1
|
Yao C, Li Z, Su H, Sun K, Liu Q, Zhang Y, Zhu L, Jiang F, Fan Y, Shou S, Wu H, Jin H. Integrin subunit beta 6 is a potential diagnostic marker for acute kidney injury in patients with diabetic kidney disease: a single cell sequencing data analysis. Ren Fail 2024; 46:2409348. [PMID: 39356055 PMCID: PMC11448326 DOI: 10.1080/0886022x.2024.2409348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD), a prevalent complication of diabetes mellitus, is often associated with acute kidney injury (AKI). Thus, the development of preventive and therapeutic strategies is crucial for delaying the progression of AKI and DKD. METHODS The GSE183276 dataset, comprising the data of 20 healthy controls and 12 patients with AKI, was downloaded from the Gene Expression Omnibus (GEO) database to analyze the AKI group. For analyzing the DKD group, the GSE131822 dataset, comprising the data of 3 healthy controls and 3 patients with DKD, was downloaded from the GEO database. The common differentially expressed genes (DEGs) in renal tubular epithelial cells (TECs) were subjected to enrichment analyses. Next, a protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes database to analyze gene-related regulatory networks. Finally, the AKI animal models and the DKD and AKI cell models were established, and the reliability of the identified genes was validated using quantitative real-time polymerase chain reaction analysis. RESULTS Functional analysis was performed with 40 common DEGs in TECs. Eight hub genes were identified using the PPI and gene-related networks. Finally, validation experiments with the in vivo animal model and the in vitro cellular model revealed the four common DEGs. Four DEGs that share molecular mechanisms in the pathogenesis of DKD and AKI were identified. In particular, the expression of Integrin Subunit Beta 6(ITGB6), a hub and commonly upregulated gene, was upregulated in the in vitro models. CONCLUSION ITGB6 may serve as a biomarker for early AKI diagnosis in patients with DKD and as a target for early intervention therapies.
Collapse
Affiliation(s)
- Congcong Yao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ziwei Li
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongshuang Su
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Keke Sun
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Qihui Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zhang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Lishuang Zhu
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Jiang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Heng Wu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Zhang Z, Wang Z, Liu T, Tang J, Liu Y, Gou T, Chen K, Wang L, Zhang J, Yang Y, Zhang H. Exploring the role of ITGB6: fibrosis, cancer, and other diseases. Apoptosis 2024; 29:570-585. [PMID: 38127283 DOI: 10.1007/s10495-023-01921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Integrin β6 (ITGB6), a member of the integrin family of proteins, is only present in epithelial tissues and frequently associates with integrin subunit αv to form transmembrane heterodimers named integrin αvβ6. Importantly, ITGB6 determines αvβ6 expression and availability. In addition to being engaged in organ fibrosis, ITGB6 is also directly linked to the emergence of cancer, periodontitis, and several potential genetic diseases. Therefore, it is of great significance to study the molecular-biological mechanism of ITGB6, which could provide novel insights for future clinical diagnosis and therapy. This review introduces the structure, distribution, and biological function of ITGB6. This review also expounds on ITGB6-related diseases, detailing the known biological effects of ITGB6.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan, 430070, China
| | - Tong Liu
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Yanqing Liu
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Tiantian Gou
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Kangli Chen
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Li Wang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Juan Zhang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Huan Zhang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
3
|
Wei S, Ling D, Zhong J, Chang R, Ling X, Chen Z, Duan R. Elk1 enhances inflammatory cell infiltration and exacerbates acute lung injury/acute respiratory distress syndrome by suppressing Fcgr2b transcription. Mol Med 2024; 30:53. [PMID: 38649840 PMCID: PMC11034135 DOI: 10.1186/s10020-024-00820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
OBJECTIVE Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with significant mortality rates. The role of Fcgr2b in the pathogenesis of ALI/ARDS is not fully elucidated. This study aimed to investigate the functions of Fcgr2b in ALI/ARDS and explore its underlying mechanisms. METHODS Methods: In this study, rat models of ARDS and pulmonary microvascular endothelial cell (PMVEC) injury models were established through the administration of lipopolysaccharide (LPS). The expression levels of Fcgr2b and Elk1 were quantified in both LPS-induced ARDS rats and PMVECs. Subsequent gain- and loss-of-function experiments were conducted, followed by comprehensive assessments of lung tissue for pathomorphological changes, edema, glycogen storage, fibrosis, and infiltration of inflammatory cells. Additionally, bronchoalveolar lavage fluid was analyzed for T-helper 17 (Th17) cell infiltration, inflammatory response, and microvascular permeability to evaluate lung injury severity in ARDS models. Furthermore, the activity, cytotoxicity, apoptosis, and angiogenic potential of PMVECs were assessed to gauge cell injury. The interaction between Elk1 and Fcgr2b was also examined to confirm their regulatory relationship. RESULTS In the context of LPS-induced ARDS and PMVEC injury, Fcgr2b expression was markedly reduced, whereas Elk1 expression was elevated. Overexpression of Fcgr2b led to a decrease in Th17 cell infiltration and mitigated lung tissue damage in ARDS models, in addition to reducing LPS-induced injury in PMVECs. Elk1 was found to suppress Fcgr2b transcription through the recruitment of histone 3 lysine 9 trimethylation (H3K9me3). Knockdown of Elk1 diminished Th17 cell infiltration and lung tissue damage in ARDS models, and alleviated LPS-induced injury in PMVECs, effects that were reversed upon Fcgr2b upregulation. CONCLUSION Elk1 negatively regulates Fcgr2b transcription, thereby augmenting the inflammatory response and exacerbating lung injury in LPS-induced ALI/ARDS.
Collapse
Affiliation(s)
- Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Outcomes Research Consortium, Cleveland, OH, USA
| | - Dandan Ling
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Outcomes Research Consortium, Cleveland, OH, USA
| | - Jingui Zhong
- Department of General Surgery, Zhabei Central Hospital of Jing'an District, Shanghai, 200070, China
| | - Rui Chang
- Medical department, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xinyu Ling
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhigang Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ruowang Duan
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Hernandez-Gonzalez F, Prats N, Ramponi V, López-Domínguez JA, Meyer K, Aguilera M, Muñoz Martín MI, Martínez D, Agusti A, Faner R, Sellarés J, Pietrocola F, Serrano M. Human senescent fibroblasts trigger progressive lung fibrosis in mice. Aging (Albany NY) 2023; 15:6641-6657. [PMID: 37393107 PMCID: PMC10415539 DOI: 10.18632/aging.204825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023]
Abstract
Cell senescence has recently emerged as a potentially relevant pathogenic mechanism in fibrosing interstitial lung diseases (f-ILDs), particularly in idiopathic pulmonary fibrosis. We hypothesized that senescent human fibroblasts may suffice to trigger a progressive fibrogenic reaction in the lung. To address this, senescent human lung fibroblasts, or their secretome (SASP), were instilled into the lungs of immunodeficient mice. We found that: (1) human senescent fibroblasts engraft in the lungs of immunodeficient mice and trigger progressive lung fibrosis associated to increasing levels of mouse senescent cells, whereas non-senescent fibroblasts do not trigger fibrosis; (2) the SASP of human senescent fibroblasts is pro-senescence and pro-fibrotic both in vitro when added to mouse recipient cells and in vivo when delivered into the lungs of mice, whereas the conditioned medium (CM) from non-senescent fibroblasts lacks these activities; and, (3) navitoclax, nintedanib and pirfenidone ameliorate lung fibrosis induced by senescent human fibroblasts in mice, albeit only navitoclax displayed senolytic activity. We conclude that human senescent fibroblasts, through their bioactive secretome, trigger a progressive fibrogenic reaction in the lungs of immunodeficient mice that includes the induction of paracrine senescence in the cells of the host, supporting the concept that senescent cells actively contribute to disease progression in patients with f-ILDs.
Collapse
Affiliation(s)
- Fernanda Hernandez-Gonzalez
- Department of Pulmonology, Respiratory Institute, Hospital Clinic, Barcelona 08036, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Valentina Ramponi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - José Alberto López-Domínguez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Kathleen Meyer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Mònica Aguilera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - María Isabel Muñoz Martín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Daniel Martínez
- Department of Pathology, Hospital Clinic, Barcelona 08036, Spain
| | - Alvar Agusti
- Department of Pulmonology, Respiratory Institute, Hospital Clinic, Barcelona 08036, Spain
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid 28029, Spain
- School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Rosa Faner
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid 28029, Spain
- School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Jacobo Sellarés
- Department of Pulmonology, Respiratory Institute, Hospital Clinic, Barcelona 08036, Spain
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid 28029, Spain
- School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 14183, Sweden
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
- Altos Labs, Cambridge Institute of Science, Cambridge, United Kingdom
| |
Collapse
|
5
|
Calthorpe RJ, Poulter C, Smyth AR, Sharkey D, Bhatt J, Jenkins G, Tatler AL. Complex roles of TGF-β signaling pathways in lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2023; 324:L285-L296. [PMID: 36625900 PMCID: PMC9988523 DOI: 10.1152/ajplung.00106.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
As survival of extremely preterm infants continues to improve, there is also an associated increase in bronchopulmonary dysplasia (BPD), one of the most significant complications of preterm birth. BPD development is multifactorial resulting from exposure to multiple antenatal and postnatal stressors. BPD has both short-term health implications and long-term sequelae including increased respiratory, cardiovascular, and neurological morbidity. Transforming growth factor β (TGF-β) is an important signaling pathway in lung development, organ injury, and fibrosis and is implicated in the development of BPD. This review provides a detailed account on the role of TGF-β in antenatal and postnatal lung development, the effect of known risk factors for BPD on the TGF-β signaling pathway, and how medications currently in use or under development, for the prevention or treatment of BPD, affect TGF-β signaling.
Collapse
Affiliation(s)
- Rebecca J Calthorpe
- Lifespan & Population Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Caroline Poulter
- Department of Pediatrics, Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Alan R Smyth
- Lifespan & Population Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Don Sharkey
- Centre for Perinatal Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jayesh Bhatt
- Department of Pediatrics, Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Amanda L Tatler
- NIHR Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
6
|
Ozaki M, Glasgow A, Oglesby IK, Ng WL, Kelly S, Greene CM, Durcan L, Hurley K. Sexual Dimorphism in Interstitial Lung Disease. Biomedicines 2022; 10:biomedicines10123030. [PMID: 36551792 PMCID: PMC9775147 DOI: 10.3390/biomedicines10123030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Interstitial lung diseases (ILD) are a group of heterogeneous progressive pulmonary disorders, characterised by tissue remodelling and/or fibrotic scarring of the lung parenchyma. ILD patients experience lung function decline with progressive symptoms, poor response to treatment, reduced quality of life and high mortality. ILD can be idiopathic or associated with systemic or connective tissue diseases (CTD) but idiopathic pulmonary fibrosis (IPF) is the most common form. While IPF has a male predominance, women are affected more greatly by CTD and therefore associated ILDs. The mechanisms behind biological sex differences in these progressive lung diseases remain unclear. However, differences in environmental exposures, variable expression of X-chromosome related inflammatory genes and sex hormones play a role. Here, we will outline sex-related differences in the incidence, progression and mechanisms of action of these diseases and discuss existing and novel cellular and pre-clinical studies. Furthermore, we will highlight how sex-differences are not adequately considered in pre-clinical disease models, how gender bias exists in clinical diagnosis and how women are underrepresented in clinical trials. Future action on these observations will hopefully shed light on the role of biological sex in disease development, identify potential targets for intervention and increase female participant numbers in clinical trials.
Collapse
Affiliation(s)
- Mari Ozaki
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, D09 YD60 Dublin 9, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland
| | - Arlene Glasgow
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, D09 YD60 Dublin 9, Ireland
| | - Irene K. Oglesby
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, D09 YD60 Dublin 9, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland
| | - Wan Lin Ng
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, D09 YD60 Dublin 9, Ireland
- Department of Rheumatology, Beaumont Hospital, D09V2N0 Dublin 9, Ireland
| | - Sile Kelly
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, D09 YD60 Dublin 9, Ireland
| | - Catherine M. Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, D09 YD60 Dublin 9, Ireland
| | - Laura Durcan
- Department of Rheumatology, Beaumont Hospital, D09V2N0 Dublin 9, Ireland
| | - Killian Hurley
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, D09 YD60 Dublin 9, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland
- Correspondence:
| |
Collapse
|
7
|
Joseph C, Tatler AL. Pathobiology of Airway Remodeling in Asthma: The Emerging Role of Integrins. J Asthma Allergy 2022; 15:595-610. [PMID: 35592385 PMCID: PMC9112045 DOI: 10.2147/jaa.s267222] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Airway remodeling is a complex clinical feature of asthma that involves long-term disruption and modification of airway architecture, which contributes significantly to airway hyperresponsiveness (AHR) and lung function decline. It is characterized by thickening of the airway smooth muscle layer, deposition of a matrix below the airway epithelium, resulting in subepithelial fibrosis, changes within the airway epithelium, leading to disruption of the barrier, and excessive mucous production and angiogenesis within the airway wall. Airway remodeling contributes to stiffer and less compliant airways in asthma and leads to persistent, irreversible airflow obstruction. Current asthma treatments aim to reduce airway inflammation and exacerbations but none are targeted towards airway remodeling. Inhibiting the development of airway remodeling or reversing established remodeling has the potential to dramatically improve symptoms and disease burden in asthmatic patients. Integrins are a family of transmembrane heterodimeric proteins that serve as the primary receptors for extracellular matrix (ECM) components, mediating cell-cell and cell-ECM interactions to initiate intracellular signaling cascades. Cells present within the lungs, including structural and inflammatory cells, express a wide and varying range of integrin heterodimer combinations and permutations. Integrins are emerging as an important regulator of inflammation, repair, remodeling, and fibrosis in the lung, particularly in chronic lung diseases such as asthma. Here, we provide a comprehensive summary of the current state of knowledge on integrins in the asthmatic airway and how these integrins promote the remodeling process, and emphasize their potential involvement in airway disease.
Collapse
Affiliation(s)
- Chitra Joseph
- Centre for Respiratory Research, National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Amanda L Tatler
- Centre for Respiratory Research, National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
8
|
Wang B, Xu Z, Wang X, Xia S, Cai P, Wang M, Gao Z. Knockdown of lncRNA LINC00662 suppresses malignant behaviour of osteosarcoma cells via competition with miR-30b-3p to regulate ELK1 expression. J Orthop Surg Res 2022; 17:74. [PMID: 35123530 PMCID: PMC8818160 DOI: 10.1186/s13018-022-02964-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/25/2022] [Indexed: 12/27/2022] Open
Abstract
Purpose Osteosarcoma is a type of bone malignancy that mainly occurred in teenagers. This investigation is aimed to clarify the effect of long non-coding RNA (lncRNA) LINC00662 on the proliferation, migration, and invasion in osteosarcoma and explore the underlying action mechanisms. Methods The mRNA expression of LINC00662 was determined by real-time quantitative polymerase chain reaction. Cell proliferation, migration, and invasion were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound healing, and transwell assays, respectively. A dual-luciferase reporter assay was used to validate the target relationships Between microRNA (miR)-30b-3p and LINC00662/ ETS domain-containing protein 1 (ELK1). Western blotting was performed to determine the protein expression of ELK1. Xenograft model was established to evaluate the effects of LINC00662 silencing on tumor growth in vivo. Results LncRNA LINC00662 and ELK1 were significantly increased, while miR-30b-3p was reduced in osteosarcoma tissues. The results of functional experiments indicated that transfection of small hairpin (sh)-LINC00662 and miR-30b-3p mimics repressed the migration, invasion, and proliferation of osteosarcoma cells. LncRNA LINC00662 also appeared to sponge miR-30b-3p in order to affect the expression of ELK1. Simultaneously, there were weak negative correlations between the expression of miR-30b-3p and LINC00662/ELK1 in osteosarcoma tissues. Rescue experiments suggested that ELK1 overexpression and downregulation of miR-30b-3p reversed the suppressive effects of sh-LINC00662 on the cell migration, invasion, and proliferation in osteosarcoma. Conclusions The current study indicated that knockdown of LINC00662 repressed cell migration, invasion, and proliferation through sponging miR-30b-3p to regulate the expression of ELK1 in osteosarcoma. These results may uncover a promising target for the treatment of osteosarcoma.
Collapse
|
9
|
Ramis J, Middlewick R, Pappalardo F, Cairns JT, Stewart ID, John AE, Naveed SUN, Krishnan R, Miller S, Shaw DE, Brightling CE, Buttery L, Rose F, Jenkins G, Johnson SR, Tatler AL. Lysyl oxidase-like 2 is increased in asthma and contributes to asthmatic airway remodelling. Eur Respir J 2022; 60:13993003.04361-2020. [PMID: 34996828 PMCID: PMC9260127 DOI: 10.1183/13993003.04361-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/08/2021] [Indexed: 12/04/2022]
Abstract
Background Airway smooth muscle (ASM) cells are fundamental to asthma pathogenesis, influencing bronchoconstriction, airway hyperresponsiveness and airway remodelling. The extracellular matrix (ECM) can influence tissue remodelling pathways; however, to date no study has investigated the effect of ASM ECM stiffness and cross-linking on the development of asthmatic airway remodelling. We hypothesised that transforming growth factor-β (TGF-β) activation by ASM cells is influenced by ECM in asthma and sought to investigate the mechanisms involved. Methods This study combines in vitro and in vivo approaches: human ASM cells were used in vitro to investigate basal TGF-β activation and expression of ECM cross-linking enzymes. Human bronchial biopsies from asthmatic and nonasthmatic donors were used to confirm lysyl oxidase like 2 (LOXL2) expression in ASM. A chronic ovalbumin (OVA) model of asthma was used to study the effect of LOXL2 inhibition on airway remodelling. Results We found that asthmatic ASM cells activated more TGF-β basally than nonasthmatic controls and that diseased cell-derived ECM influences levels of TGF-β activated. Our data demonstrate that the ECM cross-linking enzyme LOXL2 is increased in asthmatic ASM cells and in bronchial biopsies. Crucially, we show that LOXL2 inhibition reduces ECM stiffness and TGF-β activation in vitro, and can reduce subepithelial collagen deposition and ASM thickness, two features of airway remodelling, in an OVA mouse model of asthma. Conclusion These data are the first to highlight a role for LOXL2 in the development of asthmatic airway remodelling and suggest that LOXL2 inhibition warrants further investigation as a potential therapy to reduce remodelling of the airways in severe asthma. Novel role for matrix cross-linking enzyme LOXL2 in asthmatic airway remodelling: LOXL2 is increased in #asthma but LOXL2 inhibition reduces matrix stiffness in airway smooth muscle cells and reduces remodelling in vivohttps://bit.ly/3FnzGb3
Collapse
Affiliation(s)
- Jopeth Ramis
- Biodiscovery Institute, University of Nottingham, UK.,Department of Chemical Engineering, Technological Institute of the Philippines, Philippines
| | - Robert Middlewick
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK
| | | | - Jennifer T Cairns
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK
| | - Iain D Stewart
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK.,Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, UK
| | - Alison E John
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK.,Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, UK
| | - Shams-Un-Nisa Naveed
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK.,Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, UK
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | - Suzanne Miller
- Biodiscovery Institute, University of Nottingham, UK.,Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK
| | - Dominick E Shaw
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK
| | - Christopher E Brightling
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, UK
| | - Lee Buttery
- Biodiscovery Institute, University of Nottingham, UK
| | - Felicity Rose
- Biodiscovery Institute, University of Nottingham, UK
| | - Gisli Jenkins
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK.,Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, UK
| | - Simon R Johnson
- Biodiscovery Institute, University of Nottingham, UK.,Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK
| | - Amanda L Tatler
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK
| |
Collapse
|
10
|
John AE, Joseph C, Jenkins G, Tatler AL. COVID-19 and pulmonary fibrosis: A potential role for lung epithelial cells and fibroblasts. Immunol Rev 2021; 302:228-240. [PMID: 34028807 PMCID: PMC8237078 DOI: 10.1111/imr.12977] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic rapidly spread around the world following the first reports in Wuhan City, China in late 2019. The disease, caused by the novel SARS-CoV-2 virus, is primarily a respiratory condition that can affect numerous other bodily systems including the cardiovascular and gastrointestinal systems. The disease ranges in severity from asymptomatic through to severe acute respiratory distress requiring intensive care treatment and mechanical ventilation, which can lead to respiratory failure and death. It has rapidly become evident that COVID-19 patients can develop features of interstitial pulmonary fibrosis, which in many cases persist for as long as we have thus far been able to follow the patients. Many questions remain about how such fibrotic changes occur within the lung of COVID-19 patients, whether the changes will persist long term or are capable of resolving, and whether post-COVID-19 pulmonary fibrosis has the potential to become progressive, as in other fibrotic lung diseases. This review brings together our existing knowledge on both COVID-19 and pulmonary fibrosis, with a particular focus on lung epithelial cells and fibroblasts, in order to discuss common pathways and processes that may be implicated as we try to answer these important questions in the months and years to come.
Collapse
Affiliation(s)
- Alison E. John
- Nottingham NIHR Respiratory Biomedical Research CentreUniversity of NottinghamNottinghamUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Chitra Joseph
- Nottingham NIHR Respiratory Biomedical Research CentreUniversity of NottinghamNottinghamUK
| | - Gisli Jenkins
- Nottingham NIHR Respiratory Biomedical Research CentreUniversity of NottinghamNottinghamUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Amanda L. Tatler
- Nottingham NIHR Respiratory Biomedical Research CentreUniversity of NottinghamNottinghamUK
| |
Collapse
|
11
|
Xu H, Ma G, Mu F, Ning B, Li H, Wang N. STAT3 Partly Inhibits Cell Proliferation via Direct Negative Regulation of FST Gene Expression. Front Genet 2021; 12:678667. [PMID: 34239543 PMCID: PMC8259742 DOI: 10.3389/fgene.2021.678667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Follistatin (FST) is a secretory glycoprotein and belongs to the TGF-β superfamily. Previously, we found that two single nucleotide polymorphisms (SNPs) of sheep FST gene were significantly associated with wool quality traits in Chinese Merino sheep (Junken type), indicating that FST is involved in the regulation of hair follicle development and hair trait formation. The transcription regulation of human and mouse FST genes has been widely investigated, and many transcription factors have been identified to regulate FST gene. However, to date, the transcriptional regulation of sheep FST is largely unknown. In the present study, genome walking was used to close the genomic gap upstream of the sheep genomic FST gene and to obtain the FST gene promoter sequence. Transcription factor binding site analysis showed sheep FST promoter region contained a conserved putative binding site for signal transducer and activator of transcription 3 (STAT3), located at nucleotides -423 to -416 relative to the first nucleotide (A, +1) of the initiation codon (ATG) of sheep FST gene. The dual-luciferase reporter assay demonstrated that STAT3 inhibited the FST promoter activity and that the mutation of the putative STAT3 binding site attenuated the inhibitory effect of STAT3 on the FST promoter activity. Additionally, chromatin immunoprecipitation assay (ChIP) exhibited that STAT3 is directly bound to the FST promoter. Cell proliferation assay displayed that FST and STAT3 played opposite roles in cell proliferation. Overexpression of sheep FST significantly promoted the proliferation of sheep fetal fibroblasts (SFFs) and human keratinocyte (HaCaT) cells, and overexpression of sheep STAT3 displayed opposite results, which was accompanied by a significantly reduced expression of FST gene (P < 0.05). Taken together, STAT3 directly negatively regulates sheep FST gene and depresses cell proliferation. Our findings may contribute to understanding molecular mechanisms that underlie hair follicle development and morphogenesis.
Collapse
Affiliation(s)
- Haidong Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guangwei Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Fang Mu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Bolin Ning
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
12
|
Cui T, Huang J, Sun Y, Ning B, Mu F, You X, Guo Y, Li H, Wang N. KLF2 Inhibits Chicken Preadipocyte Differentiation at Least in Part via Directly Repressing PPARγ Transcript Variant 1 Expression. Front Cell Dev Biol 2021; 9:627102. [PMID: 33634127 PMCID: PMC7901985 DOI: 10.3389/fcell.2021.627102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/11/2021] [Indexed: 12/30/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is the master regulatory factor of preadipocyte differentiation. As a result of alternative splicing and alternative promoter usage, PPARγ gene generates multiple transcript variants encoding two protein isoforms. Krüppel-like factor 2 (KLF2) plays a negative role in preadipocyte differentiation. However, its underlying mechanism remains incompletely understood. Here, we demonstrated that KLF2 inhibited the P1 promoter activity of the chicken PPARγ gene. Bioinformatics analysis showed that the P1 promoter harbored a conserved putative KLF2 binding site, and mutation analysis showed that the KLF2 binding site was required for the KLF2-mediated transcription inhibition of the P1 promoter. ChIP, EMSA, and reporter gene assays showed that KLF2 could directly bind to the P1 promoter regardless of methylation status and reduced the P1 promoter activity. Consistently, histone modification analysis showed that H3K9me2 was enriched and H3K27ac was depleted in the P1 promoter upon KLF2 overexpression in ICP1 cells. Furthermore, gene expression analysis showed that KLF2 overexpression reduced the endogenous expression of PPARγ transcript variant 1 (PPARγ1), which is driven by the P1 promoter, in DF1 and ICP1 cells, and that the inhibition of ICP1 cell differentiation by KLF2 overexpression was accompanied by the downregulation of PPARγ1 expression. Taken together, our results demonstrated that KLF2 inhibits chicken preadipocyte differentiation at least inpart via direct downregulation of PPARγ1 expression.
Collapse
Affiliation(s)
- Tingting Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Jiaxin Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Yingning Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Bolin Ning
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Fang Mu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Xin You
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Yaqi Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Hui Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Ning Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| |
Collapse
|
13
|
Meecham A, Marshall JF. The ITGB6 gene: its role in experimental and clinical biology. Gene 2020; 763S:100023. [PMID: 34493369 PMCID: PMC7285966 DOI: 10.1016/j.gene.2019.100023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Integrin αvβ6 is a membrane-spanning heterodimeric glycoprotein involved in wound healing and the pathogenesis of diseases including fibrosis and cancer. Therefore, it is of great clinical interest for us to understand the molecular mechanisms of its biology. As the limiting binding partner in the heterodimer, the β6 subunit controls αvβ6 expression and availability. Here we describe our understanding of the ITGB6 gene encoding the β6 subunit, including its structure, transcriptional and post-transcriptional regulation, the biological effects observed in ITGB6 deficient mice and clinical cases of ITGB6 mutations.
Collapse
Affiliation(s)
- Amelia Meecham
- Centre for Tumour Biology, Barts Cancer Institute, Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - John F Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
14
|
Affiliation(s)
- Gisli Jenkins
- National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
15
|
Jenkins G. Demystifying pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2020; 319:L554-L559. [PMID: 32755321 PMCID: PMC7839634 DOI: 10.1152/ajplung.00365.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Gisli Jenkins
- National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
16
|
Chen YC, Chuang TY, Liu CW, Liu CW, Lee TL, Lai TC, Chen YL. Particulate matters increase epithelial-mesenchymal transition and lung fibrosis through the ETS-1/NF-κB-dependent pathway in lung epithelial cells. Part Fibre Toxicol 2020; 17:41. [PMID: 32799885 PMCID: PMC7429884 DOI: 10.1186/s12989-020-00373-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background Particulate matters (PMs) in ambient air pollution are closely related to the incidence of respiratory diseases and decreased lung function. Our previous report demonstrated that PMs-induced oxidative stress increased the expression of proinflammatory intracellular adhesion molecule-1 (ICAM-1) through the IL-6/AKT/STAT3/NF-κB pathway in A549 cells. However, the role of O-PMs in epithelial-mesenchymal transition (EMT) development and pulmonary fibrosis and the related mechanisms have not been determined. The aim of this study was to investigate the effects of O-PMs on the pathogenesis of EMT and pulmonary fibrosis as well as the expression of ETS-1 and NF-κB p65, in vitro and in vivo. Results O-PMs treatment induced EMT development, fibronectin expression, and cell migration. O-PMs affected the expression of the EMT-related transcription factors NF-κB p65 and ETS-1. Interference with NF-κB p65 significantly decreased O-PMs-induced fibronectin expression. In addition, O-PMs affected the expression of fibronectin, E-cadherin, and vimentin through modulating ETS-1 expression. ATN-161, an antagonist of integrin α5β1, decreased the expression of fibronectin and ETS-1 and EMT development. EMT development and the expression of fibronectin and ETS-1 were increased in the lung tissue of mice after exposure to PMs for 7 and 14 days. There was a significant correlation between fibronectin and ETS-1 expression in human pulmonary fibrosis tissue. Conclusion O-PMs can induce EMT and fibronectin expression through the activation of transcription factors ETS-1 and NF-κB in A549 cells. PMs can induce EMT development and the expression of fibronectin and ETS-1 in mouse lung tissues. These findings suggest that the ETS-1 pathway could be a novel and alternative mechanism for EMT development and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Jen-Ai Road, Taipei, Taiwan, Republic of China
| | - Tzu-Yi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Min-Sheng General Hospital, No. 168 Ching-Kuo Road, Taoyuan, Taiwan, Republic of China. .,Department of Internal Medicine, College of Medicine and National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, Taiwan, Republic of China.
| | - Chen-Wei Liu
- Department of Basic Medical Science, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Chi-Wei Liu
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, Republic of China
| | - Tzu-Lin Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Jen-Ai Road, Taipei, Taiwan, Republic of China
| | - Tsai-Chun Lai
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Jen-Ai Road, Taipei, Taiwan, Republic of China
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Jen-Ai Road, Taipei, Taiwan, Republic of China.
| |
Collapse
|
17
|
Onega M, Parker CA, Coello C, Rizzo G, Keat N, Ramada-Magalhaes J, Moz S, Tang SP, Plisson C, Wells L, Ashworth S, Slack RJ, Vitulli G, Wilson FJ, Gunn R, Lukey PT, Passchier J. Preclinical evaluation of [ 18F]FB-A20FMDV2 as a selective marker for measuring α Vβ 6 integrin occupancy using positron emission tomography in rodent lung. Eur J Nucl Med Mol Imaging 2020; 47:958-966. [PMID: 31897589 PMCID: PMC7075836 DOI: 10.1007/s00259-019-04653-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/09/2019] [Indexed: 11/18/2022]
Abstract
Purpose Integrin αvβ6 belongs to the RGD subset of the integrin family, and its expression levels are a prognostic and theranostic factor in some types of cancer and pulmonary fibrosis. This paper describes the GMP radiolabelling of the synthetic 20 amino acid peptide A20FMDV2 (NAVPNLRGDLQVLAQKVART), derived from the foot-and-mouth disease virus, and characterises the use of [18F]FB-A20FMDV2 as a high affinity, specific and selective PET radioligand for the quantitation and visualisation of αvβ6 in rodent lung to support human translational studies. Methods The synthesis of [18F]FB-A20FMDV2 was performed using a fully automated and GMP-compliant process. Sprague-Dawley rats were used to perform homologous (unlabelled FB-A20FMDV2) and heterologous (anti-αvβ6 antibody 8G6) blocking studies. In order to generate a dosimetry estimate, tissue residence times were generated, and associated tissue exposure and effective dose were calculated using the Organ Level Internal Dose Assessment/Exponential Modelling (OLINDA/EXM) software. Results [18F]FB-A20FMDV2 synthesis was accomplished in 180 min providing ~800 MBq of [18F]FB-A20FMDV2 with a molar activity of up to 150 GBq/μmol and high radiochemical purity (> 97%). Following i.v. administration to rats, [18F]FB-A20FMDV2 was rapidly metabolised with intact radiotracer representing 5% of the total radioactivity present in rat plasma at 30 min. For the homologous and heterologous block in rats, lung-to-heart SUV ratios at 30–60 min post-administration of [18F]FB-A20FMDV2 were reduced by 38.9 ± 6.9% and 56 ± 19.2% for homologous and heterologous block, respectively. Rodent biodistribution and dosimetry calculations using OLINDA/EXM provided a whole body effective dose in humans 33.5 μSv/MBq. Conclusion [18F]FB-A20FMDV2 represents a specific and selective PET ligand to measure drug-associated αvβ6 integrin occupancy in lung. The effective dose, extrapolated from rodent data, is in line with typical values for compounds labelled with fluorine-18 and combined with the novel fully automated and GMP-compliant synthesis and allows for clinical use in translational studies. Electronic supplementary material The online version of this article (10.1007/s00259-019-04653-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mayca Onega
- Imanova Ltd trading as Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Christine A Parker
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Hertfordshire, SG1 2NY, UK
| | - Christopher Coello
- Imanova Ltd trading as Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Gaia Rizzo
- Imanova Ltd trading as Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Nicholas Keat
- Imanova Ltd trading as Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Joaquim Ramada-Magalhaes
- Imanova Ltd trading as Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Sara Moz
- Imanova Ltd trading as Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Sac-Pham Tang
- Imanova Ltd trading as Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Christophe Plisson
- Imanova Ltd trading as Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Lisa Wells
- Imanova Ltd trading as Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Sharon Ashworth
- Imanova Ltd trading as Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Robert J Slack
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Hertfordshire, SG1 2NY, UK
| | - Giovanni Vitulli
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Hertfordshire, SG1 2NY, UK
| | - Frederick J Wilson
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Hertfordshire, SG1 2NY, UK
| | - Roger Gunn
- Imanova Ltd trading as Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Pauline T Lukey
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Hertfordshire, SG1 2NY, UK
| | - Jan Passchier
- Imanova Ltd trading as Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
18
|
Cairns JT, Habgood A, Edwards-Pritchard RC, Joseph C, John AE, Wilkinson C, Stewart ID, Leslie J, Blaxall BC, Susztak K, Alberti S, Nordheim A, Oakley F, Jenkins G, Tatler AL. Loss of ELK1 has differential effects on age-dependent organ fibrosis. Int J Biochem Cell Biol 2019; 120:105668. [PMID: 31877385 DOI: 10.1016/j.biocel.2019.105668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/07/2023]
Abstract
ETS domain-containing protein-1 (ELK1) is a transcription factor important in regulating αvβ6 integrin expression. αvβ6 integrins activate the profibrotic cytokine Transforming Growth Factor β1 (TGFβ1) and are increased in the alveolar epithelium in idiopathic pulmonary fibrosis (IPF). IPF is a disease associated with aging and therefore we hypothesised that aged animals lacking Elk1 globally would develop spontaneous fibrosis in organs where αvβ6 mediated TGFβ activation has been implicated. Here we identify that Elk1-knockout (Elk1-/0) mice aged to one year developed spontaneous fibrosis in the absence of injury in both the lung and the liver but not in the heart or kidneys. The lungs of Elk1-/0 aged mice demonstrated increased collagen deposition, in particular collagen 3α1, located in small fibrotic foci and thickened alveolar walls. Despite the liver having relatively low global levels of ELK1 expression, Elk1-/0 animals developed hepatosteatosis and fibrosis. The loss of Elk1 also had differential effects on Itgb1, Itgb5 and Itgb6 expression in the four organs potentially explaining the phenotypic differences in these organs. To understand the potential causes of reduced ELK1 in human disease we exposed human lung epithelial cells and murine lung slices to cigarette smoke extract, which lead to reduced ELK1 expression andmay explain the loss of ELK1 in human disease. These data support a fundamental role for ELK1 in protecting against the development of progressive fibrosis via transcriptional regulation of beta integrin subunit genes, and demonstrate that loss of ELK1 can be caused by cigarette smoke.
Collapse
Affiliation(s)
- Jennifer T Cairns
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham, NG5 1PB, UK
| | - Anthony Habgood
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham, NG5 1PB, UK
| | - Rochelle C Edwards-Pritchard
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham, NG5 1PB, UK
| | - Chitra Joseph
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham, NG5 1PB, UK
| | - Alison E John
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham, NG5 1PB, UK
| | - Chloe Wilkinson
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham, NG5 1PB, UK
| | - Iain D Stewart
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham, NG5 1PB, UK
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Burns C Blaxall
- Department of Personalized Medicine and Pharmacogenetics, The Christ Hospital Health Network, Cincinnati, OH, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Siegfried Alberti
- Interfaculty Institute of Cell Biology, Tuebingen University, Tuebingen, Germany
| | - Alfred Nordheim
- Interfaculty Institute of Cell Biology, Tuebingen University, Tuebingen, Germany; Leibniz Institute on Ageing (FLI), Jena, Germany
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Gisli Jenkins
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham, NG5 1PB, UK
| | - Amanda L Tatler
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham, NG5 1PB, UK.
| |
Collapse
|
19
|
Tatler AL. Recent advances in the non-invasive assessment of fibrosis using biomarkers. Curr Opin Pharmacol 2019; 49:110-115. [PMID: 31756570 DOI: 10.1016/j.coph.2019.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022]
Abstract
Fibrosis can occur in most organs and is characterised by excessive and progressive extracellular matrix deposition and destruction of normal tissue architecture and function. In many cases treatment options are limited. Fibrotic diseases are therefore associated with high morbidity and mortality. Tissue biopsies remain a key part of diagnosing fibrosis; however, due to their invasive nature, tissue biopsies are unsuitable for monitoring disease progression. In some cases, tissue biopsies carry an unacceptable risk of mortality to the patient. Furthermore, assessing fibrosis via tissue biopsy is severely limited by the heterogenetic nature of fibrotic diseases and suffers from both sampling bias and observer variation/bias. The search for less invasive methods of diagnosing and monitoring fibrosis has led to the identification of many new biomarkers, many of which can be measured in serum in a so-called 'liquid biopsy' or can be imaged using state-of-the-art imaging modalities. These approaches have the potential to dramatically improve the diagnosis and monitoring of disease, and improve the design of clinical trials in to novel fibrotic therapies. This review summarises some of the recent advances in identifying novel biomarkers to diagnose and monitor fibrosis non-invasively.
Collapse
Affiliation(s)
- Amanda L Tatler
- Nottingham Respiratory Biomedical Research Centre, Division of Respiratory Medicine, School of Medicine, University of Nottingham, United Kingdom.
| |
Collapse
|
20
|
Lyu T, Jiang Y, Jia N, Che X, Li Q, Yu Y, Hua K, Bast RC, Feng W. SMYD3 promotes implant metastasis of ovarian cancer via H3K4 trimethylation of integrin promoters. Int J Cancer 2019; 146:1553-1567. [PMID: 31503345 DOI: 10.1002/ijc.32673] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/07/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
Detachment of cancer cells from the primary tumor and formation of spheroids in ascites is required for implantation metastasis in epithelial ovarian cancer (EOC), but the underlying mechanism of this process has not been thoroughly elucidated. To mimic this process, ovarian cancer cells were grown in 3D and 2D culture. Hey and OVCA433 spheroids exhibited decreased cell proliferation and enhanced adhesion and invasion. SMYD3 expression was elevated in ovarian carcinoma spheroids in association with increased H3K4 methylation. Depletion of SMYD3 by transient siRNA, stable shRNA knockdown and the SMYD3 inhibitor BCI-121 all decreased spheroid invasion and adhesion. Gene expression arrays revealed downregulation of integrin family members. Inhibition assays confirmed that invasion and adhesion of spheroids are mediated by ITGB6 and ITGAM. SMYD3-deficient cells regained the ability to invade and adhere after forced overexpression of SMYD3, ITGB6 and ITGAM. However, this biological ability was not restored by forced overexpression of SMYD3 in ITGB6- and/or ITGAM-deficient cancer cells. SMYD3 and H3K4me3 binding at the ITGB6 and ITGAM promoters was increased in spheroids compared to that in monolayer cells, and the binding was decreased when SMYD3 expression was inhibited, consistent with the expression changes in integrins. SMYD3 expression and integrin-mediated adhesion were also activated in an intraperitoneal xenograft model and in EOC patient spheroids. In vivo, SMYD3 knockdown inhibited tumor metastasis and reduced ascites volume in both the intraperitoneal xenograft model and a PDX model. Overall, our results suggest that the SMYD3-H3K4me3-integrin pathway plays a crucial role in ovarian cancer metastasis to the peritoneal surface.
Collapse
Affiliation(s)
- Tianjiao Lyu
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.,Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yahui Jiang
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.,Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Nan Jia
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiaoxia Che
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qin Li
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yinhua Yu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, TX
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Robert C Bast
- Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, TX
| | - Weiwei Feng
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.,Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
D'Antonio-Chronowska A, Donovan MKR, Young Greenwald WW, Nguyen JP, Fujita K, Hashem S, Matsui H, Soncin F, Parast M, Ward MC, Coulet F, Smith EN, Adler E, D'Antonio M, Frazer KA. Association of Human iPSC Gene Signatures and X Chromosome Dosage with Two Distinct Cardiac Differentiation Trajectories. Stem Cell Reports 2019; 13:924-938. [PMID: 31668852 PMCID: PMC6895695 DOI: 10.1016/j.stemcr.2019.09.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 11/30/2022] Open
Abstract
Despite the importance of understanding how variability across induced pluripotent stem cell (iPSC) lines due to non-genetic factors (clone and passage) influences their differentiation outcome, large-scale studies capable of addressing this question have not yet been conducted. Here, we differentiated 191 iPSC lines to generate iPSC-derived cardiovascular progenitor cells (iPSC-CVPCs). We observed cellular heterogeneity across the iPSC-CVPC samples due to varying fractions of two cell types: cardiomyocytes (CMs) and epicardium-derived cells (EPDCs). Comparing the transcriptomes of CM-fated and EPDC-fated iPSCs, we discovered that 91 signature genes and X chromosome dosage differences are associated with these two distinct cardiac developmental trajectories. In an independent set of 39 iPSCs differentiated into CMs, we confirmed that sex and transcriptional differences affect cardiac-fate outcome. Our study provides novel insights into how iPSC transcriptional and X chromosome gene dosage differences influence their response to differentiation stimuli and, hence, cardiac cell fate. Cellular heterogeneity across iPSC-CVPCs due to varying fractions of CMs and EPDCs iPSC non-genetic factors (clone and passage) associated with cardiac cell fate Expression levels of signature genes in iPSCs associated with cardiac lineage fate iPSC donor sex plays a role in cardiac lineage fate
Collapse
Affiliation(s)
| | - Margaret K R Donovan
- Bioinformatics and Systems Biology Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | | | - Jennifer Phuong Nguyen
- Bioinformatics and Systems Biology Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | - Kyohei Fujita
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Sherin Hashem
- Division of Cardiology, Department of Medicine, UC San Diego, La Jolla, CA 92093, USA
| | - Hiroko Matsui
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | | | - Mana Parast
- Department of Pathology, UC San Diego, La Jolla, CA 92093, USA
| | - Michelle C Ward
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Florence Coulet
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Erin N Smith
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Eric Adler
- Division of Cardiology, Department of Medicine, UC San Diego, La Jolla, CA 92093, USA
| | - Matteo D'Antonio
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA.
| | - Kelly A Frazer
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Mu F, Huang J, Xing T, Jing Y, Cui T, Guo Y, Yan X, Li H, Wang N. The Wnt/β-Catenin/LEF1 Pathway Promotes Cell Proliferation at Least in Part Through Direct Upregulation of miR-17-92 Cluster. Front Genet 2019; 10:525. [PMID: 31191623 PMCID: PMC6549003 DOI: 10.3389/fgene.2019.00525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
The miR-17-92 cluster is involved in animal development and homeostasis, and its dysregulation leads to human diseases such as cancer. In the present study, we investigated the functional link between miR-17-92 cluster and Wnt/β-catenin signaling pathway in ICP2 and DF1 cells. We demonstrated that ectopic expression of either LEF1 or β-catenin increased the promoter activity of the miR-17-92 cluster host gene (MIR17HG) and combined ectopic expression of LEF1 and β-catenin further enhanced the promoter activity; while knockdown of either LEF1 or β-catenin reduced the MIR17HG promoter activity. Both LEF1 and β-catenin could directly bind to the MIR17HG promoter. Furthermore, we demonstrated that low doses of lithium chloride (LiCl), an activator of Wnt/β-catenin signaling pathway, increased MIR17HG promoter activity and the endogenous expression of the miR-17-92 cluster, while high doses of LiCl had the opposite effects. Treatment with XAV-939, an inactivator of the Wnt/β-catenin pathway, reduced the endogenous expression of miR-17-92 cluster. Finally, we found that low doses of LiCl promoted the proliferation of ICP2 and DF1 cells, while high doses of LiCl inhibited the proliferation of ICP2 and DF1 cells. Taken together, our results reveal that MIR17HG is a target of LEF1 and the Wnt/β-catenin pathway and suggest that the miR-17-92 cluster may, at least in part, mediate the proliferation-promoting effect of the Wnt/β-catenin pathway in cell proliferation.
Collapse
Affiliation(s)
- Fang Mu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiaxin Huang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Tianyu Xing
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yang Jing
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Tingting Cui
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yaqi Guo
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaohong Yan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
23
|
Cui T, Xing T, Huang J, Mu F, Jin Y, You X, Chu Y, Li H, Wang N. Nuclear Respiratory Factor 1 Negatively Regulates the P1 Promoter of the Peroxisome Proliferator-Activated Receptor-γ Gene and Inhibits Chicken Adipogenesis. Front Physiol 2018; 9:1823. [PMID: 30618832 PMCID: PMC6305991 DOI: 10.3389/fphys.2018.01823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a master regulator of adipogenesis, and alterations in its function are associated with various pathological processes related to metabolic syndrome. Recently, we found that the chicken PPARγ gene is regulated by three alternative promoters (P1, P2 and P3), producing five different transcript isoforms and two protein isoforms. In this study, the P1 promoter structure was characterized. Bioinformatics identified six putative nuclear respiratory factor 1 (NRF1) binding sites in the P1 promoter, and a reporter assay showed that NRF1 inhibited the activity of the P1 promoter. Of the six putative NRF1 binding sites, individual mutations of three of them abolished the inhibitory effect of NRF1 on P1 promoter activity. Furthermore, a ChIP assay indicated that NRF1 directly bound to the P1 promoter, and real-time quantitative RT-PCR analysis showed that NRF1 mRNA expression was negatively correlated with PPARγ1 expression (Pearson’s r = -0.148, p = 0.033). Further study showed that NRF1 overexpression inhibited the differentiation of the immortalized chicken preadipocyte cell line (ICP1), which was accompanied by reduced PPARγ1 mRNA expression. Taken together, our findings indicated that NRF1 directly negatively regulates the P1 promoter of the chicken PPARγ gene and inhibits adipogenesis.
Collapse
Affiliation(s)
- Tingting Cui
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Institute of Animal Science of Heilongjiang Province, Qiqihar, China
| | - Tianyu Xing
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiaxin Huang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Fang Mu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yanfei Jin
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xin You
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yankai Chu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
24
|
Headley L, Bi W, Wilson C, Collum SD, Chavez M, Darwiche T, Mertens TCJ, Hernandez AM, Siddiqui SR, Rosenbaum S, Johnston RA, Karmouty-Quintana H. Low-dose administration of bleomycin leads to early alterations in lung mechanics. Exp Physiol 2018; 103:1692-1703. [PMID: 30260066 DOI: 10.1113/ep087322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/26/2018] [Indexed: 01/03/2023]
Abstract
NEW FINDINGS What is the central question of this study? When do alterations in pulmonary mechanics occur following chronic low-dose administration of bleomycin? What is the main finding and its importance? Remarkably, we report changes in lung mechanics as early as day 7 that corresponded to parameters determined from single-frequency forced oscillation manoeuvres and pressure-volume loops. These changes preceded substantial histological changes or changes in gene expression levels. These findings are significant to refine drug discovery in idiopathic pulmonary fibrosis, where preclinical studies using lung function parameters would enhance the translational potential of drug candidates where lung function readouts are routinely performed in the clinic. ABSTRACT Idiopathic pulmonary fibrosis (IPF) is the most widespread form of interstitial lung disease and, currently, there are only limited treatment options available. In preclinical animal models of lung fibrosis, the effectiveness of experimental therapeutics is often deemed successful via reductions in collagen deposition and expression of profibrotic genes in the lung. However, in clinical studies, improvements in lung function are primarily used to gauge the success of therapeutics directed towards IPF. Therefore, we examined whether changes in respiratory system mechanics in the early stages of an experimental model of lung fibrosis can be used to refine drug discovery approaches for IPF. C57BL/6J mice were administered bleomycin (BLM) or a vehicle control i.p. twice a week for 4 weeks. At 7, 14, 21, 28 and 33 days into the BLM treatment regimen, indices of respiratory system mechanics and pressure-volume relationships were measured. Concomitant with these measurements, histological and gene analyses relevant to lung fibrosis were performed. Alterations in respiratory system mechanics and pressure-volume relationships were observed as early as 7 days after the start of BLM administration. Changes in respiratory system mechanics preceded the appearance of histological and molecular indices of lung fibrosis. Administration of BLM leads to early changes in respiratory system mechanics that coincide with the appearance of representative histological and molecular indices of lung fibrosis. Consequently, these data suggest that dampening the early changes in respiratory system mechanics might be used to assess the effectiveness of experimental therapeutics in preclinical animal models of lung fibrosis.
Collapse
Affiliation(s)
- Lauren Headley
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA.,Department of Pharmacology and Therapeutics, King's College London, London, UK
| | - Weizhen Bi
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Cory Wilson
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Scott D Collum
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Melissa Chavez
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Tamara Darwiche
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Tinne C J Mertens
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Adriana M Hernandez
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Saad R Siddiqui
- Department of Pediatrics, Division of Critical Care Medicine, McGovern Medical School, UTHealth, Houston, TX, USA
| | | | - Richard A Johnston
- Department of Pediatrics, Division of Critical Care Medicine, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, USA
| |
Collapse
|
25
|
Truong L, Zheng YM, Song T, Tang Y, Wang YX. Potential important roles and signaling mechanisms of YPEL4 in pulmonary diseases. Clin Transl Med 2018; 7:16. [PMID: 29892964 PMCID: PMC5995765 DOI: 10.1186/s40169-018-0194-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/01/2018] [Indexed: 01/16/2023] Open
Abstract
Background Human Yippee-like-4 (YPEL4) is a member of the YPEL gene family. This family has been characterized as the first highly conserved family of genes coding for proteins that contain putative zinc-finger-like metal-binding domains, known as the Yippee domain. The YPEL family proteins are located at the centrosome adjacent to the nucleolus during interphase and mitotic apparatus during mitosis. Due to its subcellular localization, it is believed that YPEL4 may have an important role in the cell cycle and proliferation. Recent studies have shown the involvement of YPEL4 in biological processes such as the mitogen-activated protein kinase pathway and adrenal cell proliferation. Research on YPEL4 up to date also suggests that YPEL4 is a very important player in pulmonary diseases. Conclusions YPEL4 may regulate the mitogen-activated protein kinase signaling pathway to mediate adrenal cell proliferation; this molecule is also likely to be a very important player in pulmonary diseases. Although the function of YPEL4 is largely unknown, further research may substantiate the functional importance and underlying molecular processes in pulmonary and other diseases that would allow YPEL4 to become a therapeutic target.
Collapse
Affiliation(s)
- Lillian Truong
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue (MC8), Albany, NY, 12208, USA
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue (MC8), Albany, NY, 12208, USA
| | - Tengyao Song
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue (MC8), Albany, NY, 12208, USA
| | - Yi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue (MC8), Albany, NY, 12208, USA.
| |
Collapse
|
26
|
Jenkins RG, Moore BB, Chambers RC, Eickelberg O, Königshoff M, Kolb M, Laurent GJ, Nanthakumar CB, Olman MA, Pardo A, Selman M, Sheppard D, Sime PJ, Tager AM, Tatler AL, Thannickal VJ, White ES. An Official American Thoracic Society Workshop Report: Use of Animal Models for the Preclinical Assessment of Potential Therapies for Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2017; 56:667-679. [PMID: 28459387 DOI: 10.1165/rcmb.2017-0096st] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Numerous compounds have shown efficacy in limiting development of pulmonary fibrosis using animal models, yet few of these compounds have replicated these beneficial effects in clinical trials. Given the challenges associated with performing clinical trials in patients with idiopathic pulmonary fibrosis (IPF), it is imperative that preclinical data packages be robust in their analyses and interpretations to have the best chance of selecting promising drug candidates to advance to clinical trials. The American Thoracic Society has convened a group of experts in lung fibrosis to discuss and formalize recommendations for preclinical assessment of antifibrotic compounds. The panel considered three major themes (choice of animal, practical considerations of fibrosis modeling, and fibrotic endpoints for evaluation). Recognizing the need for practical considerations, we have taken a pragmatic approach. The consensus view is that use of the murine intratracheal bleomycin model in animals of both genders, using hydroxyproline measurements for collagen accumulation along with histologic assessments, is the best-characterized animal model available for preclinical testing. Testing of antifibrotic compounds in this model is recommended to occur after the acute inflammatory phase has subsided (generally after Day 7). Robust analyses may also include confirmatory studies in human IPF specimens and validation of results in a second system using in vivo or in vitro approaches. The panel also strongly encourages the publication of negative results to inform the lung fibrosis community. These recommendations are for preclinical therapeutic evaluation only and are not intended to dissuade development of emerging technologies to better understand IPF pathogenesis.
Collapse
|
27
|
Tatler AL, Goodwin AT, Gbolahan O, Saini G, Porte J, John AE, Clifford RL, Violette SM, Weinreb PH, Parfrey H, Wolters PJ, Gauldie J, Kolb M, Jenkins G. Amplification of TGFβ Induced ITGB6 Gene Transcription May Promote Pulmonary Fibrosis. PLoS One 2016; 11:e0158047. [PMID: 27494713 PMCID: PMC4975449 DOI: 10.1371/journal.pone.0158047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/09/2016] [Indexed: 01/13/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating, progressive disease with poor survival rates and limited treatment options. Upregulation of αvβ6 integrins within the alveolar epithelial cells is a characteristic feature of IPF and correlates with poor patient survival. The pro-fibrotic cytokine TGFβ1 can upregulate αvβ6 integrin expression but the molecular mechanisms driving this effect have not previously been elucidated. We confirm that stimulation with exogenous TGFβ1 increases expression of the integrin β6 subunit gene (ITGB6) and αvβ6 integrin cell surface expression in a time- and concentration-dependent manner. TGFβ1-induced ITGB6 expression occurs via transcriptional activation of the ITGB6 gene, but does not result from effects on ITGB6 mRNA stability. Basal expression of ITGB6 in, and αvβ6 integrins on, lung epithelial cells occurs via homeostatic αvβ6-mediated TGFβ1 activation in the absence of exogenous stimulation, and can be amplified by TGFβ1 activation. Fundamentally, we show for the first time that TGFβ1-induced ITGB6 expression occurs via canonical Smad signalling since dominant negative constructs directed against Smad3 and 4 inhibit ITGB6 transcriptional activity. Furthermore, disruption of a Smad binding site at -798 in the ITGB6 promoter abolishes TGFβ1-induced ITGB6 transcriptional activity. Using chromatin immunoprecipitation we demonstrate that TGFβ1 stimulation of lung epithelial cells results in direct binding of Smad3, and Smad4, to the ITGB6 gene promoter within this region. Finally, using an adenoviral TGFβ1 over-expression model of pulmonary fibrosis we demonstrate that Smad3 is crucial for TGFβ1-induced αvβ6 integrin expression within the alveolar epithelium in vivo. Together, these data confirm that a homeostatic, autocrine loop of αvβ6 integrin activated TGFβ1-induced ITGB6 gene expression regulates epithelial basal αvβ6 integrin expression, and demonstrates that this occurs via Smad-dependent transcriptional regulation at a single Smad binding site in the promoter of the β6 subunit gene. Active TGFβ1 amplifies this pathway both in vitro and in vivo, which may promote fibrosis.
Collapse
Affiliation(s)
- Amanda L. Tatler
- Division of Respiratory Medicine–City, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| | - Amanda T. Goodwin
- Division of Respiratory Medicine–City, University of Nottingham, Nottingham, United Kingdom
| | - Olumide Gbolahan
- Division of Respiratory Medicine–City, University of Nottingham, Nottingham, United Kingdom
| | - Gauri Saini
- Division of Respiratory Medicine–City, University of Nottingham, Nottingham, United Kingdom
| | - Joanne Porte
- Division of Respiratory Medicine–City, University of Nottingham, Nottingham, United Kingdom
| | - Alison E. John
- Division of Respiratory Medicine–City, University of Nottingham, Nottingham, United Kingdom
| | - Rachel L. Clifford
- Division of Respiratory Medicine–City, University of Nottingham, Nottingham, United Kingdom
| | | | | | - Helen Parfrey
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Paul J. Wolters
- School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Jack Gauldie
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Martin Kolb
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Gisli Jenkins
- Division of Respiratory Medicine–City, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|