers, while IL-20 overexpression increased the expression of osteoclast specific-markers. Furthermore, IL-20 regulated osteoclast differentiation through the OPG/RANKL/RANK pathway. Overexpression of IL-20 could significantly upregulate RANKL-mediated osteoclast differentiation and osteoclast specific-marker expression; moreover, RANKL/NF-κB/NFATc1 acted as downstream signalling molecule for IL-20. In vivo analysis showed that OTM speed was significantly increased after intraperitoneal injection of IL-20; additionally, mechanical stress sensing proteins were markedly activated. Conclusions IL-20 augments osteoclastogenesis and osteoclast-mediated bone erosion through the RANKL/NF-κB/NFATc1 signalling pathway. IL-20 inhibition can effectively reduce osteoclast differentiation and diminish bone resorption. Furthermore, IL-20 can accelerate orthodontic tooth movement and activate mechanical stress sensing proteins.
Collapse
|
16
|
Ibudilast Mitigates Delayed Bone Healing Caused by Lipopolysaccharide by Altering Osteoblast and Osteoclast Activity. Int J Mol Sci 2021; 22:ijms22031169. [PMID: 33503906 PMCID: PMC7865869 DOI: 10.3390/ijms22031169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial infection in orthopedic surgery is challenging because cell wall components released after bactericidal treatment can alter osteoblast and osteoclast activity and impair fracture stability. However, the precise effects and mechanisms whereby cell wall components impair bone healing are unclear. In this study, we characterized the effects of lipopolysaccharide (LPS) on bone healing and osteoclast and osteoblast activity in vitro and in vivo and evaluated the effects of ibudilast, an antagonist of toll-like receptor 4 (TLR4), on LPS-induced changes. In particular, micro-computed tomography was used to reconstruct femoral morphology and analyze callus bone content in a femoral defect mouse model. In the sham-treated group, significant bone bridge and cancellous bone formation were observed after surgery, however, LPS treatment delayed bone bridge and cancellous bone formation. LPS inhibited osteogenic factor-induced MC3T3-E1 cell differentiation, alkaline phosphatase (ALP) levels, calcium deposition, and osteopontin secretion and increased the activity of osteoclast-associated molecules, including cathepsin K and tartrate-resistant acid phosphatase in vitro. Finally, ibudilast blocked the LPS-induced inhibition of osteoblast activation and activation of osteoclast in vitro and attenuated LPS-induced delayed callus bone formation in vivo. Our results provide a basis for the development of a novel strategy for the treatment of bone infection.
Collapse
|
17
|
Son M, Wang AG, Tu HL, Metzig MO, Patel P, Husain K, Lin J, Murugan A, Hoffmann A, Tay S. NF-κB responds to absolute differences in cytokine concentrations. Sci Signal 2021; 14. [PMID: 34211635 DOI: 10.1126/scisignal.aaz4382] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cells receive a wide range of dynamic signaling inputs during immune regulation, but how gene regulatory networks measure such dynamic inputs is not well understood. Here, we used microfluidic single-cell analysis and mathematical modeling to study how the NF-κB pathway responds to immune inputs that vary over time such as increasing, decreasing, or fluctuating cytokine signals. We found that NF-κB activity responded to the absolute difference in cytokine concentration and not to the concentration itself. Our analyses revealed that negative feedback by the regulatory proteins A20 and IκBα enabled differential responses to changes in cytokine dose by providing a short-term memory of previous cytokine concentrations and by continuously resetting kinase cycling and receptor abundance. Investigation of NF-κB target gene expression showed that cells exhibited distinct transcriptional responses under different dynamic cytokine profiles. Our results demonstrate how cells use simple network motifs and transcription factor dynamics to efficiently extract information from complex signaling environments.
Collapse
Affiliation(s)
- Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Hsiung-Lin Tu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Marie Oliver Metzig
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Parthiv Patel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Kabir Husain
- James Franck Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - Jing Lin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Arvind Murugan
- James Franck Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Abstract
Bone homeostasis is maintained by a balance in the levels of osteoclast and osteoblast activity. Osteoclasts are bone-resorbing cells and have been shown to act as key players in various osteolytic diseases. Osteoclasts differentiate from monocyte/macrophage lineage cells in the presence of receptor activator of nuclear factor-κB ligand and macrophage colony-stimulating factor. Osteoblasts support osteoclastogenesis by producing several osteoclast differentiation factors. Toll-like receptors (TLRs) are members of the pattern recognition receptor family that are involved in recognizing pathogen-associated molecular patterns and damage-associated molecular patterns in response to pathogen infection. TLRs regulate osteoclastogenesis and bone resorption through either the myeloid differentiation primary response 88 or the Toll/interleukin-1 receptor domain-containing adapter-inducing interferon-β signaling pathways. Since osteoclasts play a central role in the progression of osteolytic diseases, extensive research focusing on TLR downstream signaling in these cells should be conducted to advance the development of effective TLR modulators. In this review, we summarize the currently available information on the role of TLRs in osteoclast differentiation and osteolytic diseases.
Collapse
Affiliation(s)
- Mijung Yim
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
19
|
TLR3-Dependent Activation of TLR2 Endogenous Ligands via the MyD88 Signaling Pathway Augments the Innate Immune Response. Cells 2020; 9:cells9081910. [PMID: 32824595 PMCID: PMC7464415 DOI: 10.3390/cells9081910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022] Open
Abstract
The role of the adaptor molecule MyD88 is thought to be independent of Toll-like receptor 3 (TLR3) signaling. In this report, we demonstrate a previously unknown role of MyD88 in TLR3 signaling in inducing endogenous ligands of TLR2 to elicit innate immune responses. Of the various TLR ligands examined, the TLR3-specific ligand polyinosinic:polycytidylic acid (poly I:C), significantly induced TNF production and the upregulation of other TLR transcripts, in particular, TLR2. Accordingly, TLR3 stimulation also led to a significant upregulation of endogenous TLR2 ligands mainly, HMGB1 and Hsp60. By contrast, the silencing of TLR3 significantly downregulated MyD88 and TLR2 gene expression and pro-inflammatory IL1β, TNF, and IL8 secretion. The silencing of MyD88 similarly led to the downregulation of TLR2, IL1β, TNF and IL8, thus suggesting MyD88 to somehow act downstream of TLR3. Corroborating in vitro data, Myd88−/− knockout mice downregulated TNF, CXCL1; and phospho-p65 and phospho-IRF3 nuclear localization, upon poly I:C treatment in a mouse model of skin infection. Taken together, we identified a previously unknown role for MyD88 in the TLR3 signaling pathway, underlying the importance of TLRs and adapter protein interplay in modulating endogenous TLR ligands culminating in pro-inflammatory cytokine regulation.
Collapse
|
20
|
Jeong E, Kim J, Go M, Lee SY. Early estrogen-induced gene 1 facilitates osteoclast formation through the inhibition of interferon regulatory factor 8 expression. FASEB J 2020; 34:12894-12906. [PMID: 32741026 DOI: 10.1096/fj.202001197r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/11/2022]
Abstract
Osteoclast-mediated inflammatory bone resorption is a major cause of many inflammatory bone disorders, including rheumatoid arthritis and periodontitis. However, the mechanisms regulating osteoclast differentiation in inflammatory settings are not well understood. We demonstrate here that early estrogen-induced gene 1 (EEIG1)-deficient mice are protected from inflammatory bone loss as determined with the use of models of lipopolysaccharide (LPS)-induced bone destruction. EEIG1-deficient macrophages markedly decreased RANKL- and TNFα-mediated osteoclastogenesis due to the downregulation of the nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), which is an essential transcription factor for osteoclast formation. In contrast, expression of interferon regulatory factor 8 (IRF8), a transcriptional repressor that blocks osteoclast differentiation, is elevated in EEIG1-deficient macrophages relative to wild-type cells. We found that reduced expression of B lymphocyte-induced maturation protein-1 (Blimp1) by siRNA downregulated RANKL-induced EEIG1 levels, whereas overexpression of Blimp1 potentiated EEIG1 levels. Mechanistic studies revealed that EEIG1 forms a complex with Blimp1 to negatively regulate the expression of the anti-osteoclastogenic gene, Irf8. We elucidated a novel mechanism by which EEIG1 restricts IRF8 expression and function, thereby enhancing the osteoclast formation by contributing to Blimp1-mediated IRF8 regulation. Together, these findings identify EEIG1 as a key regulator of osteoclastogenesis and a possible therapeutic target for pathological bone destruction.
Collapse
Affiliation(s)
- Eutteum Jeong
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea.,The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea
| | - Jihee Kim
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea.,The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea
| | - Miyeon Go
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Soo Young Lee
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea.,The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Cai X, Li Z, Zhao Y, Katz J, Michalek SM, Feng X, Li Y, Zhang P. Enhanced dual function of osteoclast precursors following calvarial Porphyromonas gingivalis infection. J Periodontal Res 2020; 55:410-425. [PMID: 31944305 PMCID: PMC7250733 DOI: 10.1111/jre.12725] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/23/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Excessive osteoclast activity is a major characteristic of pathogenic bone loss in inflammatory bone diseases including periodontitis. However, beyond the knowledge that osteoclasts are differentiated from the monocyte/macrophage lineage and share common ancestry with macrophages and DC, the nature and function of osteoclast precursors are not completely understood. Furthermore, little is known about how osteoclast precursors respond to bacterial infection in vivo. We have previously demonstrated in vitro that the periodontal pathogen Porphyromonas gingivalis (Pg) plays a biphasic role on the receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation. In this study, we investigated the in vivo effect of Pg infection on the regulation of osteoclast precursors, using a mouse calvarial infection model. METHODS AND RESULTS C57BL/6 wild-type and the myeloid differentiation factor 88 knockout (MyD88-/- ) mice were infected with Pg by calvarial injection. Local and systemic bone loss, and the number and function of CD11b+ c-fms+ cells from bone marrow and spleen were analyzed. Our results show that Pg infection induces localized inflammatory infiltration and osteoclastogenesis, as well as increased number and osteoclastogenic potential of CD11b+ c-fms+ osteoclast precursors in the bone marrow and periphery. We also show that CD11b+ c-fms+ RANK+ and CD11b+ c-fms+ RANK- are precursors with similar osteoclastogenic and pro-inflammatory potentials. In addition, CD11b+ c-fms+ cells exhibit an antigen-specific T-cell immune-suppressive activity, which are increased with Pg infection. Moreover, we demonstrate that MyD88 is involved in the regulation of osteoclast precursors upon Pg infection. CONCLUSIONS In this study, we demonstrate an enhanced dual function of osteoclast precursors following calvarial Pg infection. Based on our findings, we propose the following model: Pg infection increases a pool of precursor cells that can be shunted toward osteoclast formation at the infection/inflammation sites, while at the same time dampening host immune responses, which is beneficial for the persistence of infection and maintenance of the characteristic chronic nature of periodontitis. Understanding the nature, function, and regulation of osteoclast precursors will be helpful for identifying therapeutic interventions to aid in the control and prevention of inflammatory bone loss diseases including periodontitis.
Collapse
Affiliation(s)
- Xia Cai
- Department of Pediatric DentistrySchool of DentistryUniversity of Alabama at BirminghamBirminghamALUSA
- Department of PeriodonticsThe Affiliated Stomatological HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Zhaofei Li
- Department of Pediatric DentistrySchool of DentistryUniversity of Alabama at BirminghamBirminghamALUSA
- Department of EndodonticsSchool of StomatologyWuhan UniversityWuhanChina
| | - Yanfang Zhao
- Department of Pediatric DentistrySchool of DentistryUniversity of Alabama at BirminghamBirminghamALUSA
| | - Jenny Katz
- Department of Pediatric DentistrySchool of DentistryUniversity of Alabama at BirminghamBirminghamALUSA
| | - Suzanne M. Michalek
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Xu Feng
- Department of Molecular & Cellular PathologySchool of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
| | - Yuhong Li
- Department of EndodonticsSchool of StomatologyWuhan UniversityWuhanChina
| | - Ping Zhang
- Department of Pediatric DentistrySchool of DentistryUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
22
|
Meng B, Wu D, Cheng Y, Huang P, Liu Y, Gan L, Liu C, Cao Y. Interleukin-20 differentially regulates bone mesenchymal stem cell activities in RANKL-induced osteoclastogenesis through the OPG/RANKL/RANK axis and the NF-κB, MAPK and AKT signalling pathways. Scand J Immunol 2020; 91:e12874. [PMID: 32090353 DOI: 10.1111/sji.12874] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 12/30/2022]
Abstract
The immune and skeletal systems share common mechanisms, and the crosstalk between the two has been termed osteoimmunology. Osteoimmunology mainly focuses on diseases between the immune and bone systems including bone loss diseases, and imbalances in osteoimmune regulation affect skeletal homeostasis between osteoclasts and osteoblasts. The immune mediator interleukin-20 (IL-20), a member of the IL-10 family, enhances inflammation, chemotaxis and angiogenesis in diseases related to bone loss. However, it is unclear how IL-20 regulates the balance between osteoclastogenesis and osteoblastogenesis; therefore, we explored the mechanisms by which IL-20 affects bone mesenchymal stem cells (BMSCs) in osteoclastogenesis in primary cells during differentiation, proliferation, apoptosis and signalling. We initially found that IL-20 differentially regulated preosteoclast proliferation and apoptosis; BMSC-conditioned medium (CM) significantly enhanced osteoclast formation and bone resorption, which was dose-dependently regulated by IL-20; IL-20 inhibited OPG expression and promoted M-CSF, RANKL and RANKL/OPG expression; and IL-20 differentially regulated the expression of osteoclast-specific gene and transcription factors through the OPG/RANKL/RANK axis and the NF-kB, MAPK and AKT pathways. Therefore, IL-20 differentially regulates BMSCs in osteoclastogenesis and exerts its function by activating the OPG/RANKL/RANK axis and the NF-κB, MAPK and AKT pathways, which make targeting IL-20 a promising direction for targeted regulation in diseases related to bone loss.
Collapse
Affiliation(s)
- Bowen Meng
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Dongle Wu
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yangfan Cheng
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Peina Huang
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yuanbo Liu
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lei Gan
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Chufeng Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yang Cao
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
23
|
Souza PPC, Lerner UH. Finding a Toll on the Route: The Fate of Osteoclast Progenitors After Toll-Like Receptor Activation. Front Immunol 2019; 10:1663. [PMID: 31379855 PMCID: PMC6652233 DOI: 10.3389/fimmu.2019.01663] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
M-CSF and RANKL are two crucial cytokines stimulating differentiation of mature, bone resorbing, multinucleated osteoclasts from mononucleated progenitor cells in the monocyte/macrophage lineage. In addition to the receptors for M-CSF and RANKL, osteoclast progenitor cells express receptors for several other pro- and anti-osteoclastogenic cytokines, which also regulate osteoclast formation by affecting signaling downstream M-CSF and RANKL receptors. Similar to many other cells originating from myeloid hematopoetic stem cells, also osteoclast progenitors express toll-like receptors (TLRs). Nine murine TLRs are expressed in the progenitors and all, with the exception of TLR2 and TLR4, are downregulated during osteoclastogenesis. Activation of TLR2, TLR4, and TLR9, but not TLR5, in osteoclast progenitors stimulated with M-CSF and RANKL arrests differentiation along the osteoclastic lineage and keeps the cells at a macrophage stage. When the progenitors are primed with M-CSF/RANKL and then stimulated with agonists for TLR2, TLR4, or TLR9 in the presence of M-CSF, but in the absence of RANKL, the cells differentiate to mature, bone resorbing osteoclasts. TLR 2, 4, 5, and 9 are also expressed on osteoblasts and their activation increases osteoclast differentiation by an indirect mechanism through stimulation of RANKL. In mice, treatment with agonists for TLR2, 4, and 5 results in osteoclast formation and extensive bone loss. It remains to be shown the relative importance of inhibitory and stimulatory effects by TLRs on osteoclast progenitors and the role of RANKL produced by TLR stimulated osteoblasts, for the bone resorbing effects in vivo.
Collapse
Affiliation(s)
- Pedro P C Souza
- Faculty of Dentistry, Federal University of Goiás, Goiânia, Brazil
| | - Ulf H Lerner
- Centre for Bone and Arthritis Research at Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
24
|
Zheng L, Gao J, Jin K, Chen Z, Yu W, Zhu K, Huang W, Liu F, Mei L, Lou C, He D. Macrophage migration inhibitory factor (MIF) inhibitor 4-IPP suppresses osteoclast formation and promotes osteoblast differentiation through the inhibition of the NF-κB signaling pathway. FASEB J 2019; 33:7667-7683. [PMID: 30893559 DOI: 10.1096/fj.201802364rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Current pharmacological intervention for the treatment of osteolytic bone diseases such as osteoporosis focuses on the prevention of excessive osteoclastic bone resorption but does not enhance osteoblast-mediated bone formation. In our study, we have shown that 4-iodo-6-phenylpyrimidine (4-IPP), an irreversible inhibitor of macrophage migration inhibitory factor (MIF), can inhibit receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and potentiate osteoblast-mediated mineralization and bone nodule formation in vitro. Mechanistically, 4-IPP inhibited RANKL-induced p65 phosphorylation and nuclear translocation by preventing the interaction of MIF with thioredoxin-interacting protein-p65 complexes. This led to the suppression of late osteoclast marker genes such as nuclear factor of activated T cells cytoplasmic 1, resulting in impaired osteoclast formation. In contrast, 4-IPP potentiated osteoblast differentiation and mineralization also through the inhibition of the p65/NF-κB signaling cascade. In the murine model of pathologic osteolysis induced by titanium particles, 4-IPP protected against calvarial bone destruction. Similarly, in the murine model of ovariectomy-induced osteoporosis, 4-IPP treatment ameliorated the bone loss associated with estrogen deficiency by reducing osteoclastic activities and enhancing osteoblastic bone formation. Collectively, these findings provide evidence for the pharmacological targeting of MIF for the treatment of osteolytic bone disorders.-Zheng, L., Gao, J., Jin, K., Chen, Z., Yu, W., Zhu, K., Huang, W., Liu, F., Mei, L., Lou, C., He, D. Macrophage migration inhibitory factor (MIF) inhibitor 4-IPP suppresses osteoclast formation and promotes osteoblast differentiation through the inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Jiawei Gao
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Kangtao Jin
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Zhenzhong Chen
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Weiyang Yu
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Kejun Zhu
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Wenjun Huang
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Feijun Liu
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Liangwei Mei
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Chao Lou
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Dengwei He
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| |
Collapse
|
25
|
Jenei-Lanzl Z, Meurer A, Zaucke F. Interleukin-1β signaling in osteoarthritis - chondrocytes in focus. Cell Signal 2018; 53:212-223. [PMID: 30312659 DOI: 10.1016/j.cellsig.2018.10.005] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) can be regarded as a chronic, painful and degenerative disease that affects all tissues of a joint and one of the major endpoints being loss of articular cartilage. In most cases, OA is associated with a variable degree of synovial inflammation. A variety of different cell types including chondrocytes, synovial fibroblasts, adipocytes, osteoblasts and osteoclasts as well as stem and immune cells are involved in catabolic and inflammatory processes but also in attempts to counteract the cartilage loss. At the molecular level, these changes are regulated by a complex network of proteolytic enzymes, chemokines and cytokines (for review: [1]). Here, interleukin-1 signaling (IL-1) plays a central role and its effects on the different cell types involved in OA are discussed in this review with a special focus on the chondrocyte.
Collapse
Affiliation(s)
- Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt/Main, Germany
| | - Andrea Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt/Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt/Main, Germany.
| |
Collapse
|
26
|
Wang L, Yu K, Zhang X, Yu S. Dual functional roles of the MyD88 signaling in colorectal cancer development. Biomed Pharmacother 2018; 107:177-184. [PMID: 30086464 DOI: 10.1016/j.biopha.2018.07.139] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
The myeloid differentiation factor 88 (MyD88), an adaptor protein in regulation of the innate immunity, functions to regulate immune responses against viral and bacterial infections in the human body. Toll-like receptors (TLRs) and interleukin 1 receptors (IL-1R) can recognize microbes or endogenous ligands and then recruit MyD88 to activate the MyD88-dependent pathway, while MyD88 mutation associated with lymphoma development and altered MyD88 signaling also involved in cancer-associated cell intrinsic and extrinsic inflammation progression and carcinogenesis. Detection of MyD88 expression was to predict prognosis of various human cancers, e.g., lymphoid, liver, and colorectal cancers. In human cancers, MyD88 protein acts as a bridge between the inflammatory signaling from the TLR/IL-1R and Ras oncogenic signaling pathway. However, the MyD88 signaling played dual functional roles in colorectal cancer, i.e., the tumor-promoting role that enhances cancer inflammation and intestinal flora imbalance to induce tumor invasion and tumor cell self-renewal, and the anti-tumor role that helps to maintain the host-microbiota homeostasis to induce tumor cell cycle arrest and immune responses against cancer cells. This review precisely discusses the up to date literature for these contrasting effects of MyD88 signaling on colorectal cancer development and progression.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Kewei Yu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xiang Zhang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Shuwen Yu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
27
|
Rowe DW, Adams DJ, Hong SH, Zhang C, Shin DG, Renata Rydzik C, Chen L, Wu Z, Garland G, Godfrey DA, Sundberg JP, Ackert-Bicknell C. Screening Gene Knockout Mice for Variation in Bone Mass: Analysis by μCT and Histomorphometry. Curr Osteoporos Rep 2018; 16:77-94. [PMID: 29508144 DOI: 10.1007/s11914-018-0421-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The international mouse phenotyping consortium (IMPC) is producing defined gene knockout mouse lines. Here, a phenotyping program is presented that is based on micro-computed tomography (μCT) assessment of distal femur and vertebra. Lines with significant variation undergo a computer-based bone histomorphometric analysis. RECENT FINDINGS Of the 220 lines examined to date, approximately 15% have a significant variation (high or low) by μCT, most of which are not identified by the IMPC screen. Significant dimorphism between the sexes and bone compartments adds to the complexity of the skeletal findings. The μCT information that is posted at www.bonebase.org can group KOMP lines with similar morphological features. The histological data is presented in a graphic form that associates the cellular features with a specific anatomic group. The web portal presents a bone-centric view appropriate for the skeletal biologist/clinician to organize and understand the large number of genes that can influence skeletal health. Cataloging the relative severity of each variant is the first step towards compiling the dataset necessary to appreciate the full polygenic basis of degenerative bone disease.
Collapse
Affiliation(s)
- David W Rowe
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA.
| | - Douglas J Adams
- Department of Orthopaedic Surgery, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Seung-Hyun Hong
- Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Caibin Zhang
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Dong-Guk Shin
- Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - C Renata Rydzik
- Department of Orthopaedic Surgery, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Li Chen
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Zhihua Wu
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | | | - Dana A Godfrey
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester School of Medicine, Rochester, NY, 14642, USA
| | | | - Cheryl Ackert-Bicknell
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester School of Medicine, Rochester, NY, 14642, USA
| |
Collapse
|
28
|
Cao F, Zhou W, Liu G, Xia T, Liu M, Mi B, Liu Y. Staphylococcus aureus peptidoglycan promotes osteoclastogenesis via TLR2-mediated activation of the NF-κB/NFATc1 signaling pathway. Am J Transl Res 2017; 9:5022-5030. [PMID: 29218100 PMCID: PMC5714786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
Staphylococcus aureus (S. aureus) peptidoglycan (PGN-sa), the major cell wall component of S. aureus, has been demonstrated to be an important virulence factor in the pathogenesis of S. aureus-induced osteomyelitis. However, the exact role of PGN-sa in osteoclastogenesis during S. aureus-induced osteomyelitis and its underlying molecular mechanisms remain unclear. In this study, we found that PGN-sa promoted receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast formation. Quantitative real-time polymerase chain reaction results showed that the mRNA expression of osteoclast-specific marker genes, including tartrate-resistant acid phosphatase, cathepsin K, matrix metalloproteinase-9, and calcitonin receptor was upregulated by PGN-sa treatment. The results of enzyme linked immunosorbent assay showed that PGN-sa promoted the production of proinflammatory cytokines in mouse bone marrow macrophages (mBMMs) treated with RANKL. PGN-sa enhanced RANKL-stimulated protein expression of Toll-like receptor 2 (TLR2), p-IκBα, and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). Luciferase reporter assay showed that PGN-sa increased the transcriptional activity of TLR2 and NF-κB in mBMMs treated with RANKL. In addition, we found that downregulation of TLR2 attenuated the effect of PGA-sa on RANKL-induced osteoclastogenesis and activation of the NF-κB/NFATc1 signaling pathway. Taken together, this study revealed that PGN-sa promotes osteoclast formation via TLR2-mediated activation of the NF-κB/NFATc1 signaling pathway, revealing a potential effect of PGN-sa on osteomyelitis. These findings provide new insights into the pathogenic role of PGN-sa in S. aureus-induced osteomyelitis and may help to develop new therapeutic strategies for osteomyelitis.
Collapse
Affiliation(s)
- Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| | - Tian Xia
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| | - Mengfei Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| | - Yi Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| |
Collapse
|
29
|
Phenotype and Function of Myeloid-Derived Suppressor Cells Induced by Porphyromonas gingivalis Infection. Infect Immun 2017; 85:IAI.00213-17. [PMID: 28533469 DOI: 10.1128/iai.00213-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/12/2017] [Indexed: 01/04/2023] Open
Abstract
Porphyromonas gingivalis, a major etiologic agent of periodontitis, has been reported to induce the expansion of myeloid-derived suppressor cells (MDSC); however, little is known regarding the subpopulations of MDSC expanded by P. gingivalis infection. Flow cytometry was used to evaluate bone marrow and spleen cells from mice infected with P. gingivalis and controls for surface expression of CD11b, Ly6G, and Ly6C. To characterize the phenotype of MDSC subpopulations induced by infection, cells were sorted based on the differential expression of Ly6G and Ly6C. Moreover, since MDSC are suppressors of T cell immune activity, we determined the effect of the induced subpopulations of MDSC on the proliferative response of OVA-specific CD4+ T cells. Lastly, the plasticity of MDSC to differentiate into osteoclasts was assessed by staining for tartrate-resistant acid phosphatase activity. P. gingivalis infection induced the expansion of three subpopulations of MDSC (Ly6G++ Ly6C+, Ly6G+ Ly6C++, and Ly6G+ Ly6C+); however, only CD11b+ Ly6G+ Ly6C++-expressing cells exerted a significant suppressive effect on T cell proliferation. Inhibition of proliferative responses required T cell-MDSC contact and was mediated by inducible nitric oxide synthase and cationic amino acid transporter 2 via gamma interferon. Furthermore, only the CD11b+ Ly6G+ Ly6C++ subpopulation of MDSC induced by P. gingivalis infection was able to differentiate into osteoclasts. Thus, the inflammatory response induced by P. gingivalis infection promotes the expansion of immune-suppressive cells and consequently the development of regulatory inhibitors that curtail the host response. Moreover, monocytic MDSC have the plasticity to differentiate into OC, thus perhaps contributing to the OC pool in states of periodontal disease.
Collapse
|
30
|
Li F, Song R, Ao L, Reece TB, Cleveland JC, Dong N, Fullerton DA, Meng X. ADAMTS5 Deficiency in Calcified Aortic Valves Is Associated With Elevated Pro-Osteogenic Activity in Valvular Interstitial Cells. Arterioscler Thromb Vasc Biol 2017; 37:1339-1351. [PMID: 28546218 DOI: 10.1161/atvbaha.117.309021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Extracellular matrix proteinases are implicated in the pathogenesis of calcific aortic valve disease. The ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5) enzyme is secreted, matrix-associated metalloendopeptidase, capable of degrading extracellular matrix proteins, particularly matrilin 2. We sought to determine the role of the ADAMTS5/matrilin 2 axis in mediating the phenotype transition of valvular interstitial cells (VICs) associated with calcific aortic valve disease. APPROACH AND RESULTS Levels of ADAMTS5, matrilin 2, and α-SMA (α-smooth muscle actin) were evaluated in calcified and normal human aortic valve tissues and VICs. Calcified aortic valves have reduced levels of ADAMTS5 and higher levels of matrilin 2 and α-SMA. Treatment of normal VICs with soluble matrilin 2 caused an increase in α-SMA level through Toll-like receptors 2 and 4, which was accompanied by upregulation of runt-related transcription factor 2 and alkaline phosphatase. In addition, ADAMTS5 knockdown in normal VICs enhanced the effect of matrilin 2. Matrilin 2 activated nuclear factor (NF) κB and NF of activated T cells complex 1 and induced the interaction of these 2 NFs. Inhibition of either NF-κB or NF of activated T cells complex 1 suppressed matrilin 2's effect on VIC phenotype change. Knockdown of α-SMA reduced and overexpression of α-SMA enhanced the expression of pro-osteogenic factors and calcium deposit formation in human VICs. CONCLUSIONS Matrilin 2 induces myofibroblastic transition and elevates pro-osteogenic activity in human VICs via activation of NF-κB and NF of activated T cells complex 1. Myofibroblastic transition in human VICs is an important mechanism of elevating the pro-osteogenic activity. Matrilin 2 accumulation associated with relative ADAMTS5 deficiency may contribute to the mechanism underlying calcific aortic valve disease progression.
Collapse
Affiliation(s)
- Fei Li
- From the Department of Surgery, University of Colorado Denver, Aurora (F.L., R.S., L.A., T.B.R., J.C.C., D.A.F., X.M.); and Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (F.L., N.D.)
| | - Rui Song
- From the Department of Surgery, University of Colorado Denver, Aurora (F.L., R.S., L.A., T.B.R., J.C.C., D.A.F., X.M.); and Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (F.L., N.D.)
| | - Lihua Ao
- From the Department of Surgery, University of Colorado Denver, Aurora (F.L., R.S., L.A., T.B.R., J.C.C., D.A.F., X.M.); and Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (F.L., N.D.)
| | - T Brett Reece
- From the Department of Surgery, University of Colorado Denver, Aurora (F.L., R.S., L.A., T.B.R., J.C.C., D.A.F., X.M.); and Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (F.L., N.D.)
| | - Joseph C Cleveland
- From the Department of Surgery, University of Colorado Denver, Aurora (F.L., R.S., L.A., T.B.R., J.C.C., D.A.F., X.M.); and Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (F.L., N.D.)
| | - Nianguo Dong
- From the Department of Surgery, University of Colorado Denver, Aurora (F.L., R.S., L.A., T.B.R., J.C.C., D.A.F., X.M.); and Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (F.L., N.D.)
| | - David A Fullerton
- From the Department of Surgery, University of Colorado Denver, Aurora (F.L., R.S., L.A., T.B.R., J.C.C., D.A.F., X.M.); and Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (F.L., N.D.)
| | - Xianzhong Meng
- From the Department of Surgery, University of Colorado Denver, Aurora (F.L., R.S., L.A., T.B.R., J.C.C., D.A.F., X.M.); and Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (F.L., N.D.).
| |
Collapse
|
31
|
Temporal Role for MyD88 in a Model of Brucella-Induced Arthritis and Musculoskeletal Inflammation. Infect Immun 2017; 85:IAI.00961-16. [PMID: 28069819 DOI: 10.1128/iai.00961-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/05/2017] [Indexed: 01/18/2023] Open
Abstract
Brucella spp. are facultative intracellular Gram-negative bacteria that cause the zoonotic disease brucellosis, one of the most common global zoonoses. Osteomyelitis, arthritis, and musculoskeletal inflammation are common focal complications of brucellosis in humans; however, wild-type (WT) mice infected systemically with conventional doses of Brucella do not develop these complications. Here we report C57BL/6 WT mice infected via the footpad with 103 to 106 CFU of Brucella spp. display neutrophil and monocyte infiltration of the joint space and surrounding musculoskeletal tissue. Joint inflammation is detectable as early as 1 day postinfection and peaks 1 to 2 weeks later, after which WT mice are able to slowly resolve inflammation. B and T cells were dispensable for the onset of swelling but required for resolution of joint inflammation and infection. At early time points, MyD88-/- mice display decreased joint inflammation, swelling, and proinflammatory cytokine levels relative to WT mice. Subsequently, swelling of MyD88-/- joints surpassed WT joint swelling, and resolution of joint inflammation was prolonged. Joint bacterial loads in MyD88-/- mice were significantly greater than those in WT mice by day 3 postinfection and at all time points thereafter. In addition, MyD88-/- joint inflammatory cytokine levels on day 3 and beyond were similar to WT levels. Collectively these data demonstrate MyD88 signaling mediates early inflammatory responses in the joint but also contributes to subsequent clearance of Brucella and resolution of inflammation. This work also establishes a mouse model for studying Brucella-induced arthritis, musculoskeletal complications, and systemic responses, which will lead to a better understanding of focal complications of brucellosis.
Collapse
|