1
|
Wu SC, Chen YJ, Su SH, Fang PH, Liu RW, Tsai HY, Chang YJ, Li HH, Li JC, Chen CH. Dysfunctional BCAA degradation triggers neuronal damage through disrupted AMPK-mitochondrial axis due to enhanced PP2Ac interaction. Commun Biol 2025; 8:105. [PMID: 39838082 PMCID: PMC11751115 DOI: 10.1038/s42003-025-07457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025] Open
Abstract
Metabolic and neurological disorders commonly display dysfunctional branched-chain amino acid (BCAA) metabolism, though it is poorly understood how this leads to neurological damage. We investigated this by generating Drosophila mutants lacking BCAA-catabolic activity, resulting in elevated BCAA levels and neurological dysfunction, mimicking disease-relevant symptoms. Our findings reveal a reduction in neuronal AMP-activated protein kinase (AMPK) activity, which disrupts autophagy in mutant brain tissues, linking BCAA imbalance to brain dysfunction. Mechanistically, we show that excess BCAA-induced mitochondrial reactive oxygen species (ROS) triggered the binding of protein phosphatase 2 A catalytic subunit (PP2Ac) to AMPK, suppressing AMPK activity. This initiated a dysregulated feedback loop of AMPK-mitochondrial interactions, exacerbating mitochondrial dysfunction and oxidative neuronal damage. Our study identifies BCAA imbalance as a critical driver of neuronal damage through AMPK suppression and autophagy dysfunction, offering insights into metabolic-neuronal interactions in neurological diseases and potential therapeutic targets for BCAA-related neurological conditions.
Collapse
Affiliation(s)
- Shih-Cheng Wu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10048, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 10021, Taiwan.
| | - Yan-Jhen Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Shih-Han Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10048, Taiwan
| | - Pai-Hsiang Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan
| | - Rei-Wen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Hui-Ying Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan
| | - Yen-Jui Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10048, Taiwan
| | - Hsing-Han Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jian-Chiuan Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan.
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, 350401, Taiwan.
| |
Collapse
|
2
|
Green CR, Kolar MJ, McGregor GH, Nelson AT, Wallace M, Metallo CM. Quantifying acyl-chain diversity in isobaric compound lipids containing monomethyl branched-chain fatty acids. J Lipid Res 2024; 65:100677. [PMID: 39490922 PMCID: PMC11621494 DOI: 10.1016/j.jlr.2024.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Compound lipids comprise a diverse group of metabolites present in living systems, and metabolic- and environmentally-driven structural distinctions across this family are increasingly linked to biological function. However, methods for deconvoluting these often isobaric lipid species are lacking or require specialized instrumentation. Notably, acyl-chain diversity within cells may be influenced by nutritional states, metabolic dysregulation, or genetic alterations. Therefore, a reliable, validated method of quantifying structurally similar even-, odd-, and branched-chain acyl groups within intact compound lipids will be invaluable for gaining molecular insights into their biological functions. Here we demonstrate the chromatographic resolution of isobaric lipids containing distinct combinations of straight-chain and branched-chain acyl groups via ultra-high-pressure liquid chromatography (UHPLC)-mass spectrometry (MS) using a C30 liquid chromatography column. Using metabolically engineered adipocytes lacking branched-keto acid dehydrogenase A (Bckdha), we validate this approach through a combination of fatty acid supplementation and metabolic tracing using monomethyl branched-chain fatty acids and valine. We observe the resolution of numerous isobaric triacylglycerols and other compound lipids, demonstrating the resolving utility of this method. This approach adds to the toolbox for laboratories to quantify and characterize acyl chain diversity across the lipidome.
Collapse
Affiliation(s)
- Courtney R Green
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, CA, USA
| | - Matthew J Kolar
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, CA, USA; Department of Dermatology, University of California, San Diego, CA, USA
| | - Grace H McGregor
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, CA, USA
| | - Andrew T Nelson
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Martina Wallace
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Christian M Metallo
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, CA, USA.
| |
Collapse
|
3
|
Briglia M, Allia F, Avola R, Signorini C, Cardile V, Romano GL, Giurdanella G, Malaguarnera R, Bellomo M, Graziano ACE. Diet and Nutrients in Rare Neurological Disorders: Biological, Biochemical, and Pathophysiological Evidence. Nutrients 2024; 16:3114. [PMID: 39339713 PMCID: PMC11435074 DOI: 10.3390/nu16183114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Rare diseases are a wide and heterogeneous group of multisystem life-threatening or chronically debilitating clinical conditions with reduced life expectancy and a relevant mortality rate in childhood. Some of these disorders have typical neurological symptoms, presenting from birth to adulthood. Dietary patterns and nutritional compounds play key roles in the onset and progression of neurological disorders, and the impact of alimentary needs must be enlightened especially in rare neurological diseases. This work aims to collect the in vitro, in vivo, and clinical evidence on the effects of diet and of nutrient intake on some rare neurological disorders, including some genetic diseases, and rare brain tumors. Herein, those aspects are critically linked to the genetic, biological, biochemical, and pathophysiological hallmarks typical of each disorder. Methods: By searching the major web-based databases (PubMed, Web of Science Core Collection, DynaMed, and Clinicaltrials.gov), we try to sum up and improve our understanding of the emerging role of nutrition as both first-line therapy and risk factors in rare neurological diseases. Results: In line with the increasing number of consensus opinions suggesting that nutrients should receive the same attention as pharmacological treatments, the results of this work pointed out that a standard dietary recommendation in a specific rare disease is often limited by the heterogeneity of occurrent genetic mutations and by the variability of pathophysiological manifestation. Conclusions: In conclusion, we hope that the knowledge gaps identified here may inspire further research for a better evaluation of molecular mechanisms and long-term effects.
Collapse
Affiliation(s)
- Marilena Briglia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Fabio Allia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Rosanna Avola
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Maria Bellomo
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| |
Collapse
|
4
|
Green CR, Kolar MJ, McGregor GH, Nelson AT, Wallace M, Metallo CM. Quantifying acyl-chain diversity in isobaric compound lipids containing monomethyl branched-chain fatty acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596332. [PMID: 38853874 PMCID: PMC11160641 DOI: 10.1101/2024.05.28.596332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Compound lipids comprise a diverse group of metabolites present in living systems, and metabolic- and environmentally-driven structural distinctions across this family is increasingly linked to biological function. However, methods for deconvoluting these often isobaric lipid species are lacking or require specialized instrumentation. Notably, acyl-chain diversity within cells may be influenced by nutritional states, metabolic dysregulation, or genetic alterations. Therefore, a reliable, validated method of quantifying structurally similar even-, odd-, and branched-chain acyl groups within intact compound lipids will be invaluable for gaining molecular insights into their biological functions. Here we demonstrate the chromatographic resolution of isobaric lipids containing distinct combinations of straight-chain and branched-chain acyl groups via ultra-high-pressure liquid chromatography (UHPLC)-mass spectrometry (MS) using a C30 liquid chromatography column. Using metabolically-engineered adipocytes lacking branched-keto acid dehydrogenase A (Bckdha), we validate this approach through a combination of fatty acid supplementation and metabolic tracing using monomethyl branched-chain fatty acids and valine. We observe resolution of numerous isobaric triacylglycerols and other compound lipids, demonstrating the resolving utility of this method. This approach strengthens our ability to quantify and characterize the inherent diversity of acyl chains across the lipidome.
Collapse
Affiliation(s)
- CR Green
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, 10010N. Torrey Pines Rd., La Jolla, 92037, CA, USA
| | - MJ Kolar
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, 10010N. Torrey Pines Rd., La Jolla, 92037, CA, USA
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - GH McGregor
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, 10010N. Torrey Pines Rd., La Jolla, 92037, CA, USA
| | - AT Nelson
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642
| | - M Wallace
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - CM Metallo
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, 10010N. Torrey Pines Rd., La Jolla, 92037, CA, USA
| |
Collapse
|
5
|
Fox BW, Helf MJ, Burkhardt RN, Artyukhin AB, Curtis BJ, Palomino DF, Schroeder AF, Chaturbedi A, Tauffenberger A, Wrobel CJJ, Zhang YK, Lee SS, Schroeder FC. Evolutionarily related host and microbial pathways regulate fat desaturation in C. elegans. Nat Commun 2024; 15:1520. [PMID: 38374083 PMCID: PMC10876521 DOI: 10.1038/s41467-024-45782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Fatty acid desaturation is central to metazoan lipid metabolism and provides building blocks of membrane lipids and precursors of diverse signaling molecules. Nutritional conditions and associated microbiota regulate desaturase expression, but the underlying mechanisms have remained unclear. Here, we show that endogenous and microbiota-dependent small molecule signals promote lipid desaturation via the nuclear receptor NHR-49/PPARα in C. elegans. Untargeted metabolomics of a β-oxidation mutant, acdh-11, in which expression of the stearoyl-CoA desaturase FAT-7/SCD1 is constitutively increased, revealed accumulation of a β-cyclopropyl fatty acid, becyp#1, that potently activates fat-7 expression via NHR-49. Biosynthesis of becyp#1 is strictly dependent on expression of cyclopropane synthase by associated bacteria, e.g., E. coli. Screening for structurally related endogenous metabolites revealed a β-methyl fatty acid, bemeth#1, which mimics the activity of microbiota-dependent becyp#1 but is derived from a methyltransferase, fcmt-1, that is conserved across Nematoda and likely originates from bacterial cyclopropane synthase via ancient horizontal gene transfer. Activation of fat-7 expression by these structurally similar metabolites is controlled by distinct mechanisms, as microbiota-dependent becyp#1 is metabolized by a dedicated β-oxidation pathway, while the endogenous bemeth#1 is metabolized via α-oxidation. Collectively, we demonstrate that evolutionarily related biosynthetic pathways in metazoan host and associated microbiota converge on NHR-49/PPARα to regulate fat desaturation.
Collapse
Affiliation(s)
- Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Maximilian J Helf
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Russell N Burkhardt
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander B Artyukhin
- Chemistry Department, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - Brian J Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Allen F Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Amaresh Chaturbedi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Arnaud Tauffenberger
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Chester J J Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ying K Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
6
|
Wang Z, Yang T, Brenna JT, Wang DH. Fatty acid isomerism: analysis and selected biological functions. Food Funct 2024; 15:1071-1088. [PMID: 38197562 DOI: 10.1039/d3fo03716a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The biological functions of fatty acids and the lipids in which they are esterified are determined by their chain length, double bond position and geometry and other structural motifs such as the presence of methyl branches. Unusual isomeric features in fatty acids of human foods such as conjugated double bonds or chain branching found in dairy products, some seeds and nuts, and marine foods potentially have important effects on human health. Recent advancements in identifying fatty acids with unusual double bond positions and pinpointing the position of methyl branches have empowered the study of their biological functions. We present recent advances in fatty acid structural elucidation by mass spectrometry in comparison with the more traditional methods. The double bond position can be determined by purely instrumental methods, specifically solvent-mediated covalent adduct chemical ionization (SM-CACI) and ozone induced dissociation (OzID), with charge inversion methods showing promise. Prior derivatization using the Paternò-Büchi (PB) reaction to yield stable structures that, upon collisional activation, yield the double bond position has emerged. The chemical ionization (CI) based three ion monitoring (MRM) method has been developed to simultaneously identify and quantify low-level branched chain fatty acids (BCFAs), unattainable by electron ionization (EI) based methods. Accurate identification and quantification of unusual fatty acid isomers has led to research progress in the discovery of biomarkers for cancer, diabetes, nonalcoholic fatty liver disease (NAFLD) and atherosclerosis. Modulation of eicosanoids, weight loss and the health significance of BCFAs are also presented. This review clearly shows that the improvement of analytical capacity is critical in the study of fatty acid biological functions, and stronger coupling of the methods discussed here with fatty acid mechanistic research is promising in generating more refined outcomes.
Collapse
Affiliation(s)
- Zhen Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Tingxiang Yang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, USA.
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Dong Hao Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
7
|
Modafferi S, Lupo G, Tomasello M, Rampulla F, Ontario M, Scuto M, Salinaro AT, Arcidiacono A, Anfuso CD, Legmouz M, Azzaoui FZ, Palmeri A, Spano' S, Biamonte F, Cammilleri G, Fritsch T, Sidenkova A, Calabrese E, Wenzel U, Calabrese V. Antioxidants, Hormetic Nutrition, and Autism. Curr Neuropharmacol 2024; 22:1156-1168. [PMID: 37592816 PMCID: PMC10964097 DOI: 10.2174/1570159x21666230817085811] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 08/19/2023] Open
Abstract
Autism spectrum disorder (ASD) includes a heterogeneous group of complex neurodevelopmental disorders characterized by atypical behaviors with two core pathological manifestations: deficits in social interaction/communication and repetitive behaviors, which are associated with disturbed redox homeostasis. Modulation of cellular resilience mechanisms induced by low levels of stressors represents a novel approach for the development of therapeutic strategies, and in this context, neuroprotective effects of a wide range of polyphenol compounds have been demonstrated in several in vitro and in vivo studies and thoroughly reviewed. Mushrooms have been used in traditional medicine for many years and have been associated with a long list of therapeutic properties, including antitumor, immunomodulatory, antioxidant, antiviral, antibacterial, and hepatoprotective effects. Our recent studies have strikingly indicated the presence of polyphenols in nutritional mushrooms and demonstrated their protective effects in different models of neurodegenerative disorders in humans and rats. Although their therapeutic effects are exerted through multiple mechanisms, increasing attention is focusing on their capacity to induce endogenous defense systems by modulating cellular signaling processes such as nuclear factor erythroid 2 related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) pathways. Here we discuss the protective role of hormesis and its modulation by hormetic nutrients in ASD.
Collapse
Affiliation(s)
- Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Mario Tomasello
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Marialaura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Antonio Arcidiacono
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Maria Legmouz
- Department of Biologie, Laboratory of Biologie and Health, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Fatima-Zahra Azzaoui
- Department of Biologie, Laboratory of Biologie and Health, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Sestina Spano'
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Francesca Biamonte
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Gaetano Cammilleri
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi, 3 90129, Palermo, Italy
| | | | - Alena Sidenkova
- Department of Psychiatry, Ural State Medical University, Ekaterinburg, Russia
| | - Edward Calabrese
- Department of Environmental Health Sciences; Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, Germany
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| |
Collapse
|
8
|
Tangeraas T, Kristensen E, Mørkrid L, Elind E, Bliksrud YT, Eide L. Fasting and non-fasting plasma levels of monomethyl branched chain fatty acids: Implications for maple syrup urine disease. JIMD Rep 2023; 64:360-366. [PMID: 37701324 PMCID: PMC10494493 DOI: 10.1002/jmd2.12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 09/14/2023] Open
Abstract
The branched-chain amino acids (BCAA) leucine, valine, and isoleucine provide precursors for monomethyl branched-chain fatty acids (BCFA). Established reference ranges for BCFAs are lacking. In maple syrup urine disease (MSUD), a rare inborn error of BCAA metabolism, the endogen production is impaired and MSUD patients are treated with a low protein (low BCAA) diet. The protein restriction may affect the dietary intake of BCFA, depending on the dietary choices made. Patients with MSUD are prescribed a more or less protein-restricted diet depending on the severity of the disease. The combination of a protein-restricted diet and subsequent impaired endogenous synthesis may render MSUD patients sensitive to BCFA deficiency, with yet unknown implications. To investigate the possibility of lower circulatory BCFA levels in MSUD that favors dietary BCFA supplementation, we first established fasting-state reference ranges for selected BCFAs and saturated/unsaturated fatty acids in plasma. Then, the effect of fasting on BCFA levels was evaluated by comparing the distribution in a fasting versus a non-fasting cohort. To test the hypothesis that BCFA deficiency could contribute to MSUD pathophysiology, we recruited patients with intermittent, intermediate, and classical form of MSUD and analyzed the corresponding BCFA z-scores. None of the BCFA species had |z-scores| > 2 relative to the reference range. Our findings do not support the requirement of BCFA supplementation in MSUD patients. The origin of BCFAs is discussed. Impaired capacity to synthesize BCFA do not manifest as reduced plasma levels in MSUD, suggesting that endogenous synthesis is dispensable for plasma levels.
Collapse
Affiliation(s)
- Trine Tangeraas
- Department of Newborn ScreeningOslo University HospitalOsloNorway
| | - Erle Kristensen
- Department of Medical BiochemistryOslo University HospitalOsloNorway
| | - Lars Mørkrid
- Department of Medical BiochemistryOslo University HospitalOsloNorway
- Department of Medical BiochemistryUniversity of OsloOsloNorway
| | - Elisabeth Elind
- Department of Newborn ScreeningOslo University HospitalOsloNorway
| | | | - Lars Eide
- Department of Medical BiochemistryOslo University HospitalOsloNorway
- Department of Medical BiochemistryUniversity of OsloOsloNorway
| |
Collapse
|
9
|
Fox BW, Helf MJ, Burkhardt RN, Artyukhin AB, Curtis BJ, Palomino DF, Chaturbedi A, Tauffenberger A, Wrobel CJ, Zhang YK, Lee SS, Schroeder FC. Evolutionarily related host and microbial pathways regulate fat desaturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555782. [PMID: 37693574 PMCID: PMC10491262 DOI: 10.1101/2023.08.31.555782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Fatty acid desaturation is central to metazoan lipid metabolism and provides building blocks of membrane lipids and precursors of diverse signaling molecules. Nutritional conditions and associated microbiota regulate desaturase expression1-4, but the underlying mechanisms have remained unclear. Here, we show that endogenous and microbiota-dependent small molecule signals promote lipid desaturation via the nuclear receptor NHR-49/PPARα in C. elegans. Untargeted metabolomics of a β-oxidation mutant, acdh-11, in which expression of the stearoyl-CoA desaturase FAT-7/SCD1 is constitutively increased, revealed accumulation of a β-cyclopropyl fatty acid, becyp#1, that potently activates fat-7 expression via NHR-49. Biosynthesis of becyp#1 is strictly dependent on expression of cyclopropane synthase by associated bacteria, e.g., E. coli. Screening for structurally related endogenous metabolites revealed a β-methyl fatty acid, bemeth#1, whose activity mimics that of microbiota-dependent becyp#1, but is derived from a methyltransferase, fcmt-1, that is conserved across Nematoda and likely originates from bacterial cyclopropane synthase via ancient horizontal gene transfer. Activation of fat-7 expression by these structurally similar metabolites is controlled by distinct mechanisms, as microbiota-dependent becyp#1 is metabolized by a dedicated β-oxidation pathway, while the endogenous bemeth#1 is metabolized via α-oxidation. Collectively, we demonstrate that evolutionarily related biosynthetic pathways in metazoan host and associated microbiota converge on NHR-49/PPARα to regulate fat desaturation.
Collapse
Affiliation(s)
- Bennett W. Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Maximilian J. Helf
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Russell N. Burkhardt
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Alexander B. Artyukhin
- Chemistry Department, College of Environmental Science and Forestry, State University of New York, Syracuse, New York 13210, United States
| | - Brian J. Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Amaresh Chaturbedi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | - Arnaud Tauffenberger
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Chester J.J. Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ying K. Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
10
|
Nanda S, Jacques MA, Wang W, Myers CL, Yilmaz LS, Walhout AJ. Systems-level transcriptional regulation of Caenorhabditis elegans metabolism. Mol Syst Biol 2023; 19:e11443. [PMID: 36942755 PMCID: PMC10167481 DOI: 10.15252/msb.202211443] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Metabolism is controlled to ensure organismal development and homeostasis. Several mechanisms regulate metabolism, including allosteric control and transcriptional regulation of metabolic enzymes and transporters. So far, metabolism regulation has mostly been described for individual genes and pathways, and the extent of transcriptional regulation of the entire metabolic network remains largely unknown. Here, we find that three-quarters of all metabolic genes are transcriptionally regulated in the nematode Caenorhabditis elegans. We find that many annotated metabolic pathways are coexpressed, and we use gene expression data and the iCEL1314 metabolic network model to define coregulated subpathways in an unbiased manner. Using a large gene expression compendium, we determine the conditions where subpathways exhibit strong coexpression. Finally, we develop "WormClust," a web application that enables a gene-by-gene query of genes to view their association with metabolic (sub)-pathways. Overall, this study sheds light on the ubiquity of transcriptional regulation of metabolism and provides a blueprint for similar studies in other organisms, including humans.
Collapse
Affiliation(s)
- Shivani Nanda
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marc-Antoine Jacques
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Wen Wang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - L Safak Yilmaz
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Albertha Jm Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
11
|
Lamontagne J, Rico DE, Perdomo CM, Ronholm J, Gervais R, Chouinard PY. Effects of direct-fed Bacillus subtilis and Bacillus licheniformis on production performance and milk fatty acid profile in dairy cows. J Dairy Sci 2023; 106:1815-1825. [PMID: 36710185 DOI: 10.3168/jds.2022-22564] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/10/2022] [Indexed: 01/30/2023]
Abstract
The aim of the study was to determine the effect of a Bacillus-based direct-fed microbial on performance of mid-lactating Holstein dairy cows and on their milk fatty acid composition. Six multiparous cows fitted with a rumen cannula were used in a randomized replicated crossover design. Cows received 200 g/d of either whey powder as a control or BioPlus 2B (Chr. Hansen), a commercial direct-fed microbial providing Bacillus subtilis and Bacillus licheniformis, representing a daily dose of 6.4 × 1011 cfu, and using whey powder as a carrier. The 2 experimental periods lasted 14 d and were separated by a 7-d washout interval. Samples were collected on d 0, 13, and 14 of each period. Data from d 0 were used as covariate. Significance was declared at P ≤ 0.05 and tendency at 0.05 <P ≤ 0.10. There was a 10-fold increase in the relative concentration of bacteria from the Bacillus subtilis group in the rumen when feeding direct-fed Bacillus compared with control. Treatment did not affect ruminal pH, NH3-N, or concentrations of acetate, propionate, and butyrate. However, direct-fed Bacillus increased ruminal concentrations of isovalerate and isobutyrate (tendency). Treatments did not affect lactation performance. Supplying direct-fed Bacillus enhanced milk relative concentration of anteiso 13:0 by 27.3% and of anteiso 15:0 by 6.5% and tended to increase concentrations of iso 14:0 (+41.8%) relative to control. When expressed on a yield basis, direct-fed Bacillus increased the secretion of anteiso 13:0 and decreased that of 11:0, 15:0, 17:0 (tendency), and cis-9 17:1. These variations, although limited in magnitude, indicate that milk branched-chain fatty acid composition is sensitive to ruminal microbiota modifications without changes in chemical composition of the diet.
Collapse
Affiliation(s)
- J Lamontagne
- Département des Sciences Animales, Université Laval, Québec, QC, Canada G1V 0A6
| | - D E Rico
- Département des Sciences Animales, Université Laval, Québec, QC, Canada G1V 0A6; Centre de Recherche en Sciences Animales de Deschambault (CRSAD), Deschambault, QC, Canada G0A 1S0
| | - C M Perdomo
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), Deschambault, QC, Canada G0A 1S0
| | - J Ronholm
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada H9X 3V9; Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada H9X 3V9
| | - R Gervais
- Département des Sciences Animales, Université Laval, Québec, QC, Canada G1V 0A6
| | - P Y Chouinard
- Département des Sciences Animales, Université Laval, Québec, QC, Canada G1V 0A6.
| |
Collapse
|
12
|
Mele S, Martelli F, Lin J, Kanca O, Christodoulou J, Bellen HJ, Piper MDW, Johnson TK. Drosophila as a diet discovery tool for treating amino acid disorders. Trends Endocrinol Metab 2023; 34:85-105. [PMID: 36567227 DOI: 10.1016/j.tem.2022.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Amino acid disorders (AADs) are a large group of rare inherited conditions that collectively impact one in 6500 live births, often resulting in rapid neurological decline and death during infancy. For several AADs, including phenylketonuria, dietary modification prevents physiological deterioration and ameliorates symptoms. Despite this remarkable potential for treatment success, dietary therapy for most AADs remains largely unexplored. Although animal models have provided novel insights into AAD mechanisms, few have been used for therapeutic diet discovery. Here, we find that of all the animal models, Drosophila is particularly well suited for nutrigenomic disease modelling, having amino acid pathways conserved with humans, exceptional genetic tractability, and the unique availability of a synthetic customisable diet.
Collapse
Affiliation(s)
- Sarah Mele
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Felipe Martelli
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jiayi Lin
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - John Christodoulou
- Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
13
|
Duarte IF, Caio J, Moedas MF, Rodrigues LA, Leandro AP, Rivera IA, Silva MFB. Dihydrolipoamide dehydrogenase, pyruvate oxidation, and acetylation-dependent mechanisms intersecting drug iatrogenesis. Cell Mol Life Sci 2021; 78:7451-7468. [PMID: 34718827 PMCID: PMC11072406 DOI: 10.1007/s00018-021-03996-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
In human metabolism, pyruvate dehydrogenase complex (PDC) is one of the most intricate and large multimeric protein systems representing a central hub for cellular homeostasis. The worldwide used antiepileptic drug valproic acid (VPA) may potentially induce teratogenicity or a mild to severe hepatic toxicity, where the underlying mechanisms are not completely understood. This work aims to clarify the mechanisms that intersect VPA-related iatrogenic effects to PDC-associated dihydrolipoamide dehydrogenase (DLD; E3) activity. DLD is also a key enzyme of α-ketoglutarate dehydrogenase, branched-chain α-keto acid dehydrogenase, α-ketoadipate dehydrogenase, and the glycine decarboxylase complexes. The molecular effects of VPA will be reviewed underlining the data that sustain a potential interaction with DLD. The drug-associated effects on lipoic acid-related complexes activity may induce alterations on the flux of metabolites through tricarboxylic acid cycle, branched-chain amino acid oxidation, glycine metabolism and other cellular acetyl-CoA-connected reactions. The biotransformation of VPA involves its complete β-oxidation in mitochondria causing an imbalance on energy homeostasis. The drug consequences as histone deacetylase inhibitor and thus gene expression modulator have also been recognized. The mitochondrial localization of PDC is unequivocal, but its presence and function in the nucleus were also demonstrated, generating acetyl-CoA, crucial for histone acetylation. Bridging metabolism and epigenetics, this review gathers the evidence of VPA-induced interference with DLD or PDC functions, mainly in animal and cellular models, and highlights the uncharted in human. The consequences of this interaction may have significant impact either in mitochondrial or in nuclear acetyl-CoA-dependent processes.
Collapse
Affiliation(s)
- I F Duarte
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - J Caio
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - M F Moedas
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - L A Rodrigues
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - A P Leandro
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - I A Rivera
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - M F B Silva
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
| |
Collapse
|
14
|
Jia F, Chi C, Han M. Regulation of Nucleotide Metabolism and Germline Proliferation in Response to Nucleotide Imbalance and Genotoxic Stresses by EndoU Nuclease. Cell Rep 2021; 30:1848-1861.e5. [PMID: 32049015 PMCID: PMC7050212 DOI: 10.1016/j.celrep.2020.01.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/06/2019] [Accepted: 01/15/2020] [Indexed: 12/23/2022] Open
Abstract
Nucleotide deprivation and imbalance present detrimental conditions for animals and are thus expected to trigger cellular responses that direct protective changes in metabolic, developmental, and behavioral programs, albeit such mechanisms are vastly underexplored. Following our previous finding that Caenorhabditis elegans shut down germ cell proliferation in response to pyrimidine deprivation, we find in this study that endonuclease ENDU-2 regulates nucleotide metabolism and germ cell proliferation in response to nucleotide imbalance and other genotoxic stress, and that it affects mitotic chromosomal segregation in the intestine and lifespan. ENDU-2 expression is induced by nucleotide imbalance and genotoxic stress, and ENDU-2 exerts its function in the intestine, mostly by inhibiting the phosphorylation of CTPS-1 through repressing the PKA pathway and histone deacetylase HDA-1. Human EndoU also affects the response to genotoxic drugs. Our work reveals an unknown role of ENDU-2 in regulating nucleotide metabolism and animals' response to genotoxic stress, which may link EndoU function to cancer treatment.
Collapse
Affiliation(s)
- Fan Jia
- Department of Molecular, Cellular, and Developmental Biology (MCDB), University of Colorado at Boulder, Boulder, CO 80309-0347, USA.
| | - Congwu Chi
- Department of Molecular, Cellular, and Developmental Biology (MCDB), University of Colorado at Boulder, Boulder, CO 80309-0347, USA
| | - Min Han
- Department of Molecular, Cellular, and Developmental Biology (MCDB), University of Colorado at Boulder, Boulder, CO 80309-0347, USA
| |
Collapse
|
15
|
Developmental plasticity and the response to nutrient stress in Caenorhabditis elegans. Dev Biol 2021; 475:265-276. [PMID: 33549550 DOI: 10.1016/j.ydbio.2021.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/24/2020] [Accepted: 01/29/2021] [Indexed: 11/23/2022]
Abstract
Developmental plasticity refers the ability of an organism to adapt to various environmental stressors, one of which is nutritional stress. Caenorhabditis elegans require various nutrients to successfully progress through all the larval stages to become a reproductive adult. If nutritional criteria are not satisfied, development can slow or completely arrest. In poor growth conditions, the animal can enter various diapause stages, depending on its developmental progress. In C. elegans, there are three well-characterized diapauses: the L1 arrest, the dauer diapause, and adult reproductive diapause, each associated with drastic changes in metabolism and germline development. At the centre of these changes is AMP-activated protein kinase (AMPK). AMPK is a metabolic regulator that maintains energy homeostasis, particularly during times of nutrient stress. Without AMPK, metabolism is disrupted during dauer, leading to the rapid consumption of lipid stores as well as misregulation of metabolic enzymes, leading to reduced survival. During the L1 arrest and dauer diapause, AMPK is responsible for ensuring germline quiescence by modifying the germline chromatin landscape to maintain germ cell integrity until conditions improve. Similar to classic hormonal signalling, small RNAs also play a critical role in regulating development and behaviour in a cell non-autonomous fashion. Thus, during the challenges associated with developmental plasticity, AMPK summons an army of signalling pathways to work collectively to preserve reproductive fitness during these periods of unprecedented uncertainty.
Collapse
|
16
|
Wilkerson A, Bhat N, Pham HQH, Yuksel S, Butovich I. Physiological effects of inactivation and the roles of Elovl3/ELOVL3 in maintaining ocular homeostasis. FASEB J 2021; 35:e21327. [PMID: 33455016 PMCID: PMC7891900 DOI: 10.1096/fj.202002323r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
Recently, elongase of very long chain fatty acids-3 (ELOVL3) was demonstrated to play a pivotal role in physiology and biochemistry of the ocular surface by maintaining a proper balance in the lipid composition of meibum. The goal of this study was to further investigate the effects of ELOVL3 ablation in homozygous Elovl3-knockout mice (E3hom) in comparison with age and sex matched wild-type controls (E3wt). Slit lamp examination of the ocular surface of mice, and histological examination of their ocular tissues, highlighted a severe negative impact of Elovl3 inactivating mutation on the Meibomian glands (MG) and conjunctiva of mice. MG transcriptomes of the E3hom and E3wt mice were assessed and revealed a range of up- and downregulated genes related to lipid biosynthesis, inflammation, and stress response, compared with E3wt mice. Heat stage polarized light microscopy was used to assess melting characteristics of normal and abnormal meibum. The loss of Elovl3 led to a 8°C drop in the melting temperature of meibum in E3hom mice, and increased its fluidity. Also noted were the excessive accumulation of lipid material and tears around the eye and severe ocular inflammation, among other abnormalities.
Collapse
Affiliation(s)
- Amber Wilkerson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nita Bhat
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hoang Quoc Hai Pham
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Seher Yuksel
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Igor Butovich
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- The Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
17
|
Wang DH, Wang Z, Chen R, Kothapalli KSD, Brenna JT. Very Long-Chain Branched-Chain Fatty Acids in Chia Seeds: Implications for Human Use. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13871-13878. [PMID: 33172266 DOI: 10.1021/acs.jafc.0c05612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dairy and fermented foods are common sources of dietary branched-chain fatty acids (BCFA) of chain lengths C13-C18 serving a putative prebiotic role and a component of human integument. Few studies have reported on nonfermented plant-derived BCFA in human diets or cosmetics. A three-ion monitoring method was adapted to confirm branch position of ultratrace (<0.01%, w/w) BCFA. We identified chia as a new source of BCFA with C15-C35 chain lengths. Surprisingly, even-numbered very long-chain BCFA (VLC BCFA), anteiso-22:0, anteiso-24:0, and anteiso-26:0 were unequivocally identified in natural products for the first time. Plant-derived BCFA are predominantly anteiso, in contrast with similar iso and anteiso levels in ruminant and fermented foods. Chia seeds contain 0.4% BCFA, w/w of total fatty acids, or 32 mg BCFA in a food serving, surpassing other plant oils. Topical administration of chia seed oil containing VLC BCFA may have a role in skin and hair functionality.
Collapse
Affiliation(s)
- Dong Hao Wang
- Dell Pediatric Research Institute, Department of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
- Department of Food Science, Cornell University, Ithaca, New York 14853, United States
| | - Zhen Wang
- Dell Pediatric Research Institute, Department of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
- Department of Food Science, Cornell University, Ithaca, New York 14853, United States
| | - Raymond Chen
- Dell Pediatric Research Institute, Department of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
| | - K S D Kothapalli
- Dell Pediatric Research Institute, Department of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Department of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
- Department of Food Science, Cornell University, Ithaca, New York 14853, United States
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
18
|
Tanno H, Sassa T, Sawai M, Kihara A. Production of branched-chain very-long-chain fatty acids by fatty acid elongases and their tissue distribution in mammals. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158842. [PMID: 33069870 DOI: 10.1016/j.bbalip.2020.158842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 01/12/2023]
Abstract
Although most mammalian fatty acids (FAs) are straight-chain, there also exist branched-chain FAs such as iso- and anteiso-FAs, especially in the meibomian glands. Meibum lipids, which are secreted from the meibomian glands and are important for dry eye prevention, contain abundant branched-chain lipids, such as cholesteryl esters and wax esters with chain-lengths of ≥C21 (very-long-chain; VLC). However, the exact tissue distribution of branched-chain lipids or the enzymes involved in the production of branched-chain VLCFAs has remained poorly understood. Here, we revealed that FA elongases ELOVL1, ELOVL3, and ELOVL7, of the seven mammalian ELOVL isozymes, elongated saturated branched-chain acyl-CoAs. ELOVL3 was highly active toward iso-C17:0 and anteiso-C17:0 acyl-CoAs and elongated them up to iso-C23:0 and anteiso-C25:0 acyl-CoAs, respectively. ELOVL1 elongated both iso- and anteiso-C23:0 acyl-CoAs to C25:0 acyl-CoAs. By establishing a liquid chromatography-tandem mass spectrometry method capable of separating branched- and straight-chain lipids, we showed that essentially all of the cholesteryl esters and 88% of the wax esters in the mouse meibomian glands are branched. In Elovl1 mutant mice, the levels of ≥C24:0 branched-chain cholesteryl esters and ≥C25:0 branched-chain wax esters were decreased, indicating that ELOVL1 indeed elongates branched-chain VLC acyl-CoAs in vivo. In addition, substantial amounts of ceramides containing branched-chain FAs were present in the skin, meibomian glands, and liver. Our findings provide new insights into the molecular mechanisms that create FA and lipid diversity.
Collapse
Affiliation(s)
- Honoka Tanno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | - Megumi Sawai
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|
19
|
Lavatelli A, de Mendoza D, Mansilla MC. Defining Caenorhabditis elegans as a model system to investigate lipoic acid metabolism. J Biol Chem 2020; 295:14973-14986. [PMID: 32843480 DOI: 10.1074/jbc.ra120.013760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/22/2020] [Indexed: 11/06/2022] Open
Abstract
Lipoic acid (LA) is a sulfur-containing cofactor that covalently binds to a variety of cognate enzymes that are essential for redox reactions in all three domains of life. Inherited mutations in the enzymes that make LA, namely lipoyl synthase, octanoyltransferase, and amidotransferase, result in devastating human metabolic disorders. Unfortunately, because many aspects of this essential pathway are still obscure, available treatments only serve to alleviate symptoms. We envisioned that the development of an organismal model system might provide new opportunities to interrogate LA biochemistry, biology, and physiology. Here we report our investigations on three Caenorhabditis elegans orthologous proteins involved in this post-translational modification. We established that M01F1.3 is a lipoyl synthase, ZC410.7 an octanoyltransferase, and C45G3.3 an amidotransferase. Worms subjected to RNAi against M01F1.3 and ZC410.7 manifest larval arrest in the second generation. The arrest was not rescued by LA supplementation, indicating that endogenous synthesis of LA is essential for C. elegans development. Expression of the enzymes M01F1.3, ZC410.7, and C45G3.3 completely rescue bacterial or yeast mutants affected in different steps of the lipoylation pathway, indicating functional overlap. Thus, we demonstrate that, similarly to humans, C. elegans is able to synthesize LA de novo via a lipoyl-relay pathway, and suggest that this nematode could be a valuable model to dissect the role of protein mislipoylation and to develop new therapies.
Collapse
Affiliation(s)
- Antonela Lavatelli
- Laboratory of Microbial Physiology, Institute of Molecular and Cellular Biology of Rosario, National Scientific and Technical Research Council, Rosario, Santa Fe, Argentina; Department of Microbiology, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Rosario, Santa Fe, Argentina
| | - Diego de Mendoza
- Laboratory of Microbial Physiology, Institute of Molecular and Cellular Biology of Rosario, National Scientific and Technical Research Council, Rosario, Santa Fe, Argentina; Department of Microbiology, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Rosario, Santa Fe, Argentina
| | - María Cecilia Mansilla
- Laboratory of Microbial Physiology, Institute of Molecular and Cellular Biology of Rosario, National Scientific and Technical Research Council, Rosario, Santa Fe, Argentina; Department of Microbiology, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Rosario, Santa Fe, Argentina.
| |
Collapse
|
20
|
Effects of excess sugars and lipids on the growth and development of Caenorhabditis elegans. GENES AND NUTRITION 2020; 15:1. [PMID: 32015763 PMCID: PMC6988283 DOI: 10.1186/s12263-020-0659-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Background Excessive intake of carbohydrates and fats causes over-nutrition, leading to a variety of diseases and complications. Here, we characterized the effects of different types of sugar and lipids on the growth and development of Caenorhabditis elegans. Methods We measured the lifespan, reproductive capacity, and length of nematodes after sugars and lipids treatment alone and co-treatment of sugars and lipids. Furthermore, we studied the mechanisms underlying the damage caused by high-sucrose and high-stearic acid on C.elegans by using transcriptome sequencing technology. Results The results showed that a certain concentration of sugar and lipid promoted the growth and development of nematodes. However, excessive sugars and lipids shortened the lifespan and length of nematodes and destroyed their reproductive capacity. Based on the results of the orthogonal test, we selected 400 mmol/L sucrose and 500 μg/mL stearic acid to model a high-sugar and high-lipid diet for C. elegans. Conclusion High-sugar and high-lipid intake altered the expression of genes involved in biofilm synthesis, genes that catalyze the synthesis and degradation of endogenous substances, and genes involved in innate immunity, resulting in physiological damage. Furthermore, we explored the protective effect of resveratrol on high-sugar and high-lipid damage to nematodes. Resveratrol plays a role in repairing by participating in the metabolism of foreign substances and reducing cellular oxidative stress.
Collapse
|
21
|
Zečić A, Dhondt I, Braeckman BP. The nutritional requirements of Caenorhabditis elegans. GENES AND NUTRITION 2019; 14:15. [PMID: 31080524 PMCID: PMC6501307 DOI: 10.1186/s12263-019-0637-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Animals require sufficient intake of a variety of nutrients to support their development, somatic maintenance and reproduction. An adequate diet provides cell building blocks, chemical energy to drive cellular processes and essential nutrients that cannot be synthesised by the animal, or at least not in the required amounts. Dietary requirements of nematodes, including Caenorhabditis elegans have been extensively studied with the major aim to develop a chemically defined axenic medium that would support their growth and reproduction. At the same time, these studies helped elucidating important aspects of nutrition-related biochemistry and metabolism as well as the establishment of C. elegans as a powerful model in studying evolutionarily conserved pathways, and the influence of the diet on health.
Collapse
Affiliation(s)
- Aleksandra Zečić
- Department of Biology, Laboratory of Aging Physiology and Molecular Evolution, Ghent University, 9000 Ghent, Belgium
| | - Ineke Dhondt
- Department of Biology, Laboratory of Aging Physiology and Molecular Evolution, Ghent University, 9000 Ghent, Belgium
| | - Bart P Braeckman
- Department of Biology, Laboratory of Aging Physiology and Molecular Evolution, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
22
|
Zdraljevic S, Fox BW, Strand C, Panda O, Tenjo FJ, Brady SC, Crombie TA, Doench JG, Schroeder FC, Andersen EC. Natural variation in C. elegans arsenic toxicity is explained by differences in branched chain amino acid metabolism. eLife 2019; 8:40260. [PMID: 30958264 PMCID: PMC6453569 DOI: 10.7554/elife.40260] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 03/26/2019] [Indexed: 12/29/2022] Open
Abstract
We find that variation in the dbt-1 gene underlies natural differences in Caenorhabditis elegans responses to the toxin arsenic. This gene encodes the E2 subunit of the branched-chain α-keto acid dehydrogenase (BCKDH) complex, a core component of branched-chain amino acid (BCAA) metabolism. We causally linked a non-synonymous variant in the conserved lipoyl domain of DBT-1 to differential arsenic responses. Using targeted metabolomics and chemical supplementation, we demonstrate that differences in responses to arsenic are caused by variation in iso-branched chain fatty acids. Additionally, we show that levels of branched chain fatty acids in human cells are perturbed by arsenic treatment. This finding has broad implications for arsenic toxicity and for arsenic-focused chemotherapeutics across human populations. Our study implicates the BCKDH complex and BCAA metabolism in arsenic responses, demonstrating the power of C. elegans natural genetic diversity to identify novel mechanisms by which environmental toxins affect organismal physiology. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Stefan Zdraljevic
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States.,Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Bennett William Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | | | - Oishika Panda
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States.,The Buck Institute for Research on Aging, Novato, United States
| | - Francisco J Tenjo
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Shannon C Brady
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States.,Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Tim A Crombie
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Erik C Andersen
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States.,Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, United States
| |
Collapse
|
23
|
Grankvist N, Lagerborg KA, Jain M, Nilsson R. Gabapentin Can Suppress Cell Proliferation Independent of the Cytosolic Branched-Chain Amino Acid Transferase 1 (BCAT1). Biochemistry 2018; 57:6762-6766. [PMID: 30427175 DOI: 10.1021/acs.biochem.8b01031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The metabolism of branched-chain amino acids (BCAA) has recently been implicated in the growth of several cancer cell types. Gabapentin, a synthetic amino acid, is commonly used in high concentrations in this context to inhibit the cytosolic branched-chain amino acid transferase (BCAT1) enzyme. Here, we report that 10 mM gabapentin reduces the growth of HCT116 cells, which have an active branched-chain amino acid transferase but express very low levels of BCAT1, and presumably rely on the mitochondrial BCAT2 enzyme. Gabapentin did not affect transamination of BCAA to branched-chain keto acids (BCKA) in HCT116 cells, nor the reverse formation of BCAA from BCKA, indicating that the branched-chain amino acid transaminase is not inhibited. Moreover, the growth-inhibitory effect of gabapentin could not be rescued by supplementation with BCKA, and this was not due to the lack of uptake of BCKA, indicating that other effects of gabapentin are important. An untargeted LC-MS analysis of gabapentin-treated cells revealed a marked depletion of branched-chain carnitines. These results demonstrate that gabapentin at high concentrations can inhibit cell proliferation without affecting BCAT1 and may affect mitochondrial BCKA catabolism.
Collapse
Affiliation(s)
- Nina Grankvist
- Cardiovascular Medicine Unit, Department of Medicine, Solna , Karolinska Institutet , Stockholm SE-17176 , Sweden.,Karolinska University Hospital , Stockholm SE-17176 , Sweden.,Center for Molecular Medicine , Karolinska Institutet , Stockholm SE-17176 , Sweden
| | - Kim A Lagerborg
- Departments of Medicine and Pharmacology , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Mohit Jain
- Departments of Medicine and Pharmacology , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Roland Nilsson
- Cardiovascular Medicine Unit, Department of Medicine, Solna , Karolinska Institutet , Stockholm SE-17176 , Sweden.,Karolinska University Hospital , Stockholm SE-17176 , Sweden.,Center for Molecular Medicine , Karolinska Institutet , Stockholm SE-17176 , Sweden
| |
Collapse
|
24
|
Grankvist N, Watrous JD, Lagerborg KA, Lyutvinskiy Y, Jain M, Nilsson R. Profiling the Metabolism of Human Cells by Deep 13C Labeling. Cell Chem Biol 2018; 25:1419-1427.e4. [PMID: 30270114 DOI: 10.1016/j.chembiol.2018.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/15/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022]
Abstract
Studying metabolic activities in living cells is crucial for understanding human metabolism, but facile methods for profiling metabolic activities in an unbiased, hypothesis-free manner are still lacking. To address this need, we here introduce the deep-labeling method, which combines a custom 13C medium with high-resolution mass spectrometry. A proof-of-principle study on human cancer cells demonstrates that deep labeling can identify hundreds of endogenous metabolites as well as active and inactive pathways. For example, protein and nucleic acids were almost exclusively de novo synthesized, while lipids were partly derived from serum; synthesis of cysteine, carnitine, and creatine was absent, suggesting metabolic dependencies; and branched-chain keto acids (BCKAs) were formed and metabolized to short-chain acylcarnitines, but did not enter the tricarboxylic acid cycle. Remarkably, BCKAs could substitute for essential amino acids to support growth. The deep-labeling method may prove useful to map metabolic phenotypes across a range of cell types and conditions.
Collapse
Affiliation(s)
- Nina Grankvist
- Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm 171 76, Sweden; Karolinska University Hospital, Stockholm 171 76, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm 171 76, Sweden
| | - Jeramie D Watrous
- Departments of Medicine and Pharmacology, University of California, San Diego; 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kim A Lagerborg
- Departments of Medicine and Pharmacology, University of California, San Diego; 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yaroslav Lyutvinskiy
- Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm 171 76, Sweden; Karolinska University Hospital, Stockholm 171 76, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm 171 76, Sweden
| | - Mohit Jain
- Departments of Medicine and Pharmacology, University of California, San Diego; 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Roland Nilsson
- Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm 171 76, Sweden; Karolinska University Hospital, Stockholm 171 76, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm 171 76, Sweden.
| |
Collapse
|
25
|
Watts JL, Ristow M. Lipid and Carbohydrate Metabolism in Caenorhabditis elegans. Genetics 2017; 207:413-446. [PMID: 28978773 PMCID: PMC5629314 DOI: 10.1534/genetics.117.300106] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Lipid and carbohydrate metabolism are highly conserved processes that affect nearly all aspects of organismal biology. Caenorhabditis elegans eat bacteria, which consist of lipids, carbohydrates, and proteins that are broken down during digestion into fatty acids, simple sugars, and amino acid precursors. With these nutrients, C. elegans synthesizes a wide range of metabolites that are required for development and behavior. In this review, we outline lipid and carbohydrate structures as well as biosynthesis and breakdown pathways that have been characterized in C. elegans We bring attention to functional studies using mutant strains that reveal physiological roles for specific lipids and carbohydrates during development, aging, and adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| |
Collapse
|
26
|
Abstract
Meibum is a lipid-rich secretion that is produced by fully differentiated meibocytes in the holocrine Meibomian glands (MG) of humans and most mammals. The secretion is a part of a defense mechanism that protects the ocular surface from hazardous environmental factors, and from desiccation. Meibomian lipids that have been identified in meibum are very diverse and unique in nature. The lipid composition of meibum is different from virtually any other lipid pool found in the human body. In fact, meibum is quite different from sebum, which is the closest secretion that is produced by anatomically, physiologically, and biochemically related sebaceous glands. However, meibum of mice have been shown to closely resemble that of humans, implying similar biosynthetic mechanisms in MG of both species. By analyzing available genomic, immunohistochemical, and lipidomic data, we have envisioned a unifying network of enzymatic reactions that are responsible for biosynthesis of meibum, which we call meibogenesis. Our current theory is based on an assumption that most of the biosynthetic reactions of meibogenesis are catalyzed by known enzymes. However, the main features that make meibum unique - the ratio of identified classes of lipids, the extreme length of its components, extensive ω-hydroxylation of fatty acids and alcohols, iso- and anteiso-branching of meibomian lipids (e.g. waxes), and the presence of rather unique complex lipids with several ester bonds - make it possible that either the activity of known enzymes is altered in MG, or some unknown enzymes contribute to the processes of meibogenesis, or both. Studies are in progress to elucidate meibogenesis on molecular level.
Collapse
Affiliation(s)
- Igor A Butovich
- Department of Ophthalmology and the Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9057, United States.
| |
Collapse
|
27
|
Meibomian glands, meibum, and meibogenesis. Exp Eye Res 2017; 163:2-16. [PMID: 28669846 DOI: 10.1016/j.exer.2017.06.020] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/14/2017] [Accepted: 06/28/2017] [Indexed: 12/28/2022]
Abstract
Meibum is a lipid-rich secretion that is produced by fully differentiated meibocytes in the holocrine Meibomian glands (MG) of humans and most mammals. The secretion is a part of a defense mechanism that protects the ocular surface from hazardous environmental factors, and from desiccation. Meibomian lipids that have been identified in meibum are very diverse and unique in nature. The lipid composition of meibum is different from virtually any other lipid pool found in the human body. In fact, meibum is quite different from sebum, which is the closest secretion that is produced by anatomically, physiologically, and biochemically related sebaceous glands. However, meibum of mice have been shown to closely resemble that of humans, implying similar biosynthetic mechanisms in MG of both species. By analyzing available genomic, immunohistochemical, and lipidomic data, we have envisioned a unifying network of enzymatic reactions that are responsible for biosynthesis of meibum, which we call meibogenesis. Our current theory is based on an assumption that most of the biosynthetic reactions of meibogenesis are catalyzed by known enzymes. However, the main features that make meibum unique - the ratio of identified classes of lipids, the extreme length of its components, extensive ω-hydroxylation of fatty acids and alcohols, iso- and anteiso-branching of meibomian lipids (e.g. waxes), and the presence of rather unique complex lipids with several ester bonds - make it possible that either the activity of known enzymes is altered in MG, or some unknown enzymes contribute to the processes of meibogenesis, or both. Studies are in progress to elucidate meibogenesis on molecular level.
Collapse
|
28
|
Hannich JT, Mellal D, Feng S, Zumbuehl A, Riezman H. Structure and conserved function of iso-branched sphingoid bases from the nematode Caenorhabditis elegans. Chem Sci 2017; 8:3676-3686. [PMID: 30155209 PMCID: PMC6094178 DOI: 10.1039/c6sc04831e] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/03/2017] [Indexed: 01/22/2023] Open
Abstract
Sphingolipids are bio-active metabolites that show structural diversity among eukaryotes. They are essential for growth of all eukaryotic cells but when produced in an uncontrolled manner can lead to cell death and pathologies including auto-immune reactions, cancer, diabetes and neurodegeneration. Caenorhabditis elegans is an important genetic model organism both to find new drug-targets against parasitic nematodes and to study the conserved roles of sphingolipids in animals like their essential functions in very basic cellular processes ranging from maintenance of cell polarity and mitochondrial repair to growth and survival. C. elegans produces sphingoid bases which are structurally distinct from those of other animals as both iso- and anteiso-branched species have been reported. Using metabolic labeling we show that most worm sphingoid bases are iso-branched. We have synthesized the nematode-specific C17 iso-branched sphinganine and its 1-deoxy analogue and could show that both the iso-branch and the 1-hydroxyl group are essential to form functional nematode sphingolipids which are needed to maintain intestinal function. The organism specificity was examined by complementation experiments in Saccharomyces cerevisiae yeast cells lacking sphingoid base synthesis. We found that iso-branched sphingoid base did not support growth of mutant cells and was toxic to wild type yeast. 1-Deoxy sphingolipids have been linked to the hereditary disease HSAN1A and other metabolic disorders including diabetes. We found that in C. elegans the 1-deoxy analogue cannot rescue the intestinal phenotype caused by sphingoid base depletion. In fact, in wild-type animals with normal sphingoid base biosynthesis, exogenous 1-deoxy analogue had a disruptive effect on apical cytoskeletal organization of intestinal cells indicating that atypical bases can interfere with normal sphingolipid function.
Collapse
Affiliation(s)
- J Thomas Hannich
- Department of Biochemistry , University of Geneva , CH-1205 Geneva , Switzerland .
- National Centre of Competence in Research (NCCR) "Chemical Biology" , Switzerland
| | - Denia Mellal
- Department of Chemistry , University of Fribourg , CH-1700 Fribourg , Switzerland .
- National Centre of Competence in Research (NCCR) "Chemical Biology" , Switzerland
| | - Suihan Feng
- Department of Biochemistry , University of Geneva , CH-1205 Geneva , Switzerland .
- National Centre of Competence in Research (NCCR) "Chemical Biology" , Switzerland
| | - Andreas Zumbuehl
- Department of Chemistry , University of Fribourg , CH-1700 Fribourg , Switzerland .
- National Centre of Competence in Research (NCCR) "Chemical Biology" , Switzerland
| | - Howard Riezman
- Department of Biochemistry , University of Geneva , CH-1205 Geneva , Switzerland .
- National Centre of Competence in Research (NCCR) "Chemical Biology" , Switzerland
| |
Collapse
|