1
|
Numata S, Hara T, Izawa M, Okuno Y, Sato Y, Yamane S, Maki H, Sato T, Yamano Y. Novel humanized anti-PcrV monoclonal antibody COT-143 protects mice from lethal Pseudomonas aeruginosa infection via inhibition of toxin translocation by the type III secretion system. Antimicrob Agents Chemother 2024; 68:e0069424. [PMID: 39269189 PMCID: PMC11459929 DOI: 10.1128/aac.00694-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Treatment of Pseudomonas aeruginosa infection is challenging due to its intrinsic and acquired antibiotic resistance. As the number of current therapeutic options for P. aeruginosa infections is limited, developing novel treatments against the pathogen is an urgent clinical priority. The suppression of virulence of P. aeruginosa could be a new therapeutic option, and the type III secretion system (T3SS), which enables the bacteria to translocate various kinds of toxins into host cells and inhibits cellular functions, is considered as one possible target. In this report, we examined T3SS inhibition by COT-143/INFEX702, a humanized monoclonal antibody against PcrV, T3SS component, and present the crystal structure of the antibody-PcrV complex. COT-143 inhibited T3SS-dependent cytotoxicity and protected mice from the mortality caused by P. aeruginosa infection. The inhibition of cytotoxicity coincided with inhibition of translocon formation in a host cell membrane, which is necessary for T3SS intoxication. COT-143 protected murine neutrophils and facilitated phagocytosis of P. aeruginosa. These results suggest that COT-143 facilitates P. aeruginosa clearance by protecting neutrophil via inhibition of T3SS-dependent toxin translocation. This is the first report to show that an anti-PcrV antibody directly interferes with translocon formation to inhibit intoxication of host cells.
Collapse
Affiliation(s)
- Shunsuke Numata
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Takafumi Hara
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Masaaki Izawa
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Yosuke Okuno
- Shionogi TechnoAdvance Research & Co., Ltd., Toyonaka, Japan
| | - Yasuhiko Sato
- Business Development Department, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Shoji Yamane
- Shionogi TechnoAdvance Research & Co., Ltd., Toyonaka, Japan
| | - Hideki Maki
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Takafumi Sato
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Yoshinori Yamano
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Toyonaka, Japan
| |
Collapse
|
2
|
Gershberg J, Morhaim M, Rostrovsky I, Eichler J, Sal-Man N. The sequence of events of enteropathogenic E. coli's type III secretion system translocon assembly. iScience 2024; 27:109108. [PMID: 38375228 PMCID: PMC10875159 DOI: 10.1016/j.isci.2024.109108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Many bacterial pathogens employ the type III secretion system (T3SS), a specialized complex that transports effector proteins that manipulate various cellular processes. The T3SS forms a translocon pore within the host-cell membrane consisting of two secreted proteins that transition from a soluble state into a transmembrane complex. Still, the exact sequence of events leading to the formation of a membranous functional pore remains uncertain. Here, we utilized the translocon proteins of enteropathogenic E. coli (EPEC) to investigate the sequence of those steps leading to translocon assembly, including self-oligomerization, hetero-oligomerization, interprotein interaction, and membrane insertion. We found that in EPEC, EspD (SctE) plays a dominant role in pore formation as it assembles into an oligomeric state, regardless of pH, membrane contact, or the presence of EspB (SctB). Subsequently, EspB subunits integrate into EspD homo-oligomers to create EspB-EspD hetero-oligomers that adopt a transmembrane orientation to create a functional pore complex.
Collapse
Affiliation(s)
- Jenia Gershberg
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - May Morhaim
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Irina Rostrovsky
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
3
|
Guo H, Geddes EJ, Opperman TJ, Heuck AP. Cell-Based Assay to Determine Type 3 Secretion System Translocon Assembly in Pseudomonas aeruginosa Using Split Luciferase. ACS Infect Dis 2023; 9:2652-2664. [PMID: 37978950 DOI: 10.1021/acsinfecdis.3c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Multi-drug-resistant Pseudomonas aeruginosa poses a serious threat to hospitalized patients. This organism expresses an arsenal of virulence factors that enables it to readily establish infections and disseminate in the host. The Type 3 secretion system (T3SS) and its associated effectors play a crucial role in the pathogenesis of P. aeruginosa, making them attractive targets for the development of novel therapeutic agents. The T3SS translocon, composed of PopD and PopB, is an essential component of the T3SS secretion apparatus. In the properly assembled translocon, the N-terminus of PopD protrudes into the cytoplasm of the target mammalian cell, which can be exploited as a molecular indicator of functional translocon assembly. In this article, we describe a novel whole-cell-based assay that employs the split NanoLuc luciferase detection system to provide a readout for translocon assembly. The assay demonstrates a favorable signal/noise ratio (13.6) and robustness (Z' = 0.67), making it highly suitable for high-throughput screening of small-molecule inhibitors targeting T3SS translocon assembly.
Collapse
Affiliation(s)
- Hanling Guo
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Emily J Geddes
- Microbiotix, Inc., Worcester, Massachusetts 01605, United States
| | | | - Alejandro P Heuck
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Farag SI, Francis MK, Gurung JM, Wai SN, Stenlund H, Francis MS, Nadeem A. Macrophage innate immune responses delineate between defective translocon assemblies produced by Yersinia pseudotuberculosis YopD mutants. Virulence 2023; 14:2249790. [PMID: 37621095 PMCID: PMC10461508 DOI: 10.1080/21505594.2023.2249790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/11/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Translocon pores formed in the eukaryotic cell membrane by a type III secretion system facilitate the translocation of immune-modulatory effector proteins into the host cell interior. The YopB and YopD proteins produced and secreted by pathogenic Yersinia spp. harboring a virulence plasmid-encoded type III secretion system perform this pore-forming translocator function. We had previously characterized in vitro T3SS function and in vivo pathogenicity of a number of strains encoding sited-directed point mutations in yopD. This resulted in the classification of mutants into three different classes based upon the severity of the phenotypic defects. To investigate the molecular and functional basis for these defects, we explored the effectiveness of RAW 264.7 cell line to respond to infection by representative YopD mutants of all three classes. Signature cytokine profiles could separate the different YopD mutants into distinct categories. The activation and suppression of certain cytokines that function as central innate immune response modulators correlated well with the ability of mutant bacteria to alter anti-phagocytosis and programmed cell death pathways. These analyses demonstrated that sub-optimal translocon pores impact the extent and magnitude of host cell responsiveness, and this limits the capacity of pathogenic Yersinia spp. to fortify against attack by both early and late arms of the host innate immune response.
Collapse
Affiliation(s)
- Salah I. Farag
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Monika K. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Jyoti M. Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Hans Stenlund
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
- Swedish Metabolomics Centre (SMC), Umeå, Sweden
| | - Matthew S. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Aftab Nadeem
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Huang B, Zhu Z, Dai Y, Yan C, Xu J, Sun L, Zhang Q, An X, Lai F. Characterization of translocon proteins in the type III secretion system of Lawsonia intracellularis. Vet Res 2023; 54:108. [PMID: 37993950 PMCID: PMC10664548 DOI: 10.1186/s13567-023-01243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023] Open
Abstract
Lawsonia intracellularis, the etiologic agent of proliferative enteropathy (PE), is an obligate intracellular Gram-negative bacterium possessing a type III secretion system (T3SS), which enables the pathogen to translocate effector proteins into targeted host cells to modulate their functions. T3SS is a syringe-like apparatus consisting of a base, an extracellular needle, a tip, and a translocon. The translocon proteins assembled by two hydrophobic membrane proteins can form pores in the host-cell membrane, and therefore play an essential role in the function of T3SS. To date, little is known about the T3SS and translocon proteins of L. intracellularis. In this study, we first analyzed the conservation of the T3S apparatus between L. intracellularis and Yersinia, and characterized the putative T3S hydrophobic major translocon protein LI1158 and minor translocon protein LI1159 in the L. intracellularis genome. Then, by using Yersinia pseudotuberculosis as a surrogate system, we found that the full-length LI1158 and LI1159 proteins, but not the putative class II chaperone LI1157, were secreted in a - Ca2+ and T3SS-dependent manner and the secretion signal was located at the N terminus (aa 1-40). Furthermore, yeast-two hybrid experiments revealed that LI1158 and LI1159 could self-interact, and LI1159 could interact with LI1157. However, unlike CPn0809 and YopB, which are the major hydrophobic translocon proteins of the T3SS of C. pneumoniae and Yersinia, respectively, full-length LI1158 was non-toxic to both yeast and Escherichia coli cells, but full-length LI1159 showed certain toxicity to E. coli cells. Taken together, despite some differences from the findings in other bacteria, our results demonstrate that LI1158 and LI1159 may be the translocon proteins of L. intracellularis T3SS, and probably play important roles in the translocation of effector proteins at the early pathogen infection stage.
Collapse
Affiliation(s)
- Beibei Huang
- School of Bioscience and Bioengineering, Nanchang Key Laboratory of Fermentation Application Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zihe Zhu
- School of Bioscience and Bioengineering, Nanchang Key Laboratory of Fermentation Application Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yimin Dai
- School of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chengxian Yan
- School of Bioscience and Bioengineering, Nanchang Key Laboratory of Fermentation Application Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jingyu Xu
- School of Bioscience and Bioengineering, Nanchang Key Laboratory of Fermentation Application Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lingling Sun
- School of Bioscience and Bioengineering, Nanchang Key Laboratory of Fermentation Application Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qinghua Zhang
- School of Bioscience and Bioengineering, Nanchang Key Laboratory of Fermentation Application Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xuejiao An
- School of Bioscience and Bioengineering, Nanchang Key Laboratory of Fermentation Application Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Fenju Lai
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, Jiangxi, China.
| |
Collapse
|
6
|
Gil-Gil T, Cuesta T, Hernando-Amado S, Reales-Calderón JA, Corona F, Linares JF, Martínez JL. Virulence and Metabolism Crosstalk: Impaired Activity of the Type Three Secretion System (T3SS) in a Pseudomonas aeruginosa Crc-Defective Mutant. Int J Mol Sci 2023; 24:12304. [PMID: 37569678 PMCID: PMC10419072 DOI: 10.3390/ijms241512304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous nosocomial opportunistic pathogen that harbors many virulence determinants. Part of P. aeruginosa success colonizing a variety of habitats resides in its metabolic robustness and plasticity, which are the basis of its capability of adaptation to different nutrient sources and ecological conditions, including the infected host. Given this situation, it is conceivable that P. aeruginosa virulence might be, at least in part, under metabolic control, in such a way that virulence determinants are produced just when needed. Indeed, it has been shown that the catabolite repression control protein Crc, which together with the RNA chaperon Hfq regulates the P. aeruginosa utilization of carbon sources at the post-transcriptional level, also regulates, directly or indirectly, virulence-related processes in P. aeruginosa. Among them, Crc regulates P. aeruginosa cytotoxicity, likely by modulating the activity of the Type III Secretion System (T3SS), which directly injects toxins into eukaryotic host cells. The present work shows that the lack of Crc produces a Type III Secretion-defective phenotype in P. aeruginosa. The observed impairment is a consequence of a reduced expression of the genes encoding the T3SS, together with an impaired secretion of the proteins involved. Our results support that the impaired T3SS activity of the crc defective mutant is, at least partly, a consequence of a defective protein export, probably due to a reduced proton motive force. This work provides new information about the complex regulation of the expression and the activity of the T3SS in P. aeruginosa. Our results highlight the need of a robust bacterial metabolism, which is defective in the ∆crc mutant, to elicit complex and energetically costly virulence strategies, as that provided by the T3SS.
Collapse
Affiliation(s)
- Teresa Gil-Gil
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Trinidad Cuesta
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Sara Hernando-Amado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Jose Antonio Reales-Calderón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Fernando Corona
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Juan F. Linares
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - José L. Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
7
|
Chen P, Goldberg MB. Recent insights into type-3 secretion system injectisome structure and mechanism of human enteric pathogens. Curr Opin Microbiol 2023; 71:102232. [PMID: 36368294 PMCID: PMC10510281 DOI: 10.1016/j.mib.2022.102232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022]
Abstract
Type-3 secretion system injectisomes are multiprotein complexes that translocate bacterial effector proteins from the cytoplasm of gram-negative bacteria directly into the cytosol of eukaryotic host cells. These systems are present in more than 30 bacterial species, including numerous human, animal, and plant pathogens. We review recent discoveries of structural and molecular mechanisms of effector protein translocation through the injectisomes and recent advances in the understanding of mechanisms of activation of effector protein secretion.
Collapse
Affiliation(s)
- Poyin Chen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Marcia B Goldberg
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
8
|
Godlee C, Holden DW. Transmembrane substrates of type three secretion system injectisomes. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001292. [PMID: 36748571 PMCID: PMC9993115 DOI: 10.1099/mic.0.001292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The type three secretion system injectisome of Gram-negative bacterial pathogens injects virulence proteins, called effectors, into host cells. Effectors of mammalian pathogens carry out a range of functions enabling bacterial invasion, replication, immune suppression and transmission. The injectisome secretes two translocon proteins that insert into host cell membranes to form a translocon pore, through which effectors are delivered. A subset of effectors also integrate into infected cell membranes, enabling a unique range of biochemical functions. Both translocon proteins and transmembrane effectors avoid cytoplasmic aggregation and integration into the bacterial inner membrane. Translocated transmembrane effectors locate and integrate into the appropriate host membrane. In this review, we focus on transmembrane translocon proteins and effectors of bacterial pathogens of mammals. We discuss what is known about the mechanisms underlying their membrane integration, as well as the functions conferred by the position of injectisome effectors within membranes.
Collapse
Affiliation(s)
- Camilla Godlee
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
- Present address: Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
- *Correspondence: Camilla Godlee, ;
| | - David W. Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
- *Correspondence: David W. Holden,
| |
Collapse
|
9
|
PopB-PcrV Interactions Are Essential for Pore Formation in the Pseudomonas aeruginosa Type III Secretion System Translocon. mBio 2022; 13:e0238122. [PMID: 36154276 PMCID: PMC9600203 DOI: 10.1128/mbio.02381-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type III secretion system (T3SS) is a syringe-like virulence factor that delivers bacterial proteins directly into the cytoplasm of host cells. An essential component of the system is the translocon, which creates a pore in the host cell membrane through which proteins are injected. In Pseudomonas aeruginosa, the translocation pore is formed by proteins PopB and PopD and attaches to the T3SS needle via the needle tip protein PcrV. The structure and stoichiometry of the multimeric pore are unknown. We took a genetic approach to map contact points within the system by taking advantage of the fact that the translocator proteins of P. aeruginosa and the related Aeromonas hydrophila T3SS are incompatible and cannot be freely exchanged. We created chimeric versions of P. aeruginosa PopB and A. hydrophila AopB to intentionally disrupt and restore protein-protein interactions. We identified a chimeric B-translocator that specifically disrupts an interaction with the needle tip protein. This disruption did not affect membrane insertion of the B-translocator but did prevent formation of the translocation pore, arguing that the needle tip protein drives the formation of the translocation pore. IMPORTANCE Type III secretion systems are integral to the pathogenesis of many Gram-negative bacterial pathogens. A hallmark of these secretion systems is that they deliver effector proteins vectorially into the targeted host cell via a translocation pore. The translocon is crucial for T3SS function, but it has proven difficult to study biochemically and structurally. Here, we used a genetic approach to identify protein-protein contacts among translocator proteins that are important for function. This genetic approach allowed us to specifically break a contact between the translocator PopB and the T3SS needle tip protein PcrV. Breaking this contact allowed us to determine, for the first time, that the needle tip actively participates in the assembly of the translocation pore by the membrane-bound pore-forming translocator proteins. Our study therefore both expands our knowledge of the network of functionally important interactions among translocator proteins and illuminates a new step in the assembly of this critical host cell interface.
Collapse
|
10
|
Evolutionary Conservation, Variability, and Adaptation of Type III Secretion Systems. J Membr Biol 2022; 255:599-612. [PMID: 35695900 DOI: 10.1007/s00232-022-00247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
Type III secretion (T3S) systems are complex bacterial structures used by many pathogens to inject proteins directly into the cytosol of the host cell. These secretion machines evolved from the bacterial flagella and they have been grouped into families by phylogenetic analysis. The T3S system is composed of more than 20 proteins grouped into five complexes: the cytosolic platform, the export apparatus, the basal body, the needle, and the translocon complex. While the proteins located inside the bacterium are conserved, those exposed to the external media present high variability among families. This suggests that the T3S systems have adapted to interact with different cells or tissues in the host, and/or have been subjected to the evolutionary pressure of the host immune defenses. Such adaptation led to changes in the sequence of the T3S needle tip and translocon suggesting differences in the mechanism of assembly and structure of this complex.
Collapse
|
11
|
The type 3 secretion system requires actin polymerization to open translocon pores. PLoS Pathog 2021; 17:e1009932. [PMID: 34499700 PMCID: PMC8454972 DOI: 10.1371/journal.ppat.1009932] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/21/2021] [Accepted: 08/31/2021] [Indexed: 11/19/2022] Open
Abstract
Many bacterial pathogens require a type 3 secretion system (T3SS) to establish a niche. Host contact activates bacterial T3SS assembly of a translocon pore in the host plasma membrane. Following pore formation, the T3SS docks onto the translocon pore. Docking establishes a continuous passage that enables the translocation of virulence proteins, effectors, into the host cytosol. Here we investigate the contribution of actin polymerization to T3SS-mediated translocation. Using the T3SS model organism Shigella flexneri, we show that actin polymerization is required for assembling the translocon pore in an open conformation, thereby enabling effector translocation. Opening of the pore channel is associated with a conformational change to the pore, which is dependent upon actin polymerization and a coiled-coil domain in the pore protein IpaC. Analysis of an IpaC mutant that is defective in ruffle formation shows that actin polymerization-dependent pore opening is distinct from the previously described actin polymerization-dependent ruffles that are required for bacterial internalization. Moreover, actin polymerization is not required for other pore functions, including docking or pore protein insertion into the plasma membrane. Thus, activation of the T3SS is a multilayered process in which host signals are sensed by the translocon pore leading to the activation of effector translocation.
Collapse
|
12
|
Gershberg J, Braverman D, Sal-Man N. Transmembrane domains of type III-secreted proteins affect bacterial-host interactions in enteropathogenic E. coli. Virulence 2021; 12:902-917. [PMID: 33729090 PMCID: PMC7993127 DOI: 10.1080/21505594.2021.1898777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many bacterial pathogens utilize a specialized secretion system, termed type III secretion system (T3SS), to translocate effector proteins into host cells and establish bacterial infection. The T3SS is anchored within the bacterial membranes and contains a long needle/filament that extends toward the host-cell and forms, at its distal end, a pore complex within the host membrane. The T3SS pore complex consists of two bacterial proteins, termed SctB and SctE, which have conflicting targeting indications; a signal sequence that targets to secretion to the extracellular environment via the T3SS, and transmembrane domains (TMDs) that target to membrane localization. In this study, we investigate whether the TMD sequences of SctB and SctE have special features that differentiate them from classical TMDs and allow them to escape bacterial membrane integration. For this purpose, we exchanged the SctB and SctE native TMDs for alternative hydrophobic sequences and found that the TMD sequences of SctB and SctE dictate membrane destination (bacterial versus host membrane). Moreover, we examined the role of the SctB TMD sequence in the activity of the full-length protein, post secretion, and found that the TMD does not serve only as a hydrophobic segment, but is also involved in the ability of the protein to translocate itself and other proteins into and across the host cell membrane.
Collapse
Affiliation(s)
- Jenia Gershberg
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dor Braverman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
13
|
Tang Y, Guo H, Vermeulen AJ, Heuck AP. Topological analysis of type 3 secretion translocons in native membranes. Methods Enzymol 2021; 649:397-429. [PMID: 33712194 DOI: 10.1016/bs.mie.2021.01.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PFPs (Pore-forming proteins) perforate cellular membranes to create an aqueous pore and allow the passage of ions and polar molecules. The molecular mechanisms for many of these PFPs have been elucidated by combining high resolution structural information of these proteins with biochemical and biophysical approaches. However, some PFPs do not adopt stable conformations and are difficult to study in vitro. An example of these proteins are the bacterial Type 3 Secretion (T3S) translocators. The translocators are secreted by the bacterium and insert into the target cell membrane to form a translocon pore providing a portal for the passage of T3S toxins into eukaryotic cells. Given the important role that the T3S systems play in pathogenesis, methods to study these translocon pores in cellular membranes are needed. Using a combination of protein modifications and methods to selectively permeate and solubilized eukaryotic membranes, we have established an experimental procedure to analyze the topology of the Pseudomonas aeruginosa T3S translocon using P. aeruginosa strain variants and HeLa cell lines.
Collapse
Affiliation(s)
- Yuzhou Tang
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, United States
| | - Hanling Guo
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, United States
| | - Arjan J Vermeulen
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, United States
| | - Alejandro P Heuck
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, United States.
| |
Collapse
|
14
|
Hillman Y, Gershberg J, Lustiger D, Even D, Braverman D, Dror Y, Ashur I, Vernick S, Sal-Man N, Wine Y. Monoclonal Antibody-Based Biosensor for Point-of-Care Detection of Type III Secretion System Expressing Pathogens. Anal Chem 2020; 93:928-935. [DOI: 10.1021/acs.analchem.0c03621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yaron Hillman
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Green building, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Jenia Gershberg
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 8410501, Israel
| | - Dan Lustiger
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Green building, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Dan Even
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Green building, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Dor Braverman
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 8410501, Israel
| | - Yael Dror
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Green building, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Idan Ashur
- Institute of Agricultural Engineering, Agricultural Research Organization, Volcani Center, 68 Hamaccabim Rd, Rishon Lezion 5025001, Israel
| | - Sefi Vernick
- Institute of Agricultural Engineering, Agricultural Research Organization, Volcani Center, 68 Hamaccabim Rd, Rishon Lezion 5025001, Israel
| | - Neta Sal-Man
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 8410501, Israel
| | - Yariv Wine
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Green building, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
15
|
Dey S, Chakravarty A, Guha Biswas P, De Guzman RN. The type III secretion system needle, tip, and translocon. Protein Sci 2019; 28:1582-1593. [PMID: 31301256 DOI: 10.1002/pro.3682] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 11/06/2022]
Abstract
Many Gram-negative bacteria pathogenic to plants and animals deploy the type III secretion system (T3SS) to inject virulence factors into their hosts. All bacteria that rely on the T3SS to cause infectious diseases in humans have developed antibiotic resistance. The T3SS is an attractive target for developing new antibiotics because it is essential in virulence, and part of its structural component is exposed on the bacterial surface. The structural component of the T3SS is the needle apparatus, which is assembled from over 20 different proteins and consists of a base, an extracellular needle, a tip, and a translocon. This review summarizes the current knowledge on the structure and assembly of the needle, tip, and translocon.
Collapse
Affiliation(s)
- Supratim Dey
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | | | | | | |
Collapse
|
16
|
Lyons BJE, Strynadka NCJ. On the road to structure-based development of anti-virulence therapeutics targeting the type III secretion system injectisome. MEDCHEMCOMM 2019; 10:1273-1289. [PMID: 31534650 PMCID: PMC6748289 DOI: 10.1039/c9md00146h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
Abstract
The type III secretion system injectisome is a syringe-like multimembrane spanning nanomachine that is essential to the pathogenicity but not viability of many clinically relevant Gram-negative bacteria, such as enteropathogenic Escherichia coli, Salmonella enterica and Pseudomonas aeruginosa. Due to the rise in antibiotic resistance, new strategies must be developed to treat the growing spectre of drug resistant infections. Targeting the injectisome via an 'anti-virulence strategy' is a promising avenue to pursue as an alternative to the more commonly used bactericidal therapeutics, which have a high propensity for resulting resistance development and often more broad killing profile, including unwanted side effects in eliminating favourable members of the microbiome. Building on more than a decade of crystallographic work of truncated or isolated forms of the more than two dozen components of the secretion apparatus, recent advances in the field of single-particle cryo-electron microscopy have allowed for the elucidation of atomic resolution structures for many of the type III secretion system components in their assembled, oligomerized state including the needle complex, export apparatus and ATPase. Cryo-electron tomography studies have also advanced our understanding of the direct pathogen-host interaction between the type III secretion system translocon and host cell membrane. These new structural works that further our understanding of the myriad of protein-protein interactions that promote injectisome function will be highlighted in this review, with a focus on those that yield promise for future anti-virulence drug discovery and design. Recently developed inhibitors, including both synthetic, natural product and peptide inhibitors, as well as promising new developments of immunotherapeutics will be discussed. As our understanding of this intricate molecular machinery advances, the development of anti-virulence inhibitors can be enhanced through structure-guided drug design.
Collapse
Affiliation(s)
- Bronwyn J E Lyons
- Department of Biochemistry and Molecular Biology and Center for Blood Research , University of British Columbia , 2350 Health Sciences Mall , Vancouver , British Columbia V6T 1Z3 , Canada .
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and Center for Blood Research , University of British Columbia , 2350 Health Sciences Mall , Vancouver , British Columbia V6T 1Z3 , Canada .
| |
Collapse
|
17
|
Diepold A. Assembly and Post-assembly Turnover and Dynamics in the Type III Secretion System. Curr Top Microbiol Immunol 2019; 427:35-66. [PMID: 31218503 DOI: 10.1007/82_2019_164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The type III secretion system (T3SS) is one of the largest transmembrane complexes in bacteria, comprising several intricately linked and embedded substructures. The assembly of this nanomachine is a hierarchical process which is regulated and controlled by internal and external cues at several critical points. Recently, it has become obvious that the assembly of the T3SS is not a unidirectional and deterministic process, but that parts of the T3SS constantly exchange or rearrange. This article aims to give an overview on the assembly and post-assembly dynamics of the T3SS, with a focus on emerging general concepts and adaptations of the general assembly pathway.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany.
| |
Collapse
|
18
|
Nauth T, Huschka F, Schweizer M, Bosse JB, Diepold A, Failla AV, Steffen A, Stradal TEB, Wolters M, Aepfelbacher M. Visualization of translocons in Yersinia type III protein secretion machines during host cell infection. PLoS Pathog 2018; 14:e1007527. [PMID: 30586431 PMCID: PMC6324820 DOI: 10.1371/journal.ppat.1007527] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/08/2019] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Type III secretion systems (T3SSs) are essential virulence factors of numerous bacterial pathogens. Upon host cell contact the T3SS machinery—also named injectisome—assembles a pore complex/translocon within host cell membranes that serves as an entry gate for the bacterial effectors. Whether and how translocons are physically connected to injectisome needles, whether their phenotype is related to the level of effector translocation and which target cell factors trigger their formation have remained unclear. We employed the superresolution fluorescence microscopy techniques Stimulated Emission Depletion (STED) and Structured Illumination Microscopy (SIM) as well as immunogold electron microscopy to visualize Y. enterocolitica translocons during infection of different target cell types. Thereby we were able to resolve translocon and needle complex proteins within the same injectisomes and demonstrate that these fully assembled injectisomes are generated in a prevacuole, a PI(4,5)P2 enriched host cell compartment inaccessible to large extracellular proteins like antibodies. Furthermore, the operable translocons were produced by the yersiniae to a much larger degree in macrophages (up to 25% of bacteria) than in HeLa cells (2% of bacteria). However, when the Rho GTPase Rac1 was activated in the HeLa cells, uptake of the yersiniae into the prevacuole, translocon formation and effector translocation were strongly enhanced reaching the same levels as in macrophages. Our findings indicate that operable T3SS translocons can be visualized as part of fully assembled injectisomes with superresolution fluorescence microscopy techniques. By using this technology, we provide novel information about the spatiotemporal organization of T3SS translocons and their regulation by host cell factors. Many human, animal and plant pathogenic bacteria employ a molecular machine termed injectisome to inject their toxins into host cells. Because injectisomes are crucial for these bacteria’s infectious potential they have been considered as targets for antiinfective drugs. Injectisomes are highly similar between the different bacterial pathogens and most of their overall structure is well established at the molecular level. However, only little information is available for a central part of the injectisome named the translocon. This pore-like assembly integrates into host cell membranes and thereby serves as an entry gate for the bacterial toxins. We used state of the art fluorescence microscopy to watch translocons of the diarrheagenic pathogen Yersinia enterocolitica during infection of human host cells. Thereby we could for the first time—with fluorescence microscopy—visualize translocons connected to other parts of the injectisome. Furthermore, because translocons mark functional injectisomes we could obtain evidence that injectisomes only become active for secretion of translocators when the bacteria are almost completely enclosed by host cells. These findings provide a novel view on the organization and regulation of bacterial translocons and may thus open up new strategies to block the function of infectious bacteria.
Collapse
Affiliation(s)
- Theresa Nauth
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Franziska Huschka
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jens B. Bosse
- Heinrich-Pette-Institute (HPI), Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Antonio Virgilio Failla
- UKE Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Theresia E. B. Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Manuel Wolters
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- * E-mail:
| |
Collapse
|
19
|
Park D, Lara-Tejero M, Waxham MN, Li W, Hu B, Galán JE, Liu J. Visualization of the type III secretion mediated Salmonella-host cell interface using cryo-electron tomography. eLife 2018; 7:39514. [PMID: 30281019 PMCID: PMC6175578 DOI: 10.7554/elife.39514] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 02/01/2023] Open
Abstract
Many important gram-negative bacterial pathogens use highly sophisticated type III protein secretion systems (T3SSs) to establish complex host-pathogen interactions. Bacterial-host cell contact triggers the activation of the T3SS and the subsequent insertion of a translocon pore into the target cell membrane, which serves as a conduit for the passage of effector proteins. Therefore the initial interaction between T3SS-bearing bacteria and host cells is the critical step in the deployment of the protein secretion machine, yet this process remains poorly understood. Here, we use high-throughput cryo-electron tomography (cryo-ET) to visualize the T3SS-mediated Salmonella-host cell interface. Our analysis reveals the intact translocon at an unprecedented level of resolution, its deployment in the host cell membrane, and the establishment of an intimate association between the bacteria and the target cells, which is essential for effector translocation. Our studies provide critical data supporting the long postulated direct injection model for effector translocation.
Collapse
Affiliation(s)
- Donghyun Park
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University School of Medicine, New Haven, United States
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas, United States
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University School of Medicine, New Haven, United States
| | - Bo Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas, United States.,Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas, United States
| | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University School of Medicine, New Haven, United States.,Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas, United States
| |
Collapse
|
20
|
Tang Y, Romano FB, Breña M, Heuck AP. The Pseudomonas aeruginosa type III secretion translocator PopB assists the insertion of the PopD translocator into host cell membranes. J Biol Chem 2018; 293:8982-8993. [PMID: 29685888 DOI: 10.1074/jbc.ra118.002766] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/10/2018] [Indexed: 11/06/2022] Open
Abstract
Many Gram-negative bacterial pathogens use a type III secretion system to infect eukaryotic cells. The injection of bacterial toxins or protein effectors via this system is accomplished through a plasma membrane channel formed by two bacterial proteins, termed translocators, whose assembly and membrane-insertion mechanisms are currently unclear. Here, using purified proteins we demonstrate that the translocators PopB and PopD in Pseudomonas aeruginosa assemble heterodimers in membranes, leading to stably inserted hetero-complexes. Using site-directed fluorescence labeling with an environment-sensitive probe, we found that hydrophobic segments in PopD anchor the translocator to the membrane, but without adopting a typical transmembrane orientation. A fluorescence dual-quenching assay revealed that the presence of PopB changes the conformation adopted by PopD segments in membranes. Furthermore, analysis of PopD's interaction with human cell membranes revealed that PopD adopts a distinctive conformation when PopB is present. An N-terminal region of PopD is only exposed to the host cytosol when PopB is present. We conclude that PopB assists with the proper insertion of PopD in cell membranes, required for the formation of a functional translocon and host infection.
Collapse
Affiliation(s)
- Yuzhou Tang
- From the Program in Molecular and Cellular Biology and
| | | | - Mariana Breña
- From the Program in Molecular and Cellular Biology and
| | - Alejandro P Heuck
- From the Program in Molecular and Cellular Biology and .,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
21
|
Zilkenat S, Grin I, Wagner S. Stoichiometry determination of macromolecular membrane protein complexes. Biol Chem 2017; 398:155-164. [PMID: 27664774 DOI: 10.1515/hsz-2016-0251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
Abstract
Gaining knowledge of the structural makeup of protein complexes is critical to advance our understanding of their formation and functions. This task is particularly challenging for transmembrane protein complexes, and grows ever more imposing with increasing size of these large macromolecular structures. The last 10 years have seen a steep increase in solved high-resolution membrane protein structures due to both new and improved methods in the field, but still most structures of large transmembrane complexes remain elusive. An important first step towards the structure elucidation of these difficult complexes is the determination of their stoichiometry, which we discuss in this review. Knowing the stoichiometry of complex components not only answers unresolved structural questions and is relevant for understanding the molecular mechanisms of macromolecular machines but also supports further attempts to obtain high-resolution structures by providing constraints for structure calculations.
Collapse
|
22
|
Abstract
Type III secretion systems (T3SSs) are protein transport nanomachines that are found in Gram-negative bacterial pathogens and symbionts. Resembling molecular syringes, T3SSs form channels that cross the bacterial envelope and the host cell membrane, which enable bacteria to inject numerous effector proteins into the host cell cytoplasm and establish trans-kingdom interactions with diverse hosts. Recent advances in cryo-electron microscopy and integrative imaging have provided unprecedented views of the architecture and structure of T3SSs. Furthermore, genetic and molecular analyses have elucidated the functions of many effectors and key regulators of T3SS assembly and secretion hierarchy, which is the sequential order by which the protein substrates are secreted. As essential virulence factors, T3SSs are attractive targets for vaccines and therapeutics. This Review summarizes our current knowledge of the structure and function of this important protein secretion machinery. A greater understanding of T3SSs should aid mechanism-based drug design and facilitate their manipulation for biotechnological applications.
Collapse
|