1
|
Yadav GP, Annamalai M, Hagan DW, Cui L, Mathews C, Jiang QX. Molecular requirements of chromogranin B for the long-sought anion shunter of regulated secretion. Int J Biol Macromol 2025; 309:142180. [PMID: 40107558 DOI: 10.1016/j.ijbiomac.2025.142180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
All eukaryotes utilize regulated secretion to release molecular signals packaged in secretory granules for local and remote signaling. An anion shunt conductance was first suggested in secretory granules of bovine chromaffin cells nearly five decades ago. Biochemical identity of this conductance remains undefined. CLC-3, an intracellular Cl-/H+ exchanger, was proposed as a candidate sixteen years ago, which, however, was contested experimentally. Here, we show that chromogranin B (CHGB) makes the kernel of the long-sought anion shunter in cultured and primary neuroendocrine cells and its channel functions are essential to proper granule maturation. Intragranular pH measurements and cargo maturation assays revealed that normal granular acidification, proinsulin-insulin conversion, and dopamine-loading in neuroendocrine cells all rely on functional CHGB+ channels. Primary β-cells from Chgb-/- mice exhibited persistent granule deacidification, which suffices to uplift plasma proinsulin level, diminish glucose-induced 2nd-phase insulin secretion and dwindle monoamine content in chromaffin granules from the knockout mice. Data from targeted genetic manipulations, dominant negativity of a deletion mutant lacking channel-forming parts and tests of CLC-3/5 and ANO-1/2 all exclude CHGB-less channels from anion shunting in secretory granules. The highly conserved CHGB+ channels thus function in regulated secretory pathways in neuronal, endocrine, exocrine and stem cells of probably all vertebrates.
Collapse
Affiliation(s)
- Gaya P Yadav
- Departments of Microbiology and Cell Science, and Medicinal Chemistry, University of Florida, Gainesville, FL 32611, USA; Departments of Materials Design and Innovation and HWI, State University of New York at Buffalo, Buffalo, NY 14201, USA; Currently at the Department of Biochemistry & Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, TX 77843, USA
| | - Mani Annamalai
- Department of Pathology, College of Medicine, University of Florida, 1275 Center Drive, Gainesville, FL 32610, USA
| | - D Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32610, USA
| | - Lina Cui
- Department of Medicinal Chemistry, University of Florida, 1275 Center Drive, Gainesville, FL 32611, USA
| | - Clayton Mathews
- Department of Pathology, College of Medicine, University of Florida, 1275 Center Drive, Gainesville, FL 32610, USA
| | - Qiu-Xing Jiang
- Research Unit in Intelligent Utilization of Marine Biomacromolecules and Marine Cryo-EM Center, Laoshan Laboratory, Qingdao, Shandong 266200, China; Departments of Microbiology and Cell Science, and Medicinal Chemistry, University of Florida, Gainesville, FL 32611, USA; Departments of Materials Design and Innovation and HWI, State University of New York at Buffalo, Buffalo, NY 14201, USA; Department of Medicinal Chemistry, University of Florida, 1275 Center Drive, Gainesville, FL 32611, USA; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
2
|
Planells-Cases R, Vorobeva V, Kar S, Schmitt FW, Schulte U, Schrecker M, Hite RK, Fakler B, Jentsch TJ. Endosomal chloride/proton exchangers need inhibitory TMEM9 β-subunits for regulation and prevention of disease-causing overactivity. Nat Commun 2025; 16:3117. [PMID: 40169677 PMCID: PMC11962092 DOI: 10.1038/s41467-025-58546-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/20/2025] [Indexed: 04/03/2025] Open
Abstract
The function of endosomes critically depends on their ion homeostasis. A crucial role of luminal Cl-, in addition to that of H+, is increasingly recognized. Both ions are transported by five distinct endolysosomal CLC chloride/proton exchangers. Dysfunction of each of these transporters entails severe disease. Here we identified TMEM9 and TMEM9B as obligatory β-subunits for endosomal ClC-3, ClC-4, and ClC-5. Mice lacking both β-subunits displayed severely reduced levels of all three CLCs and died embryonically or shortly after birth. TMEM9 proteins regulate trafficking of their partners. Surprisingly, they also strongly inhibit CLC ion transport. Tonic inhibition enables the regulation of CLCs and prevents toxic Cl- accumulation and swelling of endosomes. Inhibition requires a carboxy-terminal TMEM9 domain that interacts with CLCs at multiple sites. Disease-causing CLCN mutations that weaken inhibition by TMEM9 proteins cause a pathogenic gain of ion transport. Our work reveals the need to suppress, in a regulated manner, endolysosomal chloride/proton exchange. Several aspects of endosomal ion transport must be revised.
Collapse
Affiliation(s)
- Rosa Planells-Cases
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Viktoriia Vorobeva
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Graduate Program of the Free University Berlin, Berlin, Germany
| | - Sumanta Kar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Franziska W Schmitt
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Graduate Program of the Humboldt University Berlin, Berlin, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Logopharm GmbH, March-Buchheim, Breisgau, Germany
| | - Marina Schrecker
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Yu M, Deng Z, Wang K, Zhang X. Chloride channel-3 regulates sodium-iodide symporter expression and localization in the thyroids of mice on a high-iodide diet. Front Nutr 2025; 12:1537221. [PMID: 40191796 PMCID: PMC11968397 DOI: 10.3389/fnut.2025.1537221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/21/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Certain chloride channels and H+/Cl- antiporters, such as chloride channel 3 (ClC-3), are expressed at the apical pole of thyrocytes, facilitating iodide (I-) efflux. However, the relationship between ClC-3 and I- uptake remains unclear. Additionally, whether ClC-3 and reactive oxygen species (ROS) regulate sodium-iodide symporter (NIS) expression and localization under excessive I- conditions remain underexplored. Methods The expression and localization of ClC-3 in wild-type (WT), ClC-3 overexpression (OE) and ClC-3 knockout (KO) were detected by Western blotting (WB), immunohistochemistry and immunofluorescence, respectively. The 131I uptake of the thyroid was measured by thyroid function instrument. The expression and localization of NIS in normal and high iodide diet were detected, respectively. The role of ROS in the regulation of NIS by ClC-3 was observed. Results ClC-3 expressions in thyrocytes were primarily localized to the basolateral and lateral membranes, in both ClC-3 OE and WT mice groups under normal I- conditions. I- uptake was significantly higher in WT and ClC-3 OE mice than in the ClC-3 KO mice under normal I- conditions. The ClC-3 OE group exhibited a higher number of thyroid follicles with elevated NIS expression in the basolateral and lateral membranes than the WT and KO groups. In the ClC-3 KO group, the NIS was predominantly localized in the cytoplasm. In the WT group, NIS fluorescence intensity at the basolateral and lateral membranes increased after 48 h of excessive iodide exposure compared to 24 h. In ClC-3 OE mice, NIS, initially localized intracellularly after 24 h of excessive iodide exposure, was almost fully reintegrated into the basolateral and lateral membranes after 48 h. In contrast, in ClC-3 KO mice, NIS remained primarily cytoplasmic, with no significant change between 24 h and 48 h of I- excess. ROS fluorescence intensity was significantly higher in the ClC-3 OE group than those in the WT and KO groups after 24 h of I- excess. Pre-inhibition of ROS showed no significant differences in NIS localization or expression among the three groups after 24 h of I- excess. Discussion These findings suggest that ClC-3 may regulate NIS function via ROS signaling under excessive iodide conditions.
Collapse
Affiliation(s)
- Meisheng Yu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiqin Deng
- Hand and Foot Surgery Department, The First Hospital Affiliated to Shenzhen University, Shenzhen, China
| | - Ke Wang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Xiangzhong Zhang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Schrecker M, Son Y, Planells-Cases R, Kar S, Vorobeva V, Schulte U, Fakler B, Jentsch TJ, Hite RK. Structural basis of ClC-3 inhibition by TMEM9 and PI(3,5)P 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640562. [PMID: 40093093 PMCID: PMC11908120 DOI: 10.1101/2025.02.28.640562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The trafficking and activity of endosomes relies on the exchange of chloride ions and protons by members of the CLC family of chloride channels and transporters, whose mutations are associated with numerous diseases. Despite their critical roles, the mechanisms by which CLC transporters are regulated are poorly understood. Here, we show that two related accessory β-subunits, TMEM9 and TMEM9B, directly interact with ClC-3, -4 and -5. Cryo-EM structures reveal that TMEM9 inhibits ClC-3 by sealing the cytosolic entrance to the Cl- ion pathway. Unexpectedly, we find that PI(3,5)P2 stabilizes the interaction between TMEM9 and ClC-3 and is required for proper regulation of ClC-3 by TMEM9. Collectively, our findings reveal that TMEM9 and PI(3,5)P2 collaborate to regulate endosomal ion homeostasis by modulating the activity of ClC-3.
Collapse
Affiliation(s)
- Marina Schrecker
- Structural Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Yeeun Son
- Structural Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- BCMB Allied Program, Weill Cornell Graduate School; New York, NY, USA
| | - Rosa Planells-Cases
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin, Germany
| | - Sumanta Kar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin, Germany
| | - Viktoriia Vorobeva
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin, Germany
- Graduate program of the Free University; Berlin, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg; Freiburg, Germany
- Logopharm GmbH; March-Buchheim, Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg; Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS; Freiburg, Germany
| | - Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin, Germany
- Neurocure Cluster of Excellence, Charité Universitätsmedizin; Berlin, Germany
| | - Richard K. Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| |
Collapse
|
5
|
Gonzalez-Lozano MA, Schmid EW, Whelan EM, Jiang Y, Paulo JA, Walter JC, Harper JW. EndoMAP.v1, a Structural Protein Complex Landscape of Human Endosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636106. [PMID: 39975243 PMCID: PMC11839024 DOI: 10.1101/2025.02.07.636106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Early/sorting endosomes are dynamic organelles that play key roles in proteome control by triaging plasma membrane proteins for either recycling or degradation in the lysosome1,2,3. These events are coordinated by numerous transiently-associated regulatory complexes and integral membrane components that contribute to organelle identity during endosome maturation4. While a subset of the several hundred protein components and cargoes known to associate with endosomes have been studied at the biochemical and/or structural level, interaction partners and higher order molecular assemblies for many endosomal components remain unknown. Here, we combine cross-linking and native gel mass spectrometry5-8 of purified early endosomes with AlphaFold9,10 and computational analysis to create a systematic human endosomal structural interactome. We present dozens of structural models for endosomal protein pairs and higher order assemblies supported by experimental cross-links from their native subcellular context, suggesting structural mechanisms for previously reported regulatory processes. Using induced neurons, we validate two candidate complexes whose interactions are supported by crosslinks and structural predictions: TMEM230 as a subunit of ATP8/11 lipid flippases11 and TMEM9/9B as subunits of CLCN3/4/5 chloride-proton antiporters12. This resource and its accompanying structural network viewer provide an experimental framework for understanding organellar structural interactomes and large-scale validation of structural predictions.
Collapse
Affiliation(s)
- Miguel A Gonzalez-Lozano
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ernst W Schmid
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA, USA
| | - Enya Miguel Whelan
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Yizhi Jiang
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Initiative in Trafficking and Neurogeneration, Department of Cell Biology, Harvard Medical School, Boston MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
6
|
Yadav GP, Annamalai M, Hagan DW, Cui L, Mathews C, Jiang QX. Molecular requirements of chromogranin B for the long-sought anion shunter of regulated secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630220. [PMID: 39763853 PMCID: PMC11703155 DOI: 10.1101/2024.12.24.630220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
All eukaryotes utilize regulated secretion to release molecular signals packaged in secretory granules for local and remote signaling. An anion shunt conductance was first suggested in secretory granules of bovine chromaffin cells nearly five decades ago. Biochemical identity of this conductance remains undefined. CLC-3, an intracellular Cl - /H + exchanger, was proposed as a candidate sixteen years ago, which, however, was contested experimentally. Here, we show that chromogranin B (CHGB) makes the kernel of the long-sought anion shunter in cultured and primary neuroendocrine cells and its channel functions are essential to proper granule maturation. Intragranular pH measurements and cargo maturation assays revealed that normal granular acidification, proinsulin-insulin conversion, and dopamine-loading in neuroendocrine cells all rely on functional CHGB+ channels. Primary β-cells from Chgb-/- mice exhibited persistent granule deacidification, which suffices to uplift plasma proinsulin level, diminish glucose-induced 2 nd -phase insulin secretion and dwindle monoamine content in chromaffin granules from the knockout mice. Data from targeted genetic manipulations, dominant negativity of a deletion mutant lacking channel-forming parts and tests of CLC-3/5 and ANO-1/2 all exclude CHGB -less channels from anion shunting in secretory granules. The highly conserved CHGB+ channels thus function in regulated secretory pathways in neuronal, endocrine, exocrine and stem cells of probably all vertebrates. HIGHLIGHTS Loss of CHGB channel functions impairs secretory granule acidification in neuroendocrine cells, which necessitates anion shunt conduction. CHGBΔMIF, a mutant unable to form a functional Cl - channel, exerts negative dominance on endogenous CHGB and results in granule deacidification in cultured cells. Neither CLC-3 & -5 nor ANO-1 & -2 participate in the CHGB-mediated granule acidification. Clcn3 knockout effects on regulated secretion can be attributed to its functions in endosomal and endolysosomal compartments. Primary Chgb-/- β-cells exhibit persistent granule deacidification, presenting a unifying mechanism for disparate mouse phenotypes: hyperproinsulinemia, near abrogation of 2 nd phase insulin release after glucose challenge and diminution of monoamine contents in chromaffin granules.
Collapse
|
7
|
Festa M, Coppola MA, Angeli E, Tettey-Matey A, Giusto A, Mazza I, Gatta E, Barbieri R, Picollo A, Gavazzo P, Pusch M, Picco C, Sbrana F. TMEM9B Regulates Endosomal ClC-3 and ClC-4 Transporters. Life (Basel) 2024; 14:1034. [PMID: 39202776 PMCID: PMC11355779 DOI: 10.3390/life14081034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
The nine-member CLC gene family of Cl- chloride-transporting membrane proteins is divided into plasma membrane-localized Cl- channels and endo-/lysosomal Cl-/H+ antiporters. Accessory proteins have been identified for ClC-K and ClC-2 channels and for the lysosomal ClC-7, but not the other CLCs. Here, we identified TMEM9 Domain Family Member B (TMEM9B), a single-span type I transmembrane protein of unknown function, to strongly interact with the neuronal endosomal ClC-3 and ClC-4 transporters. Co-expression of TMEM9B with ClC-3 or ClC-4 dramatically reduced transporter activity in Xenopus oocytes and transfected HEK cells. For ClC-3, TMEM9B also induced a slow component in the kinetics of the activation time course, suggesting direct interaction. Currents mediated by ClC-7 were hardly affected by TMEM9B, and ClC-1 currents were only slightly reduced, demonstrating specific interaction with ClC-3 and ClC-4. We obtained strong evidence for direct interaction by detecting significant Förster Resonance Energy Transfer (FRET), exploiting fluorescence lifetime microscopy-based (FLIM-FRET) techniques between TMEM9B and ClC-3 and ClC-4, but hardly any FRET with ClC-1 or ClC-7. The discovery of TMEM9B as a novel interaction partner of ClC-3 and ClC-4 might have important implications for the physiological role of these transporters in neuronal endosomal homeostasis and for a better understanding of the pathological mechanisms in CLCN3- and CLCN4-related pathological conditions.
Collapse
Affiliation(s)
- Margherita Festa
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy; (M.F.); (M.A.C.); (A.T.-M.); (A.G.); (I.M.); (R.B.); (A.P.); (P.G.)
| | - Maria Antonietta Coppola
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy; (M.F.); (M.A.C.); (A.T.-M.); (A.G.); (I.M.); (R.B.); (A.P.); (P.G.)
| | - Elena Angeli
- DIFI Lab, Dipartimento di Fisica, Università di Genova, 16146 Genova, Italy; (E.A.); (E.G.)
| | - Abraham Tettey-Matey
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy; (M.F.); (M.A.C.); (A.T.-M.); (A.G.); (I.M.); (R.B.); (A.P.); (P.G.)
| | - Alice Giusto
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy; (M.F.); (M.A.C.); (A.T.-M.); (A.G.); (I.M.); (R.B.); (A.P.); (P.G.)
| | - Irene Mazza
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy; (M.F.); (M.A.C.); (A.T.-M.); (A.G.); (I.M.); (R.B.); (A.P.); (P.G.)
| | - Elena Gatta
- DIFI Lab, Dipartimento di Fisica, Università di Genova, 16146 Genova, Italy; (E.A.); (E.G.)
| | - Raffaella Barbieri
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy; (M.F.); (M.A.C.); (A.T.-M.); (A.G.); (I.M.); (R.B.); (A.P.); (P.G.)
| | - Alessandra Picollo
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy; (M.F.); (M.A.C.); (A.T.-M.); (A.G.); (I.M.); (R.B.); (A.P.); (P.G.)
| | - Paola Gavazzo
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy; (M.F.); (M.A.C.); (A.T.-M.); (A.G.); (I.M.); (R.B.); (A.P.); (P.G.)
| | - Michael Pusch
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy; (M.F.); (M.A.C.); (A.T.-M.); (A.G.); (I.M.); (R.B.); (A.P.); (P.G.)
| | - Cristiana Picco
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy; (M.F.); (M.A.C.); (A.T.-M.); (A.G.); (I.M.); (R.B.); (A.P.); (P.G.)
| | - Francesca Sbrana
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy; (M.F.); (M.A.C.); (A.T.-M.); (A.G.); (I.M.); (R.B.); (A.P.); (P.G.)
| |
Collapse
|
8
|
Wan Y, Guo S, Zhen W, Xu L, Chen X, Liu F, Shen Y, Liu S, Hu L, Wang X, Ye F, Wang Q, Wen H, Yang F. Structural basis of adenine nucleotides regulation and neurodegenerative pathology in ClC-3 exchanger. Nat Commun 2024; 15:6654. [PMID: 39107281 PMCID: PMC11303396 DOI: 10.1038/s41467-024-50975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
The ClC-3 chloride/proton exchanger is both physiologically and pathologically critical, as it is potentiated by ATP to detect metabolic energy level and point mutations in ClC-3 lead to severe neurodegenerative diseases in human. However, why this exchanger is differentially modulated by ATP, ADP or AMP and how mutations caused gain-of-function remains largely unknow. Here we determine the high-resolution structures of dimeric wildtype ClC-3 in the apo state and in complex with ATP, ADP and AMP, and the disease-causing I607T mutant in the apo and ATP-bounded state by cryo-electron microscopy. In combination with patch-clamp recordings and molecular dynamic simulations, we reveal how the adenine nucleotides binds to ClC-3 and changes in ion occupancy between apo and ATP-bounded state. We further observe I607T mutation induced conformational changes and augments in current. Therefore, our study not only lays the structural basis of adenine nucleotides regulation in ClC-3, but also clearly indicates the target region for drug discovery against ClC-3 mediated neurodegenerative diseases.
Collapse
Affiliation(s)
- Yangzhuoqun Wan
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Shuangshuang Guo
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Wenxuan Zhen
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Lizhen Xu
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Xiaoying Chen
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Fangyue Liu
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Shen
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuangshuang Liu
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Lidan Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | | | | | | | - Han Wen
- DP Technology, Beijing, China.
- Institute for Advanced Algorithms Research, Shanghai, China.
- State Key Laboratory of Medical Proteomics, Shanghai, China.
- AI for Science Institute, Beijing, China.
- National Key Laboratory of Lead Druggability Research, Beijing, China.
| | - Fan Yang
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
He H, Li X, Guzman GA, Bungert-Plümke S, Franzen A, Lin X, Zhu H, Peng G, Zhang H, Yu Y, Sun S, Huang Z, Zhai Q, Chen Z, Peng J, Guzman RE. Expanding the genetic and phenotypic relevance of CLCN4 variants in neurodevelopmental condition: 13 new patients. J Neurol 2024; 271:4933-4948. [PMID: 38758281 DOI: 10.1007/s00415-024-12383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES CLCN4 variations have recently been identified as a genetic cause of X-linked neurodevelopmental disorders. This study aims to broaden the phenotypic spectrum of CLCN4-related condition and correlate it with functional consequences of CLCN4 variants. METHODS We described 13 individuals with CLCN4-related neurodevelopmental disorder. We analyzed the functional consequence of the unreported variants using heterologous expression, biochemistry, confocal fluorescent microscopy, patch-clamp electrophysiology, and minigene splicing assay. RESULTS We identified five novel (p.R41W, p.L348V, p.G480R, p.R603W, c.1576 + 5G > A) and three known (p.T203I, p.V275M, p.A555V) pathogenic CLCN4 variants in 13 Chinese patients. The p.V275M variant is found at high frequency and seen in four unrelated individuals. All had global developmental delay (GDD)/intellectual disability (ID). Seizures were present in eight individuals, and 62.5% of them developed refractory epilepsy. Five individuals without seizures showed moderate to severe GDD/ID. Developmental delay precedes seizure onset in most patients. The variants p.R41W, p.L348V, and p.R603W compromise the anion/exchange function of ClC-4. p.R41W partially impairs ClC-3/ClC-4 association. p.G480R reduces ClC-4 expression levels and impairs the heterodimerization with ClC-3. The c.1576 + 5G > A variant causes 22 bp deletion of exon 10. CONCLUSIONS We further define and broaden the clinical and mutational spectrum of CLCN4-related neurodevelopmental conditions. The p.V275M variant may be a potential hotspot CLCN4 variant in Chinese patients. The five novel variants cause loss of function of ClC-4. Transport dysfunction, protein instability, intracellular trafficking defect, or failure of ClC-4 to oligomerize may contribute to the pathophysiological events leading to CLCN4-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Hailan He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyi Li
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - G A Guzman
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Jülich Research Center, Jülich, Germany
| | - Stefanie Bungert-Plümke
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - Arne Franzen
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - XueQin Lin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Hongmin Zhu
- Department of Rehabilitation, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Guilan Peng
- Department of Neurology, Xiamen Maternal and Child Health Care Hospital, Xiamen, China
| | - Hongwei Zhang
- Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Yonglin Yu
- Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Suzhen Sun
- Department of Pediatric Neurology, Hebei Children's Hospital, Hebei Medical University, Shijiazhuang, China
| | - Zhongqin Huang
- Department of Neurology, Xiamen Maternal and Child Health Care Hospital, Xiamen, China
| | - Qiongxiang Zhai
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Zheng Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.
| | - Raul E Guzman
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany.
| |
Collapse
|
10
|
Sahly AN, Sierra-Marquez J, Bungert-Plümke S, Franzen A, Mougharbel L, Berrahmoune S, Dassi C, Poulin C, Srour M, Guzman RE, Myers KA. Genotype-phenotype correlation in CLCN4-related developmental and epileptic encephalopathy. Hum Genet 2024; 143:667-681. [PMID: 38578438 DOI: 10.1007/s00439-024-02668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
CLCN4-related disorder is a rare X-linked neurodevelopmental condition with a pathogenic mechanism yet to be elucidated. CLCN4 encodes the vesicular 2Cl-/H+ exchanger ClC-4, and CLCN4 pathogenic variants frequently result in altered ClC-4 transport activity. The precise cellular and molecular function of ClC-4 remains unknown; however, together with ClC-3, ClC-4 is thought to have a role in the ion homeostasis of endosomes and intracellular trafficking. We reviewed our research database for patients with CLCN4 variants and epilepsy, and performed thorough phenotyping. We examined the functional properties of the variants in mammalian cells using patch-clamp electrophysiology, protein biochemistry, and confocal fluorescence microscopy. Three male patients with developmental and epileptic encephalopathy were identified, with differing phenotypes. Patients #1 and #2 had normal growth parameters and normal-appearing brains on MRI, while patient #3 had microcephaly, microsomia, complete agenesis of the corpus callosum and cerebellar and brainstem hypoplasia. The p.(Gly342Arg) variant of patient #1 significantly impaired ClC-4's heterodimerization capability with ClC-3 and suppressed anion currents. The p.(Ile549Leu) variant of patient #2 and p.(Asp89Asn) variant of patient #3 both shift the voltage dependency of transport activation by 20 mV to more hyperpolarizing potentials, relative to the wild-type, with p.(Asp89Asn) favouring higher transport activity. We concluded that p.(Gly342Arg) carried by patient #1 and the p.(Ile549Leu) expressed by patient #2 impair ClC-4 transport function, while the p.(Asp89Asn) variant results in a gain-of-transport function; all three variants result in epilepsy and global developmental impairment, but with differences in epilepsy presentation, growth parameters, and presence or absence of brain malformations.
Collapse
Affiliation(s)
- Ahmed N Sahly
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
- Department of Neurosciences, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Juan Sierra-Marquez
- Institute of Biological Information Processing; Biological Molecular and Cell Physiology (IBI-1), Molecular and Cell Physiology, Research Center Jülich , GmbH Leo-Brandt-Strasse 1, 52428, Jülich, Germany
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie Bungert-Plümke
- Institute of Biological Information Processing; Biological Molecular and Cell Physiology (IBI-1), Molecular and Cell Physiology, Research Center Jülich , GmbH Leo-Brandt-Strasse 1, 52428, Jülich, Germany
| | - Arne Franzen
- Institute of Biological Information Processing; Biological Molecular and Cell Physiology (IBI-1), Molecular and Cell Physiology, Research Center Jülich , GmbH Leo-Brandt-Strasse 1, 52428, Jülich, Germany
| | - Lina Mougharbel
- Research Institute of the McGill University Medical Centre, Montreal, QC, Canada
| | - Saoussen Berrahmoune
- Research Institute of the McGill University Medical Centre, Montreal, QC, Canada
| | - Christelle Dassi
- Research Institute of the McGill University Medical Centre, Montreal, QC, Canada
| | - Chantal Poulin
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, PQ, H4A 3J1, Canada
| | - Myriam Srour
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
- Research Institute of the McGill University Medical Centre, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, PQ, H4A 3J1, Canada
| | - Raul E Guzman
- Institute of Biological Information Processing; Biological Molecular and Cell Physiology (IBI-1), Molecular and Cell Physiology, Research Center Jülich , GmbH Leo-Brandt-Strasse 1, 52428, Jülich, Germany.
| | - Kenneth A Myers
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada.
- Research Institute of the McGill University Medical Centre, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, PQ, H4A 3J1, Canada.
| |
Collapse
|
11
|
Nutter CA, Kidd BM, Carter HA, Hamel JI, Mackie PM, Kumbkarni N, Davenport ML, Tuyn DM, Gopinath A, Creigh PD, Sznajder ŁJ, Wang ET, Ranum LPW, Khoshbouei H, Day JW, Sampson JB, Prokop S, Swanson MS. Choroid plexus mis-splicing and altered cerebrospinal fluid composition in myotonic dystrophy type 1. Brain 2023; 146:4217-4232. [PMID: 37143315 PMCID: PMC10545633 DOI: 10.1093/brain/awad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Myotonic dystrophy type 1 is a dominantly inherited multisystemic disease caused by CTG tandem repeat expansions in the DMPK 3' untranslated region. These expanded repeats are transcribed and produce toxic CUG RNAs that sequester and inhibit activities of the MBNL family of developmental RNA processing factors. Although myotonic dystrophy is classified as a muscular dystrophy, the brain is also severely affected by an unusual cohort of symptoms, including hypersomnia, executive dysfunction, as well as early onsets of tau/MAPT pathology and cerebral atrophy. To address the molecular and cellular events that lead to these pathological outcomes, we recently generated a mouse Dmpk CTG expansion knock-in model and identified choroid plexus epithelial cells as particularly affected by the expression of toxic CUG expansion RNAs. To determine if toxic CUG RNAs perturb choroid plexus functions, alternative splicing analysis was performed on lateral and hindbrain choroid plexi from Dmpk CTG knock-in mice. Choroid plexus transcriptome-wide changes were evaluated in Mbnl2 knockout mice, a developmental-onset model of myotonic dystrophy brain dysfunction. To determine if transcriptome changes also occurred in the human disease, we obtained post-mortem choroid plexus for RNA-seq from neurologically unaffected (two females, three males; ages 50-70 years) and myotonic dystrophy type 1 (one female, three males; ages 50-70 years) donors. To test that choroid plexus transcriptome alterations resulted in altered CSF composition, we obtained CSF via lumbar puncture from patients with myotonic dystrophy type 1 (five females, five males; ages 35-55 years) and non-myotonic dystrophy patients (three females, four males; ages 26-51 years), and western blot and osmolarity analyses were used to test CSF alterations predicted by choroid plexus transcriptome analysis. We determined that CUG RNA induced toxicity was more robust in the lateral choroid plexus of Dmpk CTG knock-in mice due to comparatively higher Dmpk and lower Mbnl RNA levels. Impaired transitions to adult splicing patterns during choroid plexus development were identified in Mbnl2 knockout mice, including mis-splicing previously found in Dmpk CTG knock-in mice. Whole transcriptome analysis of myotonic dystrophy type 1 choroid plexus revealed disease-associated RNA expression and mis-splicing events. Based on these RNA changes, predicted alterations in ion homeostasis, secretory output and CSF composition were confirmed by analysis of myotonic dystrophy type 1 CSF. Our results implicate choroid plexus spliceopathy and concomitant alterations in CSF homeostasis as an unappreciated contributor to myotonic dystrophy type 1 CNS pathogenesis.
Collapse
Affiliation(s)
- Curtis A Nutter
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Benjamin M Kidd
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Helmut A Carter
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Johanna I Hamel
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA
| | - Philip M Mackie
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nayha Kumbkarni
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Mackenzie L Davenport
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Dana M Tuyn
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Adithya Gopinath
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Peter D Creigh
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Laura P W Ranum
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, McKnight Brain Institute and the Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John W Day
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Jacinda B Sampson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Stefan Prokop
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute and the Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
12
|
Coppola MA, Tettey-Matey A, Imbrici P, Gavazzo P, Liantonio A, Pusch M. Biophysical Aspects of Neurodegenerative and Neurodevelopmental Disorders Involving Endo-/Lysosomal CLC Cl -/H + Antiporters. Life (Basel) 2023; 13:1317. [PMID: 37374100 DOI: 10.3390/life13061317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Endosomes and lysosomes are intracellular vesicular organelles with important roles in cell functions such as protein homeostasis, clearance of extracellular material, and autophagy. Endolysosomes are characterized by an acidic luminal pH that is critical for proper function. Five members of the gene family of voltage-gated ChLoride Channels (CLC proteins) are localized to endolysosomal membranes, carrying out anion/proton exchange activity and thereby regulating pH and chloride concentration. Mutations in these vesicular CLCs cause global developmental delay, intellectual disability, various psychiatric conditions, lysosomal storage diseases, and neurodegeneration, resulting in severe pathologies or even death. Currently, there is no cure for any of these diseases. Here, we review the various diseases in which these proteins are involved and discuss the peculiar biophysical properties of the WT transporter and how these properties are altered in specific neurodegenerative and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Maria Antonietta Coppola
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | | | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Paola Gavazzo
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Michael Pusch
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy
- RAISE Ecosystem, 16149 Genova, Italy
| |
Collapse
|
13
|
Nedelyaeva OI, Popova LG, Khramov DE, Volkov VS, Balnokin YV. Chloride Channel Family in the Euhalophyte Suaeda altissima (L.) Pall: Cloning of Novel Members SaCLCa2 and SaCLCc2, General Characterization of the Family. Int J Mol Sci 2023; 24:ijms24020941. [PMID: 36674457 PMCID: PMC9867446 DOI: 10.3390/ijms24020941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
CLC family genes, comprising anion channels and anion/H+ antiporters, are widely represented in nearly all prokaryotes and eukaryotes. CLC proteins carry out a plethora of functions at the cellular level. Here the coding sequences of the SaCLCa2 and SaCLCc2 genes, homologous to Arabidopsis thaliana CLCa and CLCc, were cloned from the euhalophyte Suaeda altissima (L.) Pall. Both the genes cloned belong to the CLC family as supported by the presence of the key conserved motifs and glutamates inherent for CLC proteins. SaCLCa2 and SaCLCc2 were heterologously expressed in Saccharomyces cerevisiae GEF1 disrupted strain, Δgef1, where GEF1 encodes the only CLC family protein, the Cl− transporter Gef1p, in undisrupted strains of yeast. The Δgef1 strain is characterized by inability to grow on YPD yeast medium containing Mn2+ ions. Expression of SaCLCa2 in Δgef1 cells growing on this medium did not rescue the growth defect phenotype of the mutant. However, a partial growth restoration occurred when the Δgef1 strain was transformed by SaCLCa2(C544T), the gene encoding protein in which proline, specific for nitrate, was replaced with serine, specific for chloride, in the selectivity filter. Unlike SaCLCa2, expression of SaCLCc2 in Δgef1 resulted in a partial growth restoration under these conditions. Analysis of SaCLCa2 and SaCLCc2 expression in the euhalophyte Suaeda altissima (L.) Pall by quantitative real-time PCR (qRT-PCR) under different growth conditions demonstrated stimulation of SaCLCa2 expression by nitrate and stimulation of SaCLCc2 expression by chloride. The results of yeast complementation assay, the presence of both the “gating” and “proton” glutamates in aa sequences of both the proteins, as well results of the gene expression in euhalophyte Suaeda altissima (L.) Pall suggest that SaCLCa2 and SaCLCc2 function as anion/H+ antiporters with nitrate and chloride specificities, respectively. The general bioinformatic overview of seven CLC genes cloned from euhalophyte Suaeda altissima is given, together with results on their expression in roots and leaves under different levels of salinity.
Collapse
|
14
|
The mechanisms of chromogranin B-regulated Cl- homeostasis. Biochem Soc Trans 2022; 50:1659-1672. [PMID: 36511243 DOI: 10.1042/bst20220435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Chloride is the most abundant inorganic anions in almost all cells and in human circulation systems. Its homeostasis is therefore important for systems physiology and normal cellular activities. This topic has been extensively studied with chloride loaders and extruders expressed in both cell surfaces and intracellular membranes. With the newly discovered, large-conductance, highly selective Cl- channel formed by membrane-bound chromogranin B (CHGB), which differs from all other known anion channels of conventional transmembrane topology, and is distributed in plasma membranes, endomembrane systems, endosomal, and endolysosomal compartments in cells expressing it, we will discuss the potential physiological importance of the CHGB channels to Cl- homeostasis, cellular excitability and volume control, and cation uptake or release at the cellular and subcellular levels. These considerations and CHGB's association with human diseases make the CHGB channel a possible druggable target for future molecular therapeutics.
Collapse
|
15
|
Stark RJ, Nguyen HN, Bacon MK, Rohrbough JC, Choi H, Lamb FS. Chloride Channel-3 (ClC-3) Modifies the Trafficking of Leucine-Rich Repeat-Containing 8A (LRRC8A) Anion Channels. J Membr Biol 2022; 256:125-135. [PMID: 36322172 PMCID: PMC10085862 DOI: 10.1007/s00232-022-00271-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022]
Abstract
Chloride channel-3 (ClC-3) Cl-/H+ antiporters and leucine-rich repeat-containing 8 (LRRC8) family anion channels have both been associated with volume-regulated anion currents (VRACs). VRACs are often altered in ClC-3 null cells but are absent in LRRC8A null cells. To explore the relationship between ClC-3, LRRC8A, and VRAC we localized tagged proteins in human epithelial kidney (HEK293) cells using multimodal microscopy. Expression of ClC-3-GFP induced large multivesicular bodies (MVBs) with ClC-3 in the delimiting membrane. LRRC8A-RFP localized to the plasma membrane and to small cytoplasmic vesicles. Co-expression demonstrated co-localization in small, highly mobile cytoplasmic vesicles that associated with the early endosomal marker Rab5A. However, most of the small LRRC8A-positive vesicles were constrained within large MVBs with abundant ClC-3 in the delimiting membrane. Dominant negative (S34A) Rab5A prevented ClC-3 overexpression from creating enlarged MVBs, while constitutively active (Q79L) Rab5A enhanced this phenotype. Thus, ClC-3 and LRRC8A are endocytosed together but independently sorted in Rab5A MVBs. Subsequently, LRRC8A-labeled vesicles were sorted to MVBs labeled by Rab27A and B exosomal compartment markers, but not to Rab11 recycling endosomes. VRAC currents were significantly larger in ClC-3 null HEK293 cells. This work demonstrates dependence of LRRC8A trafficking on ClC-3 which may explain the association between ClC-3 and VRACs.
Collapse
Affiliation(s)
- Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA
| | - Hong N Nguyen
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA
| | - Matthew K Bacon
- Department of Pediatrics, University of Kentucky, Lexington, KY, 40536, USA
| | - Jeffrey C Rohrbough
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA
| | - Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA
| | - Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA.
| |
Collapse
|
16
|
Sierra-Marquez J, Willuweit A, Schöneck M, Bungert-Plümke S, Gehlen J, Balduin C, Müller F, Lampert A, Fahlke C, Guzman RE. ClC-3 regulates the excitability of nociceptive neurons and is involved in inflammatory processes within the spinal sensory pathway. Front Cell Neurosci 2022; 16:920075. [PMID: 37124866 PMCID: PMC10134905 DOI: 10.3389/fncel.2022.920075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
ClC-3 Cl–/H+ exchangers are expressed in multiple endosomal compartments and likely modify intra-endosomal pH and [Cl–] via the stoichiometrically coupled exchange of two Cl– ions and one H+. We studied pain perception in Clcn3–/– mice and found that ClC-3 not only modifies the electrical activity of peripheral nociceptors but is also involved in inflammatory processes in the spinal cord. We demonstrate that ClC-3 regulates the number of Nav and Kv ion channels in the plasma membrane of dorsal root ganglion (DRG) neurons and that these changes impair the age-dependent decline in excitability of sensory neurons. To distinguish the role of ClC-3 in Cl–/H+ exchange from its other functions in pain perception, we used mice homozygous for the E281Q ClC-3 point mutation (Clcn3E281Q/E281Q), which completely eliminates transport activity. Since ClC-3 forms heterodimers with ClC-4, we crossed these animals with Clcn4–/– to obtain mice completely lacking in ClC-3-associated endosomal chloride–proton transport. The electrical properties of Clcn3E281Q/E281Q/Clcn4–/– DRG neurons were similar to those of wild-type cells, indicating that the age-dependent adjustment of neuronal excitability is independent of ClC-3 transport activity. Both Clcn3–/– and Clcn3E281Q/E281Q/Clcn4–/– animals exhibited microglial activation in the spinal cord, demonstrating that competent ClC-3 transport is needed to maintain glial cell homeostasis. Our findings illustrate how reduced Cl–/H+ exchange contributes to inflammatory responses and demonstrate a role for ClC-3 in the homeostatic regulation of neuronal excitability beyond its function in endosomal ion balance.
Collapse
Affiliation(s)
- Juan Sierra-Marquez
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Antje Willuweit
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Michael Schöneck
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Stefanie Bungert-Plümke
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Jana Gehlen
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Carina Balduin
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Frank Müller
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | | | - Christoph Fahlke
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Raul E. Guzman
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Forschungszentrum Jülich, Jülich, Germany
- *Correspondence: Raul E. Guzman,
| |
Collapse
|
17
|
Jingxuan L, Litian M, Yanyang T, Jianfang F. Knockdown of CLC-3 may improve cognitive impairment caused by diabetic encephalopathy. Diabetes Res Clin Pract 2022; 190:109970. [PMID: 35792204 DOI: 10.1016/j.diabres.2022.109970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/05/2022] [Accepted: 06/16/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Diabetic encephalopathy(DE) is a neurological complication of diabetes, and its pathogenesis is unclear. Current studies indicate that insulin receptors and downstream signaling pathways play a key role in the occurrence and development of DE. Additionally, CLC-3, a member of the CLC family of anion channels and transporters, is closely related to the secretion and processing of insulin. Here, we investigated the changes and putative roles of CLC-3 in diabetic encephalopathy. RESULTS To this aim, we combined lentivirus and adeno-associated virus gene transfer to change the expression level of CLC-3 in the HT-22 hippocampal cell line and hippocampal CA1. We studied the role of CLC-3 in DE through the Morris water maze test.CLC-3 expression increased significantly in HT-22 cells cultured with high glucose and STZ-induced DE model hippocampus. Moreover, Insulin receptor(IR) and downstream PI3K/AKT/GSK3β signaling pathways were also dysfunctional. After knocking down CLC-3, impaired cell proliferation, apoptosis, IR and the downstream PI3K/AKT/GSK3β signaling pathways were significantly improved. However, when CLC-3 was overexpressed, the neurotoxicity induced by high glucose was further aggravated. Rescue experiments found that through the use of inhibitors such as GSK3β, the PI3K/AKT/GSK3β signaling pathways pathway changes with the use of inhibition, and the expression of related downstream signaling molecules such as Tau and p-Tau also changes accordingly. Using adeno-associated virus gene transfer to knock down CLC-3 in the hippocampal CA1 of the DE model, the IR caused by DE and the dysfunction of the downstream PI3K/AKT/GSK3β signaling pathway were significantly improved. In addition, the impaired spatial recognition of DE was partially restored. CONCLUSION Our study proposes that CLC-3, as a key molecule, may regulate insulin receptor signaling and downstream PI3K/AKT/GSK3β signaling pathways and affect the pathogenesis of diabetic encephalopathy.
Collapse
Affiliation(s)
- Lian Jingxuan
- Department of Endocrinology, Xijing Hospital, The Air Force Medical University, Xi'an 710032, China
| | - Ma Litian
- Department of Gastroenterology, Tangdu Hospital, The Air Force Medical University, Xi'an 710038, China
| | - Tu Yanyang
- The Air Force Medical University, Xi'an 710032, China.
| | - Fu Jianfang
- Department of Endocrinology, Xijing Hospital, The Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
18
|
Guzman RE, Sierra-Marquez J, Bungert-Plümke S, Franzen A, Fahlke C. Functional Characterization of CLCN4 Variants Associated With X-Linked Intellectual Disability and Epilepsy. Front Mol Neurosci 2022; 15:872407. [PMID: 35721313 PMCID: PMC9198718 DOI: 10.3389/fnmol.2022.872407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Early/late endosomes, recycling endosomes, and lysosomes together form the endo-lysosomal recycling pathway. This system plays a crucial role in cell differentiation and survival, and dysregulation of the endo-lysosomal system appears to be important in the pathogenesis of neurodevelopmental and neurodegenerative diseases. Each endo-lysosomal compartment fulfils a specific function, which is supported by ion transporters and channels that modify ion concentrations and electrical gradients across endo-lysosomal membranes. CLC-type Cl–/H+ exchangers are a group of endo-lysosomal transporters that are assumed to regulate luminal acidification and chloride concentration in multiple endosomal compartments. Heterodimers of ClC-3 and ClC-4 localize to various internal membranes, from the endoplasmic reticulum and Golgi to recycling endosomes and late endosomes/lysosomes. The importance of ClC-4-mediated ion transport is illustrated by the association of naturally occurring CLCN4 mutations with epileptic encephalopathy, intellectual disability, and behavioral disorders in human patients. However, how these mutations affect the expression, subcellular localization, and function of ClC-4 is insufficiently understood. We here studied 12 CLCN4 variants that were identified in patients with X-linked intellectual disability and epilepsy and were already characterized to some extent in earlier work. We analyzed the consequences of these mutations on ClC-4 ion transport, subcellular trafficking, and heterodimerization with ClC-3 using heterologous expression in mammalian cells, biochemistry, confocal imaging, and whole-cell patch-clamp recordings. The mutations led to a variety of changes in ClC-4 function, ranging from gain/loss of function and impaired heterodimerization with ClC-3 to subtle impairments in transport functions. Our results suggest that even slight functional changes to the endosomal Cl–/H+ exchangers can cause serious neurological symptoms.
Collapse
|
19
|
Gao AYL, Lourdin-De Filippis E, Orlowski J, McKinney RA. Roles of Endomembrane Alkali Cation/Proton Exchangers in Synaptic Function and Neurodevelopmental Disorders. Front Physiol 2022; 13:892196. [PMID: 35547574 PMCID: PMC9081726 DOI: 10.3389/fphys.2022.892196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 12/25/2022] Open
Abstract
Endomembrane alkali cation (Na+, K+)/proton (H+) exchangers (eNHEs) are increasingly associated with neurological disorders. These eNHEs play integral roles in regulating the luminal pH, processing, and trafficking of cargo along the secretory (Golgi and post-Golgi vesicles) and endocytic (early, recycling, and late endosomes) pathways, essential regulatory processes vital for neuronal development and plasticity. Given the complex morphology and compartmentalization of multipolar neurons, the contribution of eNHEs in maintaining optimal pH homeostasis and cargo trafficking is especially significant during periods of structural and functional development and remodeling. While the importance of eNHEs has been demonstrated in a variety of non-neuronal cell types, their involvement in neuronal function is less well understood. In this review, we will discuss their emerging roles in excitatory synaptic function, particularly as it pertains to cellular learning and remodeling. We will also explore their connections to neurodevelopmental conditions, including intellectual disability, autism, and attention deficit hyperactivity disorders.
Collapse
Affiliation(s)
- Andy Y L Gao
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | | | - John Orlowski
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - R Anne McKinney
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
20
|
Zifarelli G, Pusch M, Fong P. Altered voltage-dependence of slowly activating chloride-proton antiport by late endosomal ClC-6 explains distinct neurological disorders. J Physiol 2022; 600:2147-2164. [PMID: 35262198 DOI: 10.1113/jp282737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/01/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Ionic composition and pH within intracellular compartments, such as endo-lysosomes, rely on the activity of chloride/proton transporters including ClC-6. Distinct CLCN6 mutations previously were found in individuals with neurodegenerative disease, and also putatively associated with neuronal ceroidal lipofuscinosis. Limited knowledge of wild-type ClC-6 transport function impedes understanding of mechanisms underlying these conditions. We resolved transient and transport currents that permit measurement of voltage- and pH- dependences, as well as kinetics, for wild-type and disease-associated mutant ClC-6s. These findings define wild-type ClC-6 function robustly, and reveal how alterations of the slow activation gating of the transporter cause different kinds of neurological diseases. ABSTRACT ClC-6 is an intracellularly localized member of the CLC family of chloride transport proteins. It presumably functions in the endo-lysosomal compartment as a chloride-proton antiporter, despite a paucity of biophysical studies in direct support. Observations of lysosomal storage disease, as well as neurodegenerative disorders, emerge with its disruption by knockout or mutation, respectively. An incomplete understanding of wild type ClC-6 function obscures clear mechanistic insight into disease etiology. Here, high-resolution recording protocols that incorporate extreme voltage pulses permit detailed biophysical measurement and analysis of transient capacitive, as well as ionic transport currents. This approach reveals that wild type ClC-6 activation and transport require depolarization to voltages beyond 140 mV. Mutant Y553C associated with early-onset neurodegeneration exerts gain-of-function by shifting the half-maximal voltage for activation to less depolarized voltages. Moreover, we show that the E267A proton glutamate mutant conserves transport currents, albeit reduced. Lastly, the positive shift in activation voltage shown by V580M, a mutant identified in a patient with late- onset lysosomal storage disease, can explain loss-of-function leading to disease. Abstract figure legend CLC transport proteins comprise both channels and transporters. Vesicular CLC transporters function to regulate compartmental ionic homeostasis and acidification. ClC-6 is a vesicular CLC that localizes to the endo-lysosomal compartment. Functional plasma membrane overexpression of GFP-tagged ClC-6 in HEK293 cells surmounted spatial inaccessibility, and rapid whole cell patch recording protocols enabling resolution of fast capacitive transients, as well as ionic transport currents, provided details of wild-type ClC-6 biophysical properties including voltage-dependence, pH-dependence, and kinetics. Clearly defined wild-type ClC-6 function permitted subsequent comparative analysis of mutants, including but not limited to those pertinent to disease. These range from one causing severe, early-onset neurodegeneration, to two variants previously identified in Kufs disease, a late-onset lysosomal storage disease characterized by neuronal ceroid lipofuscinosis. These findings further inform models whereby disruption of ClC-6 biophysical properties set the stage for dysregulated compartmental homeostasis and hence, disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Giovanni Zifarelli
- Institute of Biophysics, CNR, Genoa, Italy.,Present address: Centogene GmbH, Rostock, Germany
| | | | - Peying Fong
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, USA
| |
Collapse
|
21
|
Excess iodide-induced reactive oxygen species elicit iodide efflux via β-tubulin-associated ClC-3 in thyrocytes. Biochem J 2022; 479:629-640. [PMID: 35175311 DOI: 10.1042/bcj20210709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/30/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
Abstract
Iodide (I-) is crucial to thyroid function, and its regulation in thyrocytes involves ion transporters and reactive oxygen species (ROS). However, the extent of 2Cl-/H+ exchanger (ClC-3) involvement in the iodide (I-) efflux from thyrocytes remains unclear. Therefore, we examined the effects of ClC-3 on I- efflux. ClC-3 expression was found to significantly alter the serum TT3 and TT4 concentrations in mice. We further found that excess I- stimulation affected ClC-3 expression, distribution, and I- efflux in FRTL-5 cells. Immunofluorescence analyses indicated that ClC-3 mainly accumulated in the cell membrane and co-localized with β-tubulins after 24 h of excess I- treatment, and that this process depended on ROS production. Thus, ClC-3 may be involved in I- efflux at the apical pole of thyrocytes via excess I--induced ROS production and β-tubulin polymerization. Our results reveal novel insights into the role of ClC-3 in I- transport and thyroid function.
Collapse
|
22
|
Duncan AR, Polovitskaya MM, Gaitán-Peñas H, Bertelli S, VanNoy GE, Grant PE, O’Donnell-Luria A, Valivullah Z, Lovgren AK, England EM, Agolini E, Madden JA, Schmitz-Abe K, Kritzer A, Hawley P, Novelli A, Alfieri P, Colafati GS, Wieczorek D, Platzer K, Luppe J, Koch-Hogrebe M, Abou Jamra R, Neira-Fresneda J, Lehman A, Boerkoel CF, Seath K, Clarke L, van Ierland Y, Argilli E, Sherr EH, Maiorana A, Diel T, Hempel M, Bierhals T, Estévez R, Jentsch TJ, Pusch M, Agrawal PB, Agrawal PB. Unique variants in CLCN3, encoding an endosomal anion/proton exchanger, underlie a spectrum of neurodevelopmental disorders. Am J Hum Genet 2021; 108:1450-1465. [PMID: 34186028 DOI: 10.1016/j.ajhg.2021.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
The genetic causes of global developmental delay (GDD) and intellectual disability (ID) are diverse and include variants in numerous ion channels and transporters. Loss-of-function variants in all five endosomal/lysosomal members of the CLC family of Cl- channels and Cl-/H+ exchangers lead to pathology in mice, humans, or both. We have identified nine variants in CLCN3, the gene encoding CIC-3, in 11 individuals with GDD/ID and neurodevelopmental disorders of varying severity. In addition to a homozygous frameshift variant in two siblings, we identified eight different heterozygous de novo missense variants. All have GDD/ID, mood or behavioral disorders, and dysmorphic features; 9/11 have structural brain abnormalities; and 6/11 have seizures. The homozygous variants are predicted to cause loss of ClC-3 function, resulting in severe neurological disease similar to the phenotype observed in Clcn3-/- mice. Their MRIs show possible neurodegeneration with thin corpora callosa and decreased white matter volumes. Individuals with heterozygous variants had a range of neurodevelopmental anomalies including agenesis of the corpus callosum, pons hypoplasia, and increased gyral folding. To characterize the altered function of the exchanger, electrophysiological analyses were performed in Xenopus oocytes and mammalian cells. Two variants, p.Ile607Thr and p.Thr570Ile, had increased currents at negative cytoplasmic voltages and loss of inhibition by luminal acidic pH. In contrast, two other variants showed no significant difference in the current properties. Overall, our work establishes a role for CLCN3 in human neurodevelopment and shows that both homozygous loss of ClC-3 and heterozygous variants can lead to GDD/ID and neuroanatomical abnormalities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Pankaj B Agrawal
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, MA 02115, USA.
| |
Collapse
|
23
|
He H, Guzman RE, Cao D, Sierra-Marquez J, Yin F, Fahlke C, Peng J, Stauber T. The molecular and phenotypic spectrum of CLCN4-related epilepsy. Epilepsia 2021; 62:1401-1415. [PMID: 33951195 DOI: 10.1111/epi.16906] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE This study was undertaken to expand the phenotypic and genetic spectrum of CLCN4-related epilepsy and to investigate genotype-phenotype correlations. METHODS We systematically reviewed the phenotypic and genetic spectrum of newly diagnosed and previously reported patients with CLCN4-related epilepsy. Three novel variants identified in four patients reported in this study were evaluated through in silico prediction and functional analysis by Western blot, immunofluorescence, and electrophysiological measurements. RESULTS Epilepsy was diagnosed in 54.55% (24/44) of individuals with CLCN4-related disorders and was drug-resistant in most cases. Of 24 patients, 15 had epileptic encephalopathy and four died at an early age; 69.57% of patients had seizure onset within the first year of life. Myoclonic seizures are the most common seizure type, and 56.25% of patients presented multiple seizure types. Notably, seizure outcome was favorable in individuals with only one seizure type. All patients showed intellectual disability, which was severe in 65.22% of patients. Additional common features included language delay, behavioral disorders, and dysmorphic features. Five patients benefitted from treatment with lamotrigine. Most variants, which were mainly missense (79.17%), were inherited (70.83%). Whereas frameshift, intragenic deletion, or inherited variants were associated with milder phenotypes, missense or de novo variants led to more severe phenotypes. All evaluated CLCN4 variants resulted in loss of function with reduced ClC-4 currents. Nonetheless, genotype-phenotype relationships for CLCN4-related epilepsy are not straightforward, as phenotypic variability was observed in recurrent variants and within single families. SIGNIFICANCE Pathogenic CLCN4 variants contribute significantly to the genetic etiology of epilepsy. The phenotypic spectrum of CLCN4-related epilepsy includes drug-resistant seizures, cognitive and language impairment, behavioral disorders, and congenital anomalies. Notably, the mutation type and the number of seizure types correlate with the severity of the phenotype, suggesting its use for clinical prognosis. Lamotrigine can be considered a therapeutic option.
Collapse
Affiliation(s)
- Hailan He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Raul E Guzman
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - Dezhi Cao
- Neurology Department, Shenzhen Children's Hospital, Shenzhen, China
| | - Juan Sierra-Marquez
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Christoph Fahlke
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Tobias Stauber
- Institute of Chemistry and Biochemistry, Berlin Free University, Berlin, Germany.,Department of Human Medicine and Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
24
|
Bose S, He H, Stauber T. Neurodegeneration Upon Dysfunction of Endosomal/Lysosomal CLC Chloride Transporters. Front Cell Dev Biol 2021; 9:639231. [PMID: 33708769 PMCID: PMC7940362 DOI: 10.3389/fcell.2021.639231] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
The regulation of luminal ion concentrations is critical for the function of, and transport between intracellular organelles. The importance of the acidic pH in the compartments of the endosomal-lysosomal pathway has been well-known for decades. Besides the V-ATPase, which pumps protons into their lumen, a variety of ion transporters and channels is involved in the regulation of the organelles' complex ion homeostasis. Amongst these are the intracellular members of the CLC family, ClC-3 through ClC-7. They localize to distinct but overlapping compartments of the endosomal-lysosomal pathway, partially with tissue-specific expression. Functioning as 2Cl−/H+ exchangers, they can support the vesicular acidification and accumulate luminal Cl−. Mutations in the encoding genes in patients and mouse models underlie severe phenotypes including kidney stones with CLCN5 and osteopetrosis or hypopigmentation with CLCN7. Dysfunction of those intracellular CLCs that are expressed in neurons lead to neuronal defects. Loss of endosomal ClC-3, which heteromerizes with ClC-4, results in neurodegeneration. Mutations in ClC-4 are associated with epileptic encephalopathy and intellectual disability. Mice lacking the late endosomal ClC-6 develop a lysosomal storage disease with reduced pain sensitivity. Human gene variants have been associated with epilepsy, and a gain-of-function mutation causes early-onset neurodegeneration. Dysfunction of the lysosomal ClC-7 leads to a lysosomal storage disease and neurodegeneration in mice and humans. Reduced luminal chloride, as well as altered calcium regulation, has been associated with lysosomal storage diseases in general. This review discusses the properties of endosomal and lysosomal Cl−/H+ exchange by CLCs and how various alterations of ion transport by CLCs impact organellar ion homeostasis and function in neurodegenerative disorders.
Collapse
Affiliation(s)
- Shroddha Bose
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Hailan He
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Tobias Stauber
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Department of Human Medicine and Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
25
|
Swelling-activated ClC-3 activity regulates prostaglandin E 2 release in human OUMS-27 chondrocytes. Biochem Biophys Res Commun 2020; 537:29-35. [PMID: 33383561 DOI: 10.1016/j.bbrc.2020.12.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/18/2020] [Indexed: 01/03/2023]
Abstract
Articular chondrocytes are exposed to dynamic osmotic environments during normal joint loading, and thus, require effective volume regulatory mechanisms. A regulatory volume decrease (RVD) is one of the mechanisms for protecting chondrocytes from swelling and damage. Swelling-activated Cl- currents (ICl,swell) are responsible for the RVD, but the molecular identity in chondrocytes is largely unknown. In this study, we reveal that in human OUMS-27 chondrocytes, ICl,swell can be elicited by hypoosmotic stimulation (180 mOsm) and be inhibited by classical Cl- channel blockers, 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid, and be attenuated by siRNA knockdown of ClC-3. Our molecular analyses revealed that ClC-3A is expressed as a major splice variant in both human articular chondrocytes and OUMS-27 cells. The onset and early phase of RVD following hypoosmotic stress in OUMS-27 cells were affected by DIDS and ClC-3 knockdown. Hypoosmotic stimulation caused Ca2+ influx and subsequent release of prostaglandin E2 (PGE2) in OUMS-27 cells, and both of these responses were reduced by DIDS and ClC-3 knockdown. These results strongly suggest that ClC-3 is responsible for ICl,swell and RVD under the hypoosmotic environments. It is likely that ClC-3 is associated with the pathogenesis of cartilage degenerative diseases including osteoarthritis via PGE2 release.
Collapse
|
26
|
Schlesinger PH, Braddock DT, Larrouture QC, Ray EC, Riazanski V, Nelson DJ, Tourkova IL, Blair HC. Phylogeny and chemistry of biological mineral transport. Bone 2020; 141:115621. [PMID: 32858255 PMCID: PMC7771281 DOI: 10.1016/j.bone.2020.115621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
Three physiologically mineralizing tissues - teeth, cartilage and bone - have critical common elements and important evolutionary relationships. Phylogenetically the most ancient densely mineralized tissue is teeth. In jawless fishes without skeletons, tooth formation included epithelial transport of phosphates, a process echoed later in bone physiology. Cartilage and mineralized cartilage are skeletal elements separate from bone, but with metabolic features common to bone. Cartilage mineralization is coordinated with high expression of tissue nonspecific alkaline phosphatase and PHOSPHO1 to harvest available phosphate esters and support mineralization of collagen secreted locally. Mineralization in true bone results from stochastic nucleation of hydroxyapatite crystals within the cross-linked collagen fibrils. Mineral accumulation in dense collagen is, at least in major part, mediated by amorphous aggregates - often called Posner clusters - of calcium and phosphate that are small enough to diffuse into collagen fibrils. Mineral accumulation in membrane vesicles is widely suggested, but does not correlate with a definitive stage of mineralization. Conversely mineral deposition at non-physiologic sites where calcium and phosphate are adequate has been shown to be regulated in large part by pyrophosphate. All of these elements are present in vertebrate bone metabolism. A key biological element of bone formation is an epithelial-like cellular organization which allows control of phosphate, calcium and pH during mineralization.
Collapse
Affiliation(s)
- Paul H Schlesinger
- Dept of Cell Biology, Washington University, Saint Louis, MO, United States of America
| | - Demetrios T Braddock
- Dept. of Pathology, Yale New Haven Hospital, 310 Cedar Street, New Haven, CT, United States of America
| | - Quitterie C Larrouture
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Windmill Road, Oxford OX3 7LD, UK
| | - Evan C Ray
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Vladimir Riazanski
- Dept of Neurobiology, Pharmacology & Physiology, University of Chicago, Chicago, IL, United States of America
| | - Deborah J Nelson
- Dept of Neurobiology, Pharmacology & Physiology, University of Chicago, Chicago, IL, United States of America
| | - Irina L Tourkova
- Veteran's Affairs Medical Center, Pittsburgh PA and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Harry C Blair
- Veteran's Affairs Medical Center, Pittsburgh PA and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
27
|
Catacuzzeno L, Sforna L, Esposito V, Limatola C, Franciolini F. Ion Channels in Glioma Malignancy. Rev Physiol Biochem Pharmacol 2020; 181:223-267. [DOI: 10.1007/112_2020_44] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
ClC-3 induction protects against cerebral ischemia/reperfusion injury through promoting Beclin1/Vps34-mediated autophagy. Hum Cell 2020; 33:1046-1055. [DOI: 10.1007/s13577-020-00406-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023]
|
29
|
Fahlke C. Membrane Physiology and Biophysics-What Remains to Be Done? Front Physiol 2020; 11:892. [PMID: 32848847 PMCID: PMC7399167 DOI: 10.3389/fphys.2020.00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christoph Fahlke
- Forschungszentrum Jülich, Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Jülich, Germany
| |
Collapse
|
30
|
Grieschat M, Guzman RE, Langschwager K, Fahlke C, Alekov AK. Metabolic energy sensing by mammalian CLC anion/proton exchangers. EMBO Rep 2020; 21:e47872. [PMID: 32390228 PMCID: PMC7271328 DOI: 10.15252/embr.201947872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
CLC anion/proton exchangers control the pH and [Cl- ] of the endolysosomal system that is essential for cellular nutrient uptake. Here, we use heterologous expression and whole-cell electrophysiology to investigate the regulation of the CLC isoforms ClC-3, ClC-4, and ClC-5 by the adenylic system components ATP, ADP, and AMP. Our results show that cytosolic ATP and ADP but not AMP and Mg2+ -free ADP enhance CLC ion transport. Biophysical analysis reveals that adenine nucleotides alter the ratio between CLC ion transport and CLC gating charge and shift the CLC voltage-dependent activation. The latter effect is suppressed by blocking the intracellular entrance of the proton transport pathway. We suggest, therefore, that adenine nucleotides regulate the internal proton delivery into the CLC transporter machinery and alter the probability of CLC transporters to undergo silent non-transporting cycles. Our findings suggest that the CBS domains in mammalian CLC transporters serve as energy sensors that regulate vesicular Cl- /H+ exchange by detecting changes in the cytosolic ATP/ADP/AMP equilibrium. Such sensing mechanism links the endolysosomal activity to the cellular metabolic state.
Collapse
Affiliation(s)
| | - Raul E Guzman
- Institute of Complex SystemsZelluläre Biophysik (ICS‐4), Forschungszentrum JülichJülichGermany
| | | | - Christoph Fahlke
- Institute of Complex SystemsZelluläre Biophysik (ICS‐4), Forschungszentrum JülichJülichGermany
| | - Alexi K Alekov
- Institute of NeurophysiologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
31
|
Wilke BU, Kummer KK, Leitner MG, Kress M. Chloride - The Underrated Ion in Nociceptors. Front Neurosci 2020; 14:287. [PMID: 32322187 PMCID: PMC7158864 DOI: 10.3389/fnins.2020.00287] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/12/2020] [Indexed: 01/06/2023] Open
Abstract
In contrast to pain processing neurons in the spinal cord, where the importance of chloride conductances is already well established, chloride homeostasis in primary afferent neurons has received less attention. Sensory neurons maintain high intracellular chloride concentrations through balanced activity of Na+-K+-2Cl- cotransporter 1 (NKCC1) and K+-Cl- cotransporter 2 (KCC2). Whereas in other cell types activation of chloride conductances causes hyperpolarization, activation of the same conductances in primary afferent neurons may lead to inhibitory or excitatory depolarization depending on the actual chloride reversal potential and the total amount of chloride efflux during channel or transporter activation. Dorsal root ganglion (DRG) neurons express a multitude of chloride channel types belonging to different channel families, such as ligand-gated, ionotropic γ-aminobutyric acid (GABA) or glycine receptors, Ca2+-activated chloride channels of the anoctamin/TMEM16, bestrophin or tweety-homolog family, CLC chloride channels and transporters, cystic fibrosis transmembrane conductance regulator (CFTR) as well as volume-regulated anion channels (VRACs). Specific chloride conductances are involved in signal transduction and amplification at the peripheral nerve terminal, contribute to excitability and action potential generation of sensory neurons, or crucially shape synaptic transmission in the spinal dorsal horn. In addition, chloride channels can be modified by a plethora of inflammatory mediators affecting them directly, via protein-protein interaction, or through signaling cascades. Since chloride channels as well as mediators that modulate chloride fluxes are regulated in pain disorders and contribute to nociceptor excitation and sensitization it is timely and important to emphasize their critical role in nociceptive primary afferents in this review.
Collapse
Affiliation(s)
| | | | | | - Michaela Kress
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Weinert S, Gimber N, Deuschel D, Stuhlmann T, Puchkov D, Farsi Z, Ludwig CF, Novarino G, López-Cayuqueo KI, Planells-Cases R, Jentsch TJ. Uncoupling endosomal CLC chloride/proton exchange causes severe neurodegeneration. EMBO J 2020; 39:e103358. [PMID: 32118314 PMCID: PMC7196918 DOI: 10.15252/embj.2019103358] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/02/2023] Open
Abstract
CLC chloride/proton exchangers may support acidification of endolysosomes and raise their luminal Cl− concentration. Disruption of endosomal ClC‐3 causes severe neurodegeneration. To assess the importance of ClC‐3 Cl−/H+ exchange, we now generate Clcn3unc/unc mice in which ClC‐3 is converted into a Cl− channel. Unlike Clcn3−/− mice, Clcn3unc/unc mice appear normal owing to compensation by ClC‐4 with which ClC‐3 forms heteromers. ClC‐4 protein levels are strongly reduced in Clcn3−/−, but not in Clcn3unc/unc mice because ClC‐3unc binds and stabilizes ClC‐4 like wild‐type ClC‐3. Although mice lacking ClC‐4 appear healthy, its absence in Clcn3unc/unc/Clcn4−/− mice entails even stronger neurodegeneration than observed in Clcn3−/− mice. A fraction of ClC‐3 is found on synaptic vesicles, but miniature postsynaptic currents and synaptic vesicle acidification are not affected in Clcn3unc/unc or Clcn3−/− mice before neurodegeneration sets in. Both, Cl−/H+‐exchange activity and the stabilizing effect on ClC‐4, are central to the biological function of ClC‐3.
Collapse
Affiliation(s)
- Stefanie Weinert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Niclas Gimber
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Dorothea Deuschel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Till Stuhlmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Zohreh Farsi
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Carmen F Ludwig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Gaia Novarino
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Karen I López-Cayuqueo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Rosa Planells-Cases
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
33
|
Abstract
Maintenance of the main Golgi functions, glycosylation and sorting, is dependent on the unique Golgi pH microenvironment that is thought to be set by the balance between the rates of V-ATPase-mediated proton pumping and its leakage back to the cytoplasm via an unknown pathway. The concentration of other ions, such as chloride, potassium, calcium, magnesium, and manganese, is also important for Golgi homeostasis and dependent on the transport activity of other ion transporters present in the Golgi membranes. During the last decade, several new disorders have been identified that are caused by, or are associated with, dysregulated Golgi pH and ion homeostasis. Here, we will provide an updated overview on these disorders and the proteins involved. We will also discuss other disorders for which the molecular defects remain currently uncertain but which potentially involve proteins that regulate Golgi pH or ion homeostasis.
Collapse
|
34
|
Schlesinger PH, Blair HC, Beer Stolz D, Riazanski V, Ray EC, Tourkova IL, Nelson DJ. Cellular and extracellular matrix of bone, with principles of synthesis and dependency of mineral deposition on cell membrane transport. Am J Physiol Cell Physiol 2019; 318:C111-C124. [PMID: 31532718 DOI: 10.1152/ajpcell.00120.2019] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone differs from other connective tissues; it is isolated by a layer of osteoblasts that are connected by tight and gap junctions. This allows bone to create dense lamellar type I collagen, control pH, mineral deposition, and regulate water content forming a compact and strong structure. New woven bone formed after degradation of mineralized cartilage is rapidly degraded and resynthesized to impart structural order for local bone strength. Ossification is regulated by thickness of bone units and by patterning via bone morphogenetic receptors including activin, other bone morphogenetic protein receptors, transforming growth factor-β receptors, all part of a receptor superfamily. This superfamily interacts with receptors for additional signals in bone differentiation. Important features of the osteoblast environment were established using recent tools including osteoblast differentiation in vitro. Osteoblasts deposit matrix protein, over 90% type I collagen, in lamellae with orientation alternating parallel or orthogonal to the main stress axis of the bone. Into this organic matrix, mineral is deposited as hydroxyapatite. Mineral matrix matures from amorphous to crystalline hydroxyapatite. This process includes at least two-phase changes of the calcium-phosphate mineral as well as intermediates involving tropocollagen fibrils to form the bone composite. Beginning with initiation of mineral deposition, there is uncertainty regarding cardinal processes, but the driving force is not merely exceeding the calcium-phosphate solubility product. It occurs behind a epithelial-like layer of osteoblasts, which generate phosphate and remove protons liberated during calcium-phosphate salt deposition. The forming bone matrix is discontinuous from the general extracellular fluid. Required adjustment of ionic concentrations and water removal from bone matrix are important details remaining to be addressed.
Collapse
Affiliation(s)
| | - Harry C Blair
- Veterans Affairs Medical Center, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Donna Beer Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vladimir Riazanski
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois
| | - Evan C Ray
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Irina L Tourkova
- Veterans Affairs Medical Center, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Deborah J Nelson
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois
| |
Collapse
|
35
|
Wu Z, Huo Q, Ren L, Dong F, Feng M, Wang Y, Bai Y, Lüscher B, Li ST, Wang GL, Long C, Wang Y, Wu G, Chen G. Gluconate suppresses seizure activity in developing brains by inhibiting CLC-3 chloride channels. Mol Brain 2019; 12:50. [PMID: 31088565 PMCID: PMC6518791 DOI: 10.1186/s13041-019-0465-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/17/2019] [Indexed: 12/03/2022] Open
Abstract
Neonatal seizures are different from adult seizures, and many antiepileptic drugs that are effective in adults often fail to treat neonates. Here, we report that gluconate inhibits neonatal seizure by inhibiting CLC-3 chloride channels. We detect a voltage-dependent outward rectifying Cl− current mediated by CLC-3 Cl− channels in early developing brains but not adult mouse brains. Blocking CLC-3 Cl− channels by gluconate inhibits seizure activity both in neonatal brain slices and in neonatal animals with in vivo EEG recordings. Consistently, neonatal neurons of CLC-3 knockout mice lack the outward rectifying Cl− current and show reduced epileptiform activity upon stimulation. Mechanistically, we demonstrate that activation of CLC-3 Cl− channels alters intracellular Cl− homeostasis and enhances GABA excitatory activity. Our studies suggest that gluconate can suppress neonatal seizure activities through inhibiting CLC-3 Cl− channels in developing brains.
Collapse
Affiliation(s)
- Zheng Wu
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Qingwei Huo
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,South China Research Center for Acupuncture-Moxibustion, Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou Univ Chinese Med, Guangzhou, 510006, China
| | - Liang Ren
- Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Fengping Dong
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mengyang Feng
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yue Wang
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yuting Bai
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Bernhard Lüscher
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sheng-Tian Li
- Bio-X Institutes, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guan-Lei Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yun Wang
- Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Gangyi Wu
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.,School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Gong Chen
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
36
|
Starvation-induced autophagy is up-regulated via ROS-mediated ClC-3 chloride channel activation in the nasopharyngeal carcinoma cell line CNE-2Z. Biochem J 2019; 476:1323-1333. [DOI: 10.1042/bcj20180979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 01/15/2023]
Abstract
Abstract
Nutrient deficiency develops frequently in nasopharyngeal carcinoma cell (CNE-2Z) due to the characteristics of aggregation and uncontrolled proliferation. Therefore, starvation can induce autophagy in these cells. Chloride channel 3 (ClC-3), a member of the chloride channel family, is involved in various biological processes. However, whether ClC-3 plays an important role in starvation-induced autophagy is unclear. In this study, Earle's balanced salt solution (EBSS) was used to induce autophagy in CNE-2Z cells. We found that autophagy and the chloride current induced by EBSS were inhibited by chloride channel blockers. ClC-3 knockdown inhibited the degradation of LC3-II and P62. Furthermore, when reactive oxygen species (ROS) generation was suppressed by antioxidant N-acetyl-l-cysteine (L-NAC) pretreatment, EBSS-induced autophagy was inhibited, and the chloride current was unable to be activated. Nevertheless, ClC-3 knockdown had little effect on ROS levels, indicating that ROS acted upstream of ClC-3 and that both ROS and ClC-3 participated in EBSS-induced autophagy regulation in CNE-2Z.
Collapse
|
37
|
Chen YF, Chen ZX, Wang RH, Shi YW, Xue L, Wang XG, Zhao H. Knockdown of CLC-3 in the hippocampal CA1 impairs contextual fear memory. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:132-145. [PMID: 30025794 DOI: 10.1016/j.pnpbp.2018.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/11/2018] [Accepted: 07/05/2018] [Indexed: 01/01/2023]
Abstract
Previous studies support a critical role of hippocampus in contextual fear memory. Structural and functional alterations of hippocampus occur frequently in posttraumatic stress disorders (PTSD). Recent reports reveal that knockout of CLC-3, a member of the CLC family of anion channels and transporters, leads to neuronal degeneration and loss of hippocampus. However, the role of CLC-3 in contextual fear memory remains unknown. Using adenovirus and adeno-associated virus gene transfer to knockdown CLC-3 in hippocampal CA1, we investigate the role of CLC-3 in contextual fear memory. CLC-3 expression is increased in hippocampal CA1 after formation of long-term contextual fear memory. Knockdown of CLC-3 by adenovirus infusion in hippocampal CA1 significantly attenuates the contextual fear memory, reduces spine density, induces defects of excitatory synaptic ultrastructure showed by the decreased PSD length, PSD thickness and active zone length, and impairs L-LTP induction and maintenance. Knockdown of CLC-3 also induces the synaptic NMDAR subunit composition to an increased GluN2A/GluN2B ratio pattern and reduces the activity of CaMKII-α. Furthermore, selectively knockdown of CLC-3 in excitatory neurons by adeno-associated virus driven from CaMKII-α promoter is sufficient to impair long-term contextual fear memory. These findings highlight that CLC-3 in hippocampal CA1 is necessary for contextual fear memory.
Collapse
Affiliation(s)
- Ye-Fei Chen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Zi-Xiang Chen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Run-Hua Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Yan-Wei Shi
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Li Xue
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Xiao-Guang Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, China.
| | - Hu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, China.
| |
Collapse
|
38
|
Li D, Wang HL, Huang X, Gu X, Xue W, Xu Y. Identification and Functional Characterization of a New Splicing Variant of EZH2 in the Central Nervous System. Int J Biol Sci 2019; 15:69-80. [PMID: 30662348 PMCID: PMC6329929 DOI: 10.7150/ijbs.28129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/26/2018] [Indexed: 12/29/2022] Open
Abstract
EZH2 plays vital roles in epigenetic regulation, neuronal development and cancer progression. Here a novel EZH2 variant, namely EZH2-X9 (X9 for short) resulting from alternative splicing, was isolated, identified and functionally characterized. X9 was highly expressed in the brains of SD rats, indicating a potentially distinguished role in the central nervous system (CNS). Owing to a transcript profiling, X9 was enriched in multiple brain regions at very early stage of life. Immunostaining validated the presence of the protein form of X9, which was localized similarly with the wild-type form, EZH2-WT. To investigate the functional consequence of X9, genetic intervention was performed in PC-12 cell line, a classic cellular model for neuronal development. It revealed that the depletion of either variant was sufficient to impair neuronal proliferation and differentiation significantly, an evidence that roles of X9 could not be complemented by EZH2-WT. Considering epigenetic regulation, X9 lost the capability to recruit the histone mark H3K27me3, but retained the cooperation with EED, as well as the repressive aspects in governing gene expression. Nonetheless, through profiling the genes affected, it's discovered that EZH2-WT and X9 markedly differed in their regulatory targets, as X9 intended to repress cell cycle- and autophagy-related genes, like GSK and MapILC3. Overall, a novel Ezh2 variant was characterized in the mammal CNS, providing insight with the structural and functional delineation of this key developmental switch, Ezh2.
Collapse
Affiliation(s)
- Danyang Li
- School of Food Science and Engineering, Hefei University of Technology, No. 193 of Tunxi Road, Baohe District, Hefei, Anhui Province, China
| | - Hui-Li Wang
- School of Food Science and Engineering, Hefei University of Technology, No. 193 of Tunxi Road, Baohe District, Hefei, Anhui Province, China
| | - Xiyao Huang
- School of Food Science and Engineering, Hefei University of Technology, No. 193 of Tunxi Road, Baohe District, Hefei, Anhui Province, China
| | - Xiaozhen Gu
- School of Food Science and Engineering, Hefei University of Technology, No. 193 of Tunxi Road, Baohe District, Hefei, Anhui Province, China
| | - Weizhen Xue
- School of Food Science and Engineering, Hefei University of Technology, No. 193 of Tunxi Road, Baohe District, Hefei, Anhui Province, China
| | - Yi Xu
- School of Food Science and Engineering, Hefei University of Technology, No. 193 of Tunxi Road, Baohe District, Hefei, Anhui Province, China
| |
Collapse
|
39
|
Guzman RE, Fahlke C. ClC-3: biophysical properties clarify cellular functions. J Physiol 2018; 596:3823-3824. [PMID: 29974478 DOI: 10.1113/jp276670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Raul E Guzman
- Institute of Complex Systems - Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Christoph Fahlke
- Institute of Complex Systems - Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Jülich, 52425, Germany
| |
Collapse
|
40
|
Rohrbough J, Nguyen H, Lamb FS. Modulation of ClC-3 gating and proton/anion exchange by internal and external protons and the anion selectivity filter. J Physiol 2018; 596:4091-4119. [PMID: 29917234 PMCID: PMC6117567 DOI: 10.1113/jp276332] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/07/2018] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS The ClC-3 2Cl- /1H+ exchanger modulates endosome pH and Cl- concentration. We investigated the relationships between ClC-3-mediated ion transport (steady-state transport current, ISS ), gating charge (Q) and cytoplasmic alkalization. ClC-3 transport is functionally unidirectional. ClC-5 and ClC-3 display indistinguishable exchange ratios, but ClC-3 cycling is less "efficient", as reflected by a large Q/ISS . An M531A mutation predicted to increase water-wire stability and cytoplasmic proton supply improves efficiency. Protonation (pH 5.0) of the outer glutamate gate (Gluext ; E224) reduces Q, inhibits transport, and weakens coupling. Removal of the central tyrosine anion gate (Y572S) greatly increases uncoupled anion current. Tyrosine -OH removal (Y572F) alters anion selectivity and impairs coupling. E224 and Y572 act as anion barriers, and contribute to gating. The Y572 side chain and -OH regulate Q movement kinetics and voltage dependence. E224 and Y572 interact to create a "closed" inner gate conformation that maintains coupling during cycling. ABSTRACT We utilized plasma membrane-localized ClC-3 to investigate relationships between steady-state transport current (ISS ), gating charge (Q) movement, and cytoplasmic alkalization rate. ClC-3 exhibited lower transport efficiency than ClC-5, as reflected by a larger Q/ISS ratio, but an indistinguishable Cl- /H+ coupling ratio. External SCN- reduced H+ transport rate and uncoupled anion/H+ exchange by 80-90%. Removal of the external gating glutamate ("Gluext ") (E224A mutation) reduced Q and abolished H+ transport. We hypothesized that Methionine 531 (M531) impedes "water wire" H+ transfer from the cytoplasm to E224. Accordingly, an M531A mutation decreased the Q/ISS ratio by 50% and enhanced H+ transport. External protons (pH 5.0) inhibited ISS and markedly reduced Q while shifting the Q-voltage (V) relationship positively. The Cl- /H+ coupling ratio at pH 5.0 was significantly increased, consistent with externally protonated Gluext adopting an outward/open position. Internal "anion gate" removal (Y572S) dramatically increased ISS and impaired coupling, without slowing H+ transport rate. Loss of both gates (Y572S/E224A) resulted in a large "open pore" conductance. Y572F (removing only the phenolic hydroxide) and Y572S shortened Q duration similarly, resulting in faster Q kinetics at all voltages. These data reveal a complex relationship between Q and ion transport. Q/ISS must be assessed together with coupling ratio to properly interpret efficiency. Coupling and transport rate are influenced by the anion, internal proton supply and external protons. Y572 regulates H+ coupling as well as anion selectivity, and interacts directly with E224. Disruption of this "closed gate" conformation by internal protons may represent a critical step in the ClC-3 transport cycle.
Collapse
Affiliation(s)
- Jeffrey Rohrbough
- Departments of Pediatrics and Molecular Physiology & BiophysicsMonroe Carell Children's Hospital at Vanderbilt UniversityNashvilleTNUSA
| | - Hong‐Ngan Nguyen
- Departments of Pediatrics and Molecular Physiology & BiophysicsMonroe Carell Children's Hospital at Vanderbilt UniversityNashvilleTNUSA
| | - Fred S. Lamb
- Departments of Pediatrics and Molecular Physiology & BiophysicsMonroe Carell Children's Hospital at Vanderbilt UniversityNashvilleTNUSA
| |
Collapse
|
41
|
Molecular Identities and ATP Release Activities of Two Types of Volume-Regulatory Anion Channels, VSOR and Maxi-Cl. CURRENT TOPICS IN MEMBRANES 2018; 81:125-176. [PMID: 30243431 DOI: 10.1016/bs.ctm.2018.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An elaborate volume regulation system based on interplay of ion channels and transporters was evolved to cope with constant osmotic challenges caused by intensive metabolism, transport and other physiological/pathophysiological events. In animal cells, two types of anion channels are directly activated by cell swelling and involved in the regulatory volume decrease (RVD): volume-sensitive outwardly rectifying anion channel (VSOR), also called volume-regulated anion channel (VRAC), and Maxi-Cl which is the most major type of maxi-anion channel (MAC). These two channels have very different biophysical profiles and exhibit opposite dependence on intracellular ATP. After several decades of verifying many false-positive candidates for VSOR and Maxi-Cl, LRRC8 family proteins emerged as major VSOR components, and SLCO2A1 protein as a core of Maxi-Cl. Still, neither of these proteins alone can fully reproduce the native channel phenotypes suggesting existence of missing components. Although both VSOR and Maxi-Cl have pores wide enough to accommodate bulky ATP4- and MgATP2- anions, evidence accumulated hitherto, based on pharmacological and gene silencing experiments, suggests that Maxi-Cl, but not VSOR, serves as one of the major pathways for the release of ATP from swollen and ischemic/hypoxic cells. Relations of VSOR and Maxi-Cl with diseases and their selective pharmacology are the topics promoted by recent advance in molecular identification of the two volume-activated, volume-regulatory anion channels.
Collapse
|
42
|
Fujimoto M, Kito H, Kajikuri J, Ohya S. Transcriptional repression of human epidermal growth factor receptor 2 by ClC-3 Cl - /H + transporter inhibition in human breast cancer cells. Cancer Sci 2018; 109:2781-2791. [PMID: 29949674 PMCID: PMC6125433 DOI: 10.1111/cas.13715] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/23/2018] [Indexed: 12/13/2022] Open
Abstract
Recent studies have indicated that the intracellular concentration of chloride ions (Cl−) regulates gene expression in several types of cells and that Cl− modulators positively or negatively regulate the PI3K/AKT/mammalian target of rapamycin (mTOR) and signal transducer and activator of transcription (STAT)3 signaling pathways. We previously reported that the Ca2+‐activated Cl− channel anoctamine (ANO)1 regulated human epidermal growth factor receptor 2 (HER2) transcription in breast cancer YMB‐1 cells. However, the mechanisms underlying ANO1‐regulated HER2 gene expression have not yet been elucidated. In the present study, we showed the involvement of intracellular organelle ClC‐3 Cl−/H+ transporter in HER2 transcription in breast cancer MDA‐MB‐453 cells. The siRNA‐mediated inhibition of ClC‐3, but not ANO1, markedly repressed HER2 transcription in MDA‐MB‐453 cells. Subsequently, treatments with the AKT inhibitor AZD 5363 and mTOR inhibitor everolimus significantly enhanced HER2 transcription in MDA‐MB‐453 cells, whereas that with the STAT3 inhibitor 5,15‐diphenylporphyrin (5,15‐DPP) inhibited it. AKT and mTOR inhibitors also significantly enhanced HER2 transcription in YMB‐1 cells. The siRNA‐mediated inhibition of ClC‐3 and ANO1 resulted in increased AKT phosphorylation and decreased STAT3 phosphorylation in MDA‐MB‐453 and YMB‐1 cells, respectively. The intracellular Cl− channel protein CLIC1 was expressed in both cells; however, its siRNA‐mediated inhibition did not elicit the transcriptional repression of HER2. Collectively, our results demonstrate that intracellular Cl− regulation by ANO1/ClC‐3 participates in HER2 transcription, mediating the PI3K/AKT/mTOR and/or STAT3 signaling pathway(s) in HER2‐positive breast cancer cells, and support the potential of ANO1/ClC‐3 blockers as therapeutic options for patients with resistance to anti‐HER2 therapies.
Collapse
Affiliation(s)
- Mayu Fujimoto
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.,Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
43
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
44
|
Wilson CS, Mongin AA. The signaling role for chloride in the bidirectional communication between neurons and astrocytes. Neurosci Lett 2018; 689:33-44. [PMID: 29329909 DOI: 10.1016/j.neulet.2018.01.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 01/01/2023]
Abstract
It is well known that the electrical signaling in neuronal networks is modulated by chloride (Cl-) fluxes via the inhibitory GABAA and glycine receptors. Here, we discuss the putative contribution of Cl- fluxes and intracellular Cl- to other forms of information transfer in the CNS, namely the bidirectional communication between neurons and astrocytes. The manuscript (i) summarizes the generic functions of Cl- in cellular physiology, (ii) recaps molecular identities and properties of Cl- transporters and channels in neurons and astrocytes, and (iii) analyzes emerging studies implicating Cl- in the modulation of neuroglial communication. The existing literature suggests that neurons can alter astrocytic Cl- levels in a number of ways; via (a) the release of neurotransmitters and activation of glial transporters that have intrinsic Cl- conductance, (b) the metabotropic receptor-driven changes in activity of the electroneutral cation-Cl- cotransporter NKCC1, and (c) the transient, activity-dependent changes in glial cell volume which open the volume-regulated Cl-/anion channel VRAC. Reciprocally, astrocytes are thought to alter neuronal [Cl-]i through either (a) VRAC-mediated release of the inhibitory gliotransmitters, GABA and taurine, which open neuronal GABAA and glycine receptor/Cl- channels, or (b) the gliotransmitter-driven stimulation of NKCC1. The most important recent developments in this area are the identification of the molecular composition and functional heterogeneity of brain VRAC channels, and the discovery of a new cytosolic [Cl-] sensor - the Wnk family protein kinases. With new work in the field, our understanding of the role of Cl- in information processing within the CNS is expected to be significantly updated.
Collapse
Affiliation(s)
- Corinne S Wilson
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russian Federation.
| |
Collapse
|
45
|
Guzman RE, Bungert-Plümke S, Franzen A, Fahlke C. Preferential association with ClC-3 permits sorting of ClC-4 into endosomal compartments. J Biol Chem 2017; 292:19055-19065. [PMID: 28972156 DOI: 10.1074/jbc.m117.801951] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/15/2017] [Indexed: 11/06/2022] Open
Abstract
ClC-4 is an intracellular Cl-/H+ exchanger that is highly expressed in the brain and whose dysfunction has been linked to intellectual disability and epilepsy. Here we studied the subcellular localization of human ClC-4 in heterologous expression systems. ClC-4 is retained in the endoplasmic reticulum (ER) upon overexpression in HEK293T cells. Co-expression with distinct ClC-3 splice variants targets ClC-4 to late endosome/lysosomes (ClC-3a and ClC-3b) or recycling endosome (ClC-3c). When expressed in cultured astrocytes, ClC-4 sorted to endocytic compartments in WT cells but was retained in the ER in Clcn3-/- cells. To understand the virtual absence of ER-localized ClC-4 in WT astrocytes, we performed association studies by high-resolution clear native gel electrophoresis. Although other CLC channels and transporters form stable dimers, ClC-4 was mostly observed as monomer, with ClC-3-ClC-4 heterodimers being more stable than ClC-4 homodimers. We conclude that unique oligomerization properties of ClC-4 permit regulated targeting of ClC-4 to various endosomal compartment systems via expression of different ClC-3 splice variants.
Collapse
Affiliation(s)
- Raul E Guzman
- From the Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | - Christoph Fahlke
- From the Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
46
|
Poroca DR, Pelis RM, Chappe VM. ClC Channels and Transporters: Structure, Physiological Functions, and Implications in Human Chloride Channelopathies. Front Pharmacol 2017; 8:151. [PMID: 28386229 PMCID: PMC5362633 DOI: 10.3389/fphar.2017.00151] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/09/2017] [Indexed: 02/04/2023] Open
Abstract
The discovery of ClC proteins at the beginning of the 1990s was important for the development of the Cl- transport research field. ClCs form a large family of proteins that mediate voltage-dependent transport of Cl- ions across cell membranes. They are expressed in both plasma and intracellular membranes of cells from almost all living organisms. ClC proteins form transmembrane dimers, in which each monomer displays independent ion conductance. Eukaryotic members also possess a large cytoplasmic domain containing two CBS domains, which are involved in transport modulation. ClC proteins function as either Cl- channels or Cl-/H+ exchangers, although all ClC proteins share the same basic architecture. ClC channels have two gating mechanisms: a relatively well-studied fast gating mechanism, and a slow gating mechanism, which is poorly defined. ClCs are involved in a wide range of physiological processes, including regulation of resting membrane potential in skeletal muscle, facilitation of transepithelial Cl- reabsorption in kidneys, and control of pH and Cl- concentration in intracellular compartments through coupled Cl-/H+ exchange mechanisms. Several inherited diseases result from C1C gene mutations, including myotonia congenita, Bartter's syndrome (types 3 and 4), Dent's disease, osteopetrosis, retinal degeneration, and lysosomal storage diseases. This review summarizes general features, known or suspected, of ClC structure, gating and physiological functions. We also discuss biophysical properties of mammalian ClCs that are directly involved in the pathophysiology of several human inherited disorders, or that induce interesting phenotypes in animal models.
Collapse
Affiliation(s)
- Diogo R Poroca
- Department of Physiology and Biophysics, Dalhousie University, Halifax NS, Canada
| | - Ryan M Pelis
- Department of Pharmacology, Dalhousie University, Halifax NS, Canada
| | - Valérie M Chappe
- Department of Physiology and Biophysics, Dalhousie University, Halifax NS, Canada
| |
Collapse
|
47
|
Fan F, Liu T, Wang X, Ren D, Liu H, Zhang P, Wang Z, Liu N, Li Q, Tu Y, Fu J. ClC-3 Expression and Its Association with Hyperglycemia Induced HT22 Hippocampal Neuronal Cell Apoptosis. J Diabetes Res 2016; 2016:2984380. [PMID: 26925421 PMCID: PMC4746354 DOI: 10.1155/2016/2984380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 12/29/2022] Open
Abstract
Although apoptosis plays an important role in the development of Diabetic Encephalopathy (DE), the underlying molecular mechanisms remain unclear. With respect to this, the present work aims to study the variation in chloride/proton exchanger ClC-3 expression and its association with HT22 hippocampal neuronal apoptosis under hyperglycemic condition in vitro. The cells were stimulated with added 0, 5, or 25 mM glucose or mannitol for up to 72 hours before assessing the rate of ClC-3 expression, cell viability, and apoptosis. In a consecutive experiment, cells received chloride channel blocker in addition to glucose. The rate of cellular death/apoptosis and viability was measured using Flow Cytometry and MTT assay, respectively. Changes in ClC-3 expression were assessed using immunofluorescence staining and western blot analysis. The results revealed a significant increase in cellular apoptosis and reduction in viability, associated with increased ClC-3 expression in high glucose group. Osmolarity had no role to play. Addition of chloride channel blocker completely abolished this effect. Thus we conclude that, with its increased expression, ClC-3 plays a major role in hyperglycemia induced hippocampal neuronal apoptosis. To strengthen our understanding of this aforesaid association, we conducted an extensive literature search which is presented in this paper.
Collapse
Affiliation(s)
- Feiyan Fan
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Tao Liu
- Department of Dermatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dongni Ren
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Hui Liu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Pengxing Zhang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Zhen Wang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Nan Liu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Qian Li
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Yanyang Tu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- *Yanyang Tu: and
| | - Jianfang Fu
- Department of Endocrinology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
- *Jianfang Fu:
| |
Collapse
|