1
|
Liu D, Liu Z, Hu Y, Xiong W, Wang D, Zeng Z. MOMP: A critical event in cell death regulation and anticancer treatment. Biochim Biophys Acta Rev Cancer 2025; 1880:189280. [PMID: 39947442 DOI: 10.1016/j.bbcan.2025.189280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
Mitochondrial outer membrane permeabilization (MOMP) refers to the increase in permeability of the mitochondrial outer membrane, allowing proteins, DNA, and other molecules to pass through the intermembrane space into the cytosol. As a crucial event in the induction of apoptosis, MOMP plays a significant role in regulating various forms of cell death, including apoptosis, ferroptosis, and pyroptosis. Importantly, MOMP is not a binary process of "all-or-nothing." Under sub-lethal stress stimuli, cells may experience a phenomenon referred to as minority MOMP (miMOMP), where only a subset of mitochondria undergo functional impairment, thereby disrupting the normal life cycle of the cell. This can lead to pathological and physiological changes such as tumor formation, cellular senescence, innate immune dysfunction, and chronic inflammation. This review focuses on the diversity of MOMP events to elucidate how varying degrees of MOMP under different stress conditions influence cell fate. Additionally, it summarizes the current research progress on novel antitumor therapeutic strategies targeting MOMP in clinical contexts.
Collapse
Affiliation(s)
- Dan Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ziqi Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yan Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Subas Satish HP, Iyer S, Shi MX, Wong AW, Fischer KC, Wardak AZ, Lio D, Brouwer JM, Uren RT, Czabotar PE, Miller MS, Kluck RM. A novel inhibitory BAK antibody enables assessment of non-activated BAK in cancer cells. Cell Death Differ 2024; 31:711-721. [PMID: 38582955 PMCID: PMC11164899 DOI: 10.1038/s41418-024-01289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024] Open
Abstract
BAX and BAK are pro-apoptotic members of the BCL2 family that are required to permeabilize the mitochondrial outer membrane. The proteins can adopt a non-activated monomeric conformation, or an activated conformation in which the exposed BH3 domain facilitates binding either to a prosurvival protein or to another activated BAK or BAX protein to promote pore formation. Certain cancer cells are proposed to have high levels of activated BAK sequestered by MCL1 or BCLXL, thus priming these cells to undergo apoptosis in response to BH3 mimetic compounds that target MCL1 or BCLXL. Here we report the first antibody, 14G6, that is specific for the non-activated BAK conformer. A crystal structure of 14G6 Fab bound to BAK revealed a binding site encompassing both the α1 helix and α5-α6 hinge regions of BAK, two sites involved in the unfolding of BAK during its activation. In mitochondrial experiments, 14G6 inhibited BAK unfolding triggered by three diverse BAK activators, supporting crucial roles for both α1 dissociation and separation of the core (α2-α5) and latch (α6-α9) regions in BAK activation. 14G6 bound the majority of BAK in several leukaemia cell lines, and binding decreased following treatment with BH3 mimetics, indicating only minor levels of constitutively activated BAK in those cells. In summary, 14G6 provides a new means of assessing BAK status in response to anti-cancer treatments.
Collapse
Affiliation(s)
- Hema Preethi Subas Satish
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sweta Iyer
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Melissa X Shi
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Agnes W Wong
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Karla C Fischer
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ahmad Z Wardak
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daisy Lio
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jason M Brouwer
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rachel T Uren
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michelle S Miller
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Ruth M Kluck
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
3
|
Zhang Z, Hou L, Liu D, Luan S, Huang M, Zhao L. Directly targeting BAX for drug discovery: Therapeutic opportunities and challenges. Acta Pharm Sin B 2024; 14:2378-2401. [PMID: 38828138 PMCID: PMC11143528 DOI: 10.1016/j.apsb.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 06/05/2024] Open
Abstract
For over two decades, the development of B-cell lymphoma-2 (Bcl-2) family therapeutics has primarily focused on anti-apoptotic proteins, resulting in the first-in-class drugs called BH3 mimetics, especially for Bcl-2 inhibitor Venetoclax. The pro-apoptotic protein Bcl-2-associated X protein (BAX) plays a crucial role as the executioner protein of the mitochondrial regulated cell death, contributing to organismal development, tissue homeostasis, and immunity. The dysregulation of BAX is closely associated with the onset and progression of diseases characterized by pathologic cell survival or death, such as cancer, neurodegeneration, and heart failure. In addition to conducting thorough investigations into the physiological modulation of BAX, research on the regulatory mechanisms of small molecules identified through biochemical screening approaches has prompted the identification of functional and potentially druggable binding sites on BAX, as well as diverse all-molecule BAX modulators. This review presents recent advancements in elucidating the physiological and pharmacological modulation of BAX and in identifying potentially druggable binding sites on BAX. Furthermore, it highlights the structural and mechanistic insights into small-molecule modulators targeting diverse binding surfaces or conformations of BAX, offering a promising avenue for developing next-generation apoptosis modulators to treat a wide range of diseases associated with dysregulated cell death by directly targeting BAX.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linghui Hou
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shenglin Luan
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen 518000, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
4
|
Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol 2023; 24:732-748. [PMID: 37438560 DOI: 10.1038/s41580-023-00629-4] [Citation(s) in RCA: 223] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
The proteins of the BCL-2 family are key regulators of mitochondrial apoptosis, acting as either promoters or inhibitors of cell death. The functional interplay and balance between the opposing BCL-2 family members control permeabilization of the outer mitochondrial membrane, leading to the release of activators of the caspase cascade into the cytosol and ultimately resulting in cell death. Despite considerable research, our knowledge about the mechanisms of the BCL-2 family of proteins remains insufficient, which complicates cell fate predictions and does not allow us to fully exploit these proteins as targets for drug discovery. Detailed understanding of the formation and molecular architecture of the apoptotic pore in the outer mitochondrial membrane remains a holy grail in the field, but new studies allow us to begin constructing a structural model of its arrangement. Recent literature has also revealed unexpected activities for several BCL-2 family members that challenge established concepts of how they regulate mitochondrial permeabilization. In this Review, we revisit the most important advances in the field and integrate them into a new structure-function-based classification of the BCL-2 family members that intends to provide a comprehensive model for BCL-2 action in apoptosis. We close this Review by discussing the potential of drugging the BCL-2 family in diseases characterized by aberrant apoptosis.
Collapse
Affiliation(s)
- Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Ana J Garcia-Saez
- Membrane Biophysics, Institute of Genetics, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Lopez A, Reyna DE, Gitego N, Kopp F, Zhou H, Miranda-Roman MA, Nordstrøm LU, Narayanagari SR, Chi P, Vilar E, Tsirigos A, Gavathiotis E. Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer. Nat Commun 2022; 13:1199. [PMID: 35256598 PMCID: PMC8901805 DOI: 10.1038/s41467-022-28741-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/09/2022] [Indexed: 01/20/2023] Open
Abstract
Deregulation of the BCL-2 family interaction network ensures cancer resistance to apoptosis and is a major challenge to current treatments. Cancer cells commonly evade apoptosis through upregulation of the BCL-2 anti-apoptotic proteins; however, more resistant cancers also downregulate or inactivate pro-apoptotic proteins to suppress apoptosis. Here, we find that apoptosis resistance in a diverse panel of solid and hematological malignancies is mediated by both overexpression of BCL-XL and an unprimed apoptotic state, limiting direct and indirect activation mechanisms of pro-apoptotic BAX. Both survival mechanisms can be overcome by the combination of an orally bioavailable BAX activator, BTSA1.2 with Navitoclax. The combination demonstrates synergistic efficacy in apoptosis-resistant cancer cells, xenografts, and patient-derived tumors while sparing healthy tissues. Additionally, functional assays and genomic markers are identified to predict sensitive tumors to the combination treatment. These findings advance the understanding of apoptosis resistance mechanisms and demonstrate a novel therapeutic strategy for cancer treatment. Deregulation of the BCL-2 family interactions ensures cancer resistance to apoptosis and is a major challenge to current treatments. Here the authors describe a novel therapeutic strategy to overcome two anti-apoptotic mechanisms for cancer therapy.
Collapse
|
6
|
Physiological and pharmacological modulation of BAX. Trends Pharmacol Sci 2022; 43:206-220. [PMID: 34848097 PMCID: PMC8840970 DOI: 10.1016/j.tips.2021.11.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 01/29/2023]
Abstract
Bcl-2-associated X protein (BAX) is a critical executioner of mitochondrial regulated cell death through its lethal activity of permeabilizing the mitochondrial outer membrane (MOM). While the physiological function of BAX ensures tissue homeostasis, dysregulation of BAX leads to aberrant cell death. Despite BAX being a promising therapeutic target for human diseases, historically the development of drugs has focused on antiapoptotic BCL-2 proteins, due to challenges in elucidating the mechanism of BAX activation and identifying druggable surfaces of BAX. Here, we discuss recent studies that have provided structure-function insights and identified regulatory surfaces that control BAX activation. Moreover, we emphasize the development of small molecule orthosteric, allosteric, and oligomerization modulators that provide novel opportunities for biological investigation and progress towards drugging BAX.
Collapse
|
7
|
BAX mitochondrial integration is regulated allosterically by its α1-α2 loop. Cell Death Differ 2021; 28:3270-3281. [PMID: 34135480 DOI: 10.1038/s41418-021-00815-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/08/2022] Open
Abstract
The conformational changes converting BAX from an inert cytosolic monomer into the homo-oligomers that permeabilize the mitochondrial outer membrane (MOM) are crucial steps toward apoptosis. Here, we have explored the potential role of the BAX α1-α2 loop in this process by three mutagenic approaches: replacing loop segments with cognate loop regions from closely related proteins, alanine scanning and analysis of BAX α1-α2 loop missense mutations observed in tumours. Responsiveness to a death signal, such as tBID, was reduced by mutations in the N-terminal but not C-terminal half of the loop. N-terminal loop variants, which were enriched in tumours, impaired MOM integration by allosterically reducing exposure of the BAX α9 transmembrane anchor. Most C-terminal loop variants reduced BAX stability, leading to increased BAX apoptotic function in some variants. Thus, our systematic mutagenesis suggests that the two halves of the α1-α2 loop have distinct functions. We show that the N-terminal half of the loop (its first nine residues) comprises an important allosteric regulator of BAX activation by setting the proportion of MOM-integrated BAX following a death signal. The enrichment of N-terminal loop mutations in tumours indicates that they may promote tumour cell survival and underscore the loop as a target for therapeutic manipulation of BAX function.
Collapse
|
8
|
Li K, van Delft MF, Dewson G. Too much death can kill you: inhibiting intrinsic apoptosis to treat disease. EMBO J 2021; 40:e107341. [PMID: 34037273 DOI: 10.15252/embj.2020107341] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Apoptotic cell death is implicated in both physiological and pathological processes. Since many types of cancerous cells intrinsically evade apoptotic elimination, induction of apoptosis has become an attractive and often necessary cancer therapeutic approach. Conversely, some cells are extremely sensitive to apoptotic stimuli leading to neurodegenerative disease and immune pathologies. However, due to several challenges, pharmacological inhibition of apoptosis is still only a recently emerging strategy to combat pathological cell loss. Here, we describe several key steps in the intrinsic (mitochondrial) apoptosis pathway that represent potential targets for inhibitors in disease contexts. We also discuss the mechanisms of action, advantages and limitations of small-molecule and peptide-based inhibitors that have been developed to date. These inhibitors serve as important research tools to dissect apoptotic signalling and may foster new treatments to reduce unwanted cell loss.
Collapse
Affiliation(s)
- Kaiming Li
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, Australia
| | - Mark F van Delft
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, Australia
| | - Grant Dewson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Gao K, Liu M, Li Y, Wang L, Zhao C, Zhao X, Zhao J, Ding Y, Tang H, Jia Y, Wang J, Wen A. Lyciumamide A, a dimer of phenolic amide, protects against NMDA-induced neurotoxicity and potential mechanisms in vitro. J Mol Histol 2021; 52:449-459. [PMID: 33755822 DOI: 10.1007/s10735-020-09952-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
Currently, the excessive activation of N-methyl-D-aspartate receptors (NMDARs) is considered to be a crucial mechanism of brain injury. Lycium barbarum A (LyA) is a dimer of phenol amides isolated from the fruit of Lycium barbarum. Our previous studies have shown that LyA has potential antioxidant activity. This study aimed to explore the neuroprotective effect of LyA and its potential mechanism. Firstly, the molecular docking was used to preliminarily explore the potential function of LyA to block NMDAR. Then, the ability of LyA was further verified by NMDA-induced human neuroblastoma SH-SY5Y cells in vivo. Treatment with LyA significantly attenuated NMDA-induced neuronal insults by increasing cell viability, reducing lactate dehydrogenase (LDH) release, and increasing cell survival. Meanwhile, LyA significantly reversed the increase in intracellular calcium and in ROS production induced by NMDA. Finally, the western blot indicated that LyA could suppress the Ca2+ influx and increase the p-NR2B, p-CaMKII, p-JNK, and p-p38 level induced by NMDA. These above findings provide evidence that LyA protect against brain injury, and restraining NMDARs and suppressing mitochondrial oxidative stress and inhibiting cell apoptosis may be involved in the protective mechanism.
Collapse
Affiliation(s)
- Kai Gao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Meiyou Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan Li
- Department of Pharmacy, Xi'an Children's Hospital, Xi'an, China
| | - Lei Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chao Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xian Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jinyi Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Haifeng Tang
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yanyan Jia
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
10
|
Spitz AZ, Zacharioudakis E, Reyna DE, Garner TP, Gavathiotis E. Eltrombopag directly inhibits BAX and prevents cell death. Nat Commun 2021; 12:1134. [PMID: 33602934 PMCID: PMC7892824 DOI: 10.1038/s41467-021-21224-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/14/2021] [Indexed: 01/08/2023] Open
Abstract
The BCL-2 family protein BAX has essential activity in mitochondrial regulation of cell death. While BAX activity ensures tissue homeostasis, when dysregulated it contributes to aberrant cell death in several diseases. During cellular stress BAX is transformed from an inactive cytosolic conformation to a toxic mitochondrial oligomer. Although the BAX transformation process is not well understood, drugs that interfere with this process are useful research tools and potential therapeutics. Here, we show that Eltrombopag, an FDA-approved drug, is a direct inhibitor of BAX. Eltrombopag binds the BAX trigger site distinctly from BAX activators, preventing them from triggering BAX conformational transformation and simultaneously promoting stabilization of the inactive BAX structure. Accordingly, Eltrombopag is capable of inhibiting BAX-mediated apoptosis induced by cytotoxic stimuli. Our data demonstrate structure-function insights into a mechanism of BAX inhibition and reveal a mechanism for Eltrombopag that may expand its use in diseases of uncontrolled cell death.
Collapse
Affiliation(s)
- Adam Z Spitz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emmanouil Zacharioudakis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Denis E Reyna
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Thomas P Garner
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
- Institute of Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
11
|
Okyere SK, Mo Q, Pei G, Ren Z, Deng J, Hu Y. Euptox A Induces G0 /GI arrest and apoptosis of hepatocyte via ROS, mitochondrial dysfunction and caspases-dependent pathways in vivo. J Toxicol Sci 2020; 45:661-671. [PMID: 33132240 DOI: 10.2131/jts.45.661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
As a toxin of Ageratina adenophora (A. adenophora), euptox A (9-oxo-10, 11-dehydroageraphorone) is known to cause hepatotoxicity in animals. In this study, we examined the effects of euptox A on mouse liver cells and its underlying mechanisms for the first time. We found that euptox A induced liver cell cycle arrest and apoptosis in a dose-dependent manner mainly by mitochondria -related pathways, with the affected cells characterized by the appearance of DNA fragmentation, membrane blebbing, and chromatin condensation. The results showed that euptox A similarly induced hepatocyte G0 /GI arrest and apoptosis mainly by ROS accumulation and mitochondria-mediated and caspase-dependent pathways, elucidated by the loss of mitochondrial membrane potential, release of cytochrome C and AIF, activation of caspase-3/-9, Bax, as well as suppression of Bcl-2. This paper will provide new insights into the mechanisms involved in liver toxicity caused by euptox A in mice.
Collapse
Affiliation(s)
- Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Quan Mo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, China.,Xichang College, China
| | - Gao Pei
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, China
| |
Collapse
|
12
|
Amgalan D, Garner TP, Pekson R, Jia XF, Yanamandala M, Paulino V, Liang FG, Corbalan JJ, Lee J, Chen Y, Karagiannis GS, Sanchez LR, Liang H, Narayanagari SR, Mitchell K, Lopez A, Margulets V, Scarlata M, Santulli G, Asnani A, Peterson RT, Hazan RB, Condeelis JS, Oktay MH, Steidl U, Kirshenbaum LA, Gavathiotis E, Kitsis RN. A small-molecule allosteric inhibitor of BAX protects against doxorubicin-induced cardiomyopathy. NATURE CANCER 2020; 1:315-328. [PMID: 32776015 PMCID: PMC7413180 DOI: 10.1038/s43018-020-0039-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/29/2020] [Indexed: 12/27/2022]
Abstract
Doxorubicin remains an essential component of many cancer regimens, but its use is limited by lethal cardiomyopathy, which has been difficult to target, owing to pleiotropic mechanisms leading to apoptotic and necrotic cardiac cell death. Here we show that BAX is rate-limiting in doxorubicin-induced cardiomyopathy and identify a small-molecule BAX inhibitor that blocks both apoptosis and necrosis to prevent this syndrome. By allosterically inhibiting BAX conformational activation, this compound blocks BAX translocation to mitochondria, thereby abrogating both forms of cell death. When co-administered with doxorubicin, this BAX inhibitor prevents cardiomyopathy in zebrafish and mice. Notably, cardioprotection does not compromise the efficacy of doxorubicin in reducing leukemia or breast cancer burden in vivo, primarily due to increased priming of mitochondrial death mechanisms and higher BAX levels in cancer cells. This study identifies BAX as an actionable target for doxorubicin-induced cardiomyopathy and provides a prototype small-molecule therapeutic.
Collapse
Affiliation(s)
- Dulguun Amgalan
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Thomas P Garner
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ryan Pekson
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xiaotong F Jia
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mounica Yanamandala
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Cardiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor Paulino
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Felix G Liang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - J Jose Corbalan
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jaehoon Lee
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yun Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - George S Karagiannis
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Luis Rivera Sanchez
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Surgery, Montefiore Medical Center, Bronx, NY, USA
| | - Huizhi Liang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Swathi-Rao Narayanagari
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kelly Mitchell
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrea Lopez
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Victoria Margulets
- Departments of Physiology and Pathophysiology and Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Marco Scarlata
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gaetano Santulli
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aarti Asnani
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Randall T Peterson
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Rachel B Hazan
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John S Condeelis
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Surgery, Montefiore Medical Center, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maja H Oktay
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ulrich Steidl
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lorrie A Kirshenbaum
- Departments of Physiology and Pathophysiology and Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Evripidis Gavathiotis
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, USA.
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
13
|
Dengler MA, Robin AY, Gibson L, Li MX, Sandow JJ, Iyer S, Webb AI, Westphal D, Dewson G, Adams JM. BAX Activation: Mutations Near Its Proposed Non-canonical BH3 Binding Site Reveal Allosteric Changes Controlling Mitochondrial Association. Cell Rep 2019; 27:359-373.e6. [DOI: 10.1016/j.celrep.2019.03.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/13/2019] [Accepted: 03/12/2019] [Indexed: 12/26/2022] Open
|
14
|
Jensen K, WuWong DJ, Wong S, Matsuyama M, Matsuyama S. Pharmacological inhibition of Bax-induced cell death: Bax-inhibiting peptides and small compounds inhibiting Bax. Exp Biol Med (Maywood) 2019; 244:621-629. [PMID: 30836793 DOI: 10.1177/1535370219833624] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Bax induces mitochondria-dependent programed cell death. While cytotoxic drugs activating Bax have been developed for cancer treatment, clinically effective therapeutics suppressing Bax-induced cell death rescuing essential cells have not been developed. This mini-review will summarize previously reported Bax inhibitors including peptides, small compounds, and antibodies. We will discuss potential applications and the future direction of these Bax inhibitors.
Collapse
Affiliation(s)
- Kelsey Jensen
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - David Jasen WuWong
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Sean Wong
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Mieko Matsuyama
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Shigemi Matsuyama
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Garner TP, Amgalan D, Reyna DE, Li S, Kitsis RN, Gavathiotis E. Small-molecule allosteric inhibitors of BAX. Nat Chem Biol 2019; 15:322-330. [PMID: 30718816 PMCID: PMC6430685 DOI: 10.1038/s41589-018-0223-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/18/2018] [Indexed: 01/06/2023]
Abstract
BAX is a critical effector of the mitochondrial cell death pathway in response to a diverse range of stimuli in physiological and disease contexts. Upon binding by BH3-only proteins, cytosolic BAX undergoes conformational activation and translocation, resulting in mitochondrial outer membrane permeabilization. Efforts to rationally target BAX and develop inhibitors have been elusive, despite the clear therapeutic potential of inhibiting BAX-mediated cell death in a host of diseases. Here, we describe a class of small molecule BAX inhibitors, termed BAIs, which bind directly to a previously unrecognized pocket and allosterically inhibit BAX activation. BAI-binding around the hydrophobic helix α5 using hydrophobic and hydrogen bonding interactions stabilizes key areas of the hydrophobic core. BAIs inhibit conformational events in BAX activation that prevent BAX mitochondrial translocation and oligomerization. Our data highlight a novel paradigm for effective and selective pharmacological targeting of BAX to enable rational development of inhibitors of BAX-mediated cell death.
Collapse
Affiliation(s)
- Thomas P Garner
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dulguun Amgalan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Denis E Reyna
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA. .,Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA. .,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
16
|
Reyna DE, Gavathiotis E. Liposomal Permeabilization Assay to Study the Functional Interactions of the BCL-2 Family. Methods Mol Biol 2019; 1877:111-119. [PMID: 30536001 PMCID: PMC6487637 DOI: 10.1007/978-1-4939-8861-7_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Apoptosis, a form of programmed cell death that is important for development and homeostasis, is regulated by the BCL-2 family of proteins. Over twenty BCL-2 family members have been classified in three groups based on structural homology and function. The multidomain antiapoptotic proteins promote survival, whereas the multidomain and the BH3-only proapoptotic members induce cell death. Because the interaction among the BCL-2 family members occurs primarily at the mitochondrial outer membrane, biochemical assays using artificial liposomes have been developed to study the functional relationship between these proteins. The liposomal permeabilization assay is a cell-free system that relies on the ability of multidomain pro-apoptotic members to promote membrane permeabilization upon activation. By encapsulating a fluorophore and a quencher into liposomes, the degree of permeabilization can be quantified by the increase in fluorescence intensity as the fluorophore and quencher dissociate. The liposomal permeabilization assay has been used to delineate interactions among BCL-2 family members as well as to characterize peptides, small molecules, and lipids that modulate the function of BCL-2 family of proteins. Here, we describe in detail the permeabilization of liposomes induced by the interaction between BAX and BH3-only activator tBID.
Collapse
Affiliation(s)
- Denis E Reyna
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
17
|
Abstract
The BCL-2 protein family plays central roles in the mitochondrial pathway of cell apoptosis. The BCL-2-Associated X protein (BAX), along with other proapoptotic proteins, induces cell death in response to a variety of stress stimuli. Upon receipt of killing signals, cytosolic BAX is activated and translocates to mitochondria where it causes mitochondrial outer membrane permeabilization (MOMP) and initials a series of cellular events that eventually lead to cell destruction. Despite recent progress toward understanding the structure, function, and activation mechanism of BAX, detailed information about how cytosolic BAX can be inhibited is still limited. Here we describe a method of selecting synthetic antibody fragments (Fabs) against BAX using phage display. Synthetic antibodies discovered from the selection have been used as structural probes to gain novel mechanistic details on BAX inhibition. This synthetic antibody selection method could be potentially applied to other BCL-2 proteins.
Collapse
Affiliation(s)
- Zhou Dai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
18
|
|
19
|
Ensemble Properties of Bax Determine Its Function. Structure 2018; 26:1346-1359.e5. [PMID: 30122452 DOI: 10.1016/j.str.2018.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 05/31/2018] [Accepted: 07/21/2018] [Indexed: 11/20/2022]
Abstract
BAX and BAK are essential mediators of intrinsic apoptosis that permeabilize the mitochondrial outer membrane. BAX activation requires its translocation from cytosol to mitochondria where conformational changes cause its oligomerization. To better understand the critical step of translocation, we examined its blockade by mutation near the C terminus (P168G) or by antibody binding near the N terminus. Similarities in the crystal structures of wild-type and BAX P168G but significant other differences suggest that cytosolic BAX exists as an ensemble of conformers, and that the distribution of conformers within the ensemble determines the different functions of wild-type and mutant proteins. We also describe the structure of BAX in complex with an antibody, 3C10, that inhibits cytosolic BAX by limiting exposure of the membrane-associating helix α9, as does the P168G mutation. Our data for both means of BAX inhibition argue for an allosteric model of BAX regulation that derives from properties of the ensemble of conformers.
Collapse
|
20
|
Reyna DE, Garner TP, Lopez A, Kopp F, Choudhary GS, Sridharan A, Narayanagari SR, Mitchell K, Dong B, Bartholdy BA, Walensky LD, Verma A, Steidl U, Gavathiotis E. Direct Activation of BAX by BTSA1 Overcomes Apoptosis Resistance in Acute Myeloid Leukemia. Cancer Cell 2017; 32:490-505.e10. [PMID: 29017059 PMCID: PMC5793879 DOI: 10.1016/j.ccell.2017.09.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/28/2017] [Accepted: 08/30/2017] [Indexed: 12/28/2022]
Abstract
The BCL-2 family protein BAX is a central mediator of apoptosis. Overexpression of anti-apoptotic BCL-2 proteins contributes to tumor development and resistance to therapy by suppressing BAX and its activators. We report the discovery of BTSA1, a pharmacologically optimized BAX activator that binds with high affinity and specificity to the N-terminal activation site and induces conformational changes to BAX leading to BAX-mediated apoptosis. BTSA1-induced BAX activation effectively promotes apoptosis in leukemia cell lines and patient samples while sparing healthy cells. BAX expression levels and cytosolic conformation regulate sensitivity to BTSA1. BTSA1 potently suppressed human acute myeloid leukemia (AML) xenografts and increased host survival without toxicity. This study provides proof-of-concept for direct BAX activation as a treatment strategy in AML.
Collapse
Affiliation(s)
- Denis E Reyna
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Thomas P Garner
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrea Lopez
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Felix Kopp
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gaurav S Choudhary
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Ashwin Sridharan
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Swathi-Rao Narayanagari
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kelly Mitchell
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Baoxia Dong
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Boris A Bartholdy
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Loren D Walensky
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amit Verma
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Ulrich Steidl
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Evripidis Gavathiotis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
21
|
Interrogation of side chain biases for oligomannose recognition by antibody 2G12 via structure-guided phage display libraries. Bioorg Med Chem 2017; 25:5790-5798. [PMID: 28947103 DOI: 10.1016/j.bmc.2017.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/01/2017] [Accepted: 09/09/2017] [Indexed: 12/19/2022]
Abstract
Monoclonal antibodies (mAbs) are essential reagents for deciphering gene or protein function and have been a fruitful source of therapeutic and diagnostic agents. However, developing anticarbohydrate antibodies to target glycans for those purposes has been less successful because the molecular basis for glycan-mAb interactions is poorly understood relative to protein- or peptide-binding mAbs. Here, we report our investigation on glycan-mAb interactions by using the unique architectural scaffold of 2G12, an antibody that targets oligomannoses on the HIV-1 glycoprotein gp120, as the template for engineering highly specific mAbs to target glycans. We first analyzed 24 different X-ray structures of antiglycan mAbs from the Protein Data Bank to determine side chain amino acid distributions in of glycan-mAb interactions. We identified Tyr, Arg, Asn, Ser, Asp, and His as the six most prevalent residues in the glycan-mAb contacts. We then utilized this information to construct two phage display libraries ("Lib1" and "Lib2") in which positions on the heavy chain variable domains of 2G12 were allowed to vary in restricted manner among Tyr, Asp, Ser, His, Asn, Thr, Ala and Pro to interrogate the minimal physicochemical requirements for oligomannose recognition. We analyzed the sequences of 39 variants from Lib1 and 14 variants from Lib2 following selection against gp120, the results showed that there is a high degree of malleability within the 2G12 for glycan recognitions. We further characterized five unique phage clones from both libraries that exhibited a gp120-specific binding profile. Expression of two of these variants as soluble mAbs indicated that, while specificity of gp120-binding was retained, the affinity of these mutants was significantly reduced relative to WT 2G12. Nonetheless, the results indicate these is some malleability in the identity of contact residues and provide a novel insight into the nature of glycan-antibody interactions and how they may differ from protein-antibody binding interactions.
Collapse
|
22
|
Progress in targeting the BCL-2 family of proteins. Curr Opin Chem Biol 2017; 39:133-142. [PMID: 28735187 DOI: 10.1016/j.cbpa.2017.06.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/14/2017] [Accepted: 06/14/2017] [Indexed: 01/31/2023]
Abstract
The network of protein-protein interactions among the BCL-2 protein family plays a critical role in regulating cellular commitment to mitochondrial apoptosis. Anti-apoptotic BCL-2 proteins are considered promising targets for drug discovery and exciting clinical progress has stimulated intense investigations in the broader family. Here, we discuss recent developments in small molecules targeting anti-apoptotic proteins and alternative approaches to targeting BCL-2 family interactions. These studies advance our understanding of the role of BCL-2 family proteins in physiology and disease, providing unique tools for dissecting these functions. The BCL-2 family of proteins is a prime example of targeting protein-protein interactions and further chemical biology approaches will increase opportunities for novel targeted therapies in cancer, autoimmune and aging-associated diseases.
Collapse
|
23
|
Garner TP, Reyna DE, Priyadarshi A, Chen HC, Li S, Wu Y, Ganesan YT, Malashkevich VN, Cheng EH, Gavathiotis E. An Autoinhibited Dimeric Form of BAX Regulates the BAX Activation Pathway. Mol Cell 2016; 63:485-97. [PMID: 27425408 PMCID: PMC4975667 DOI: 10.1016/j.molcel.2016.06.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 12/21/2022]
Abstract
Pro-apoptotic BAX is a cell fate regulator playing an important role in cellular homeostasis and pathological cell death. BAX is predominantly localized in the cytosol, where it has a quiescent monomer conformation. Following a pro-apoptotic trigger, cytosolic BAX is activated and translocates to the mitochondria to initiate mitochondrial dysfunction and apoptosis. Here, cellular, biochemical, and structural data unexpectedly demonstrate that cytosolic BAX also has an inactive dimer conformation that regulates its activation. The full-length crystal structure of the inactive BAX dimer revealed an asymmetric interaction consistent with inhibition of the N-terminal conformational change of one protomer and the displacement of the C-terminal helix α9 of the second protomer. This autoinhibited BAX dimer dissociates to BAX monomers before BAX can be activated. Our data support a model whereby the degree of apoptosis induction is regulated by the conformation of cytosolic BAX and identify an unprecedented mechanism of cytosolic BAX inhibition.
Collapse
Affiliation(s)
- Thomas P Garner
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Denis E Reyna
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Amit Priyadarshi
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hui-Chen Chen
- Human Oncology and Pathogenesis Program and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sheng Li
- Department of Medicine and UCSD DXMS Proteomics Resource, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yang Wu
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yogesh Tengarai Ganesan
- Human Oncology and Pathogenesis Program and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vladimir N Malashkevich
- Department of Biochemistry and Department of Biophysics and Physiology, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
24
|
Abstract
Phage display is an in vitro selection technique that allows for the rapid isolation of proteins with desired properties including increased affinity, specificity, stability, and new enzymatic activity. The power of phage display relies on the phenotype-to-genotype linkage of the protein of interest displayed on the phage surface with the encoding DNA packaged within the phage particle, which allows for selective enrichment of library pools and high-throughput screening of resulting clones. As an in vitro method, the conditions of the binding selection can be tightly controlled. Due to the high-throughput nature, rapidity, and ease of use, phage display is an excellent technological platform for engineering antibody or proteins with enhanced properties. Here, we describe methods for synthesis, selection, and screening of phage libraries with particular emphasis on designing humanizing antibody libraries and combinatorial scanning mutagenesis libraries. We conclude with a brief section on troubleshooting for all stages of the phage display process.
Collapse
Affiliation(s)
- J C Frei
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - J R Lai
- Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
25
|
Iyer S, Anwari K, Alsop AE, Yuen WS, Huang DCS, Carroll J, Smith NA, Smith BJ, Dewson G, Kluck RM. Identification of an activation site in Bak and mitochondrial Bax triggered by antibodies. Nat Commun 2016; 7:11734. [PMID: 27217060 PMCID: PMC4890306 DOI: 10.1038/ncomms11734] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
During apoptosis, Bak and Bax are activated by BH3-only proteins binding to the α2–α5 hydrophobic groove; Bax is also activated via a rear pocket. Here we report that antibodies can directly activate Bak and mitochondrial Bax by binding to the α1–α2 loop. A monoclonal antibody (clone 7D10) binds close to α1 in non-activated Bak to induce conformational change, oligomerization, and cytochrome c release. Anti-FLAG antibodies also activate Bak containing a FLAG epitope close to α1. An antibody (clone 3C10) to the Bax α1–α2 loop activates mitochondrial Bax, but blocks translocation of cytosolic Bax. Tethers within Bak show that 7D10 binding directly extricates α1; a structural model of the 7D10 Fab bound to Bak reveals the formation of a cavity under α1. Our identification of the α1–α2 loop as an activation site in Bak paves the way to develop intrabodies or small molecules that directly and selectively regulate these proteins. During apoptosis, Bak and Bax are activated by BH3-only proteins binding to a specific hydrophobic groove. Here, the authors show that antibodies can also activate Bak and mitochondrial Bax by binding to the α1-α2 loop, thus identifying a potential clinical target.
Collapse
Affiliation(s)
- Sweta Iyer
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia
| | - Khatira Anwari
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia
| | - Amber E Alsop
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia
| | - Wai Shan Yuen
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - David C S Huang
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia
| | - John Carroll
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Nicholas A Smith
- Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria 3086, Australia
| | - Brian J Smith
- Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria 3086, Australia
| | - Grant Dewson
- Cell Signalling and Cell Death Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia
| | - Ruth M Kluck
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia
| |
Collapse
|