1
|
Li Q, Mach YZ, Hamed M, Khilji S, Chen J. Regulation of HDAC11 gene expression in early myogenic differentiation. PeerJ 2023; 11:e15961. [PMID: 37663282 PMCID: PMC10474826 DOI: 10.7717/peerj.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Histone acetylation and deacetylation affect the patterns of gene expression in cellular differentiation, playing pivotal roles in tissue development and maintenance. For example, the intrinsic histone acetyltransferase activity of transcriptional coactivator p300 is especially required for the expression of myogenic regulatory factors including Myf5 and MyoD, and consequently for skeletal myogenesis. On the other hand, histone deacetylases (HDACs) remove the acetyl group from histones, which is critical for gene repression in stem cell fate transition. Through integrative omic analyses, we found that while some HDACs were differentially expressed at the early stage of skeletal myoblast differentiation, Hdac11 gene expression was significantly enhanced by nuclear receptor signaling. In addition, p300 and MyoD control Hdac11 expression in milieu of normal and signal-enhanced myoblast differentiation. Thus, HDAC11 may be essential to differential gene expression at the onset of myoblast differentiation.
Collapse
Affiliation(s)
- Qiao Li
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yan Z. Mach
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Munerah Hamed
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Saadia Khilji
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Hamed M, Chen J, Li Q. Regulation of Dystroglycan Gene Expression in Early Myoblast Differentiation. Front Cell Dev Biol 2022; 10:818701. [PMID: 35330913 PMCID: PMC8940196 DOI: 10.3389/fcell.2022.818701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Dystroglycan, a component of the dystrophin-associated glycoprotein complex, connects the extracellular matrix and cytoskeleton to maintain muscle membrane integrity. As such, abnormalities of dystroglycan are linked to different types of muscular dystrophies. In an effort to develop therapeutic approaches to re-establish signal integration for muscle repair and homeostasis, we have previously determined that a clinically approved agonist of retinoid X receptor enhances myoblast differentiation through direct regulation of gene expression of the muscle master regulator MyoD. Using comprehensive omics and molecular analyses, we found that dystroglycan gene expression is responsive to retinoid X receptor-selective signaling in early myoblast differentiation. In addition, the dystroglycan gene is a MyoD target, and residue-specific histone acetylation coincides with the occupancy of histone acetyltransferase p300 at the MyoD binding sites. Consequently, the p300 function is important for rexinoid-augmented dystroglycan gene expression. Finally, dystroglycan plays a role in myoblast differentiation. Our study sheds new light on dystroglycan regulation and function in myoblast differentiation and presents a potential avenue for re-establishing signal integration of a specific chromatin state pharmacologically to overcome muscle pathology and identify additional myogenic interactions for therapeutic applications.
Collapse
Affiliation(s)
- Munerah Hamed
- Department of Cellular and Molecular Medicine Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Qiao Li,
| |
Collapse
|
3
|
Khilji S, Li Y, Chen J, Li Q. Multi-Omics Approach to Dissect the Mechanisms of Rexinoid Signaling in Myoblast Differentiation. Front Pharmacol 2021; 12:746513. [PMID: 34603059 PMCID: PMC8484533 DOI: 10.3389/fphar.2021.746513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/31/2021] [Indexed: 12/28/2022] Open
Abstract
Stem cells represent a key resource in regenerative medicine, however, there is a critical need for pharmacological modulators to promote efficient conversion of stem cells into a myogenic lineage. We have previously shown that bexarotene, an agonist of retinoid X receptor (RXR) approved for cancer therapy, promotes the specification and differentiation of skeletal muscle progenitors. To decipher the molecular regulation of rexinoid signaling in myogenic differentiation, we have integrated RNA-seq transcription profiles with ChIP-seq of H4K8, H3K9, H3K18, H3K27 acetylation, and H3K27 methylation in addition to that of histone acetyl-transferase p300 in rexinoid-promoted myoblast differentiation. Here, we provide details regarding data collection, validation and omics integration analyses to offer strategies for future data application and replication. Our analyses also reveal molecular pathways underlying different patterns of gene expression and p300-associated histone acetylation at distinct chromatin states in rexinoid-enhanced myoblast differentiation. These datasets can be repurposed for future studies to examine the relationship between signaling molecules, chromatin modifiers and histone acetylation in myogenic regulation, providing a framework for discovery and functional characterization of muscle-specific loci.
Collapse
Affiliation(s)
- Saadia Khilji
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yuan Li
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Khilji S, Hamed M, Chen J, Li Q. Dissecting myogenin-mediated retinoid X receptor signaling in myogenic differentiation. Commun Biol 2020; 3:315. [PMID: 32555436 PMCID: PMC7303199 DOI: 10.1038/s42003-020-1043-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/21/2020] [Indexed: 11/18/2022] Open
Abstract
Deciphering the molecular mechanisms underpinning myoblast differentiation is a critical step in developing the best strategy to promote muscle regeneration in patients suffering from muscle-related diseases. We have previously established that a rexinoid x receptor (RXR)-selective agonist, bexarotene, enhances the differentiation and fusion of myoblasts through a direct regulation of MyoD expression, coupled with an augmentation of myogenin protein. Here, we found that RXR signaling associates with the distribution of myogenin at poised enhancers and a distinct E-box motif. We also found an association of myogenin with rexinoid-responsive gene expression and identified an epigenetic signature related to histone acetyltransferase p300. Moreover, RXR signaling augments residue-specific histone acetylation at enhancers co-occupied by p300 and myogenin. Thus, genomic distribution of transcriptional regulators is an important designate for identifying novel targets as well as developing therapeutics that modulate epigenetic landscape in a selective manner to promote muscle regeneration.
Collapse
Affiliation(s)
- Saadia Khilji
- Department of Cellular and Molecular Medicine and Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Munerah Hamed
- Department of Cellular and Molecular Medicine and Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine and Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Promoting Primary Myoblast Differentiation Through Retinoid X Receptor Signaling. Methods Mol Biol 2020. [PMID: 31359393 DOI: 10.1007/978-1-4939-9585-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The differentiation and fusion of primary myoblasts into myotubes is tightly regulated through muscle-specific transcription networks and can be enhanced by small molecular inducers, which allow us to identify novel genetic targets and molecular interactions. As the pressing issue is to develop pharmacotherapy to prevent and treat muscle-related diseases, we describe how to efficiently direct the differentiation of primary myoblasts by using a nuclear receptor agonist for the development of muscle therapeutics.
Collapse
|
6
|
Taylor DL, Jackson AU, Narisu N, Hemani G, Erdos MR, Chines PS, Swift A, Idol J, Didion JP, Welch RP, Kinnunen L, Saramies J, Lakka TA, Laakso M, Tuomilehto J, Parker SCJ, Koistinen HA, Davey Smith G, Boehnke M, Scott LJ, Birney E, Collins FS. Integrative analysis of gene expression, DNA methylation, physiological traits, and genetic variation in human skeletal muscle. Proc Natl Acad Sci U S A 2019; 116:10883-10888. [PMID: 31076557 PMCID: PMC6561151 DOI: 10.1073/pnas.1814263116] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We integrate comeasured gene expression and DNA methylation (DNAme) in 265 human skeletal muscle biopsies from the FUSION study with >7 million genetic variants and eight physiological traits: height, waist, weight, waist-hip ratio, body mass index, fasting serum insulin, fasting plasma glucose, and type 2 diabetes. We find hundreds of genes and DNAme sites associated with fasting insulin, waist, and body mass index, as well as thousands of DNAme sites associated with gene expression (eQTM). We find that controlling for heterogeneity in tissue/muscle fiber type reduces the number of physiological trait associations, and that long-range eQTMs (>1 Mb) are reduced when controlling for tissue/muscle fiber type or latent factors. We map genetic regulators (quantitative trait loci; QTLs) of expression (eQTLs) and DNAme (mQTLs). Using Mendelian randomization (MR) and mediation techniques, we leverage these genetic maps to predict 213 causal relationships between expression and DNAme, approximately two-thirds of which predict methylation to causally influence expression. We use MR to integrate FUSION mQTLs, FUSION eQTLs, and GTEx eQTLs for 48 tissues with genetic associations for 534 diseases and quantitative traits. We identify hundreds of genes and thousands of DNAme sites that may drive the reported disease/quantitative trait genetic associations. We identify 300 gene expression MR associations that are present in both FUSION and GTEx skeletal muscle and that show stronger evidence of MR association in skeletal muscle than other tissues, which may partially reflect differences in power across tissues. As one example, we find that increased RXRA muscle expression may decrease lean tissue mass.
Collapse
Affiliation(s)
- D Leland Taylor
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
- European Molecular Biology Laboratory, European Bioinformatics Institute, CB10 1SD Hinxton, United Kingdom
| | - Anne U Jackson
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Narisu Narisu
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, BS8 2BN Bristol, United Kingdom
| | - Michael R Erdos
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Peter S Chines
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Amy Swift
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jackie Idol
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - John P Didion
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ryan P Welch
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Leena Kinnunen
- Department of Public Health Solutions, National Institute for Health and Welfare, FI-00271 Helsinki, Finland
| | - Jouko Saramies
- Rehabilitation Center, South Karelia Social and Health Care District EKSOTE, Fl-53130 Lappeenranta, Finland
| | - Timo A Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Fl-70211 Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Fl-70211 Kuopio, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Fl-70100 Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, FI-70210 Kuopio, Finland
| | - Jaakko Tuomilehto
- Department of Public Health Solutions, National Institute for Health and Welfare, FI-00271 Helsinki, Finland
- Department of Public Health, University of Helsinki, Fl-00014 Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Stephen C J Parker
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Heikki A Koistinen
- Department of Public Health Solutions, National Institute for Health and Welfare, FI-00271 Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, FI-00029 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, FI-00290 Helsinki, Finland
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, BS8 2BN Bristol, United Kingdom
| | - Michael Boehnke
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Laura J Scott
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109;
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, CB10 1SD Hinxton, United Kingdom;
| | - Francis S Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
7
|
Shoucri BM, Hung VT, Chamorro-García R, Shioda T, Blumberg B. Retinoid X Receptor Activation During Adipogenesis of Female Mesenchymal Stem Cells Programs a Dysfunctional Adipocyte. Endocrinology 2018; 159:2863-2883. [PMID: 29860300 PMCID: PMC6669823 DOI: 10.1210/en.2018-00056] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/24/2018] [Indexed: 02/08/2023]
Abstract
Early life exposure to endocrine-disrupting chemicals (EDCs) is an emerging risk factor for the development of obesity and diabetes later in life. We previously showed that prenatal exposure to the EDC tributyltin (TBT) results in increased adiposity in the offspring. These effects linger into adulthood and are propagated through successive generations. TBT activates two nuclear receptors, the peroxisome proliferator-activated receptor (PPAR) γ and its heterodimeric partner retinoid X receptor (RXR), that promote adipogenesis in vivo and in vitro. We recently employed a mesenchymal stem cell (MSC) model to show that TBT promotes adipose lineage commitment by activating RXR, not PPARγ. This led us to consider the functional consequences of PPARγ vs RXR activation in developing adipocytes. We used a transcriptomal approach to characterize genome-wide differences in MSCs differentiated with the PPARγ agonist rosiglitazone (ROSI) or TBT. Pathway analysis suggested functional deficits in TBT-treated cells. We then compared adipocytes differentiated with ROSI, TBT, or a pure RXR agonist IRX4204 (4204). Our data show that RXR activators ("rexinoids," 4204 and TBT) attenuate glucose uptake, blunt expression of the antidiabetic hormone adiponectin, and fail to downregulate proinflammatory and profibrotic transcripts, as does ROSI. Finally, 4204 and TBT treatment results in an inability to induce markers of adipocyte browning, in part due to sustained interferon signaling. Taken together, these data implicate rexinoids in the development of dysfunctional white adipose tissue that could potentially exacerbate obesity and/or diabetes risk in vivo. These data warrant further screening and characterization of EDCs that activate RXR.
Collapse
Affiliation(s)
- Bassem M Shoucri
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California
- Medical Scientist Training Program, University of California, Irvine, Irvine, California
| | - Victor T Hung
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California
| | - Raquel Chamorro-García
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California
| | - Toshi Shioda
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California
| |
Collapse
|
8
|
Hamed M, Khilji S, Dixon K, Blais A, Ioshikhes I, Chen J, Li Q. Insights into interplay between rexinoid signaling and myogenic regulatory factor-associated chromatin state in myogenic differentiation. Nucleic Acids Res 2017; 45:11236-11248. [PMID: 28981706 PMCID: PMC5737385 DOI: 10.1093/nar/gkx800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
While skeletal myogenesis is tightly coordinated by myogenic regulatory factors including MyoD and myogenin, chromatin modifications have emerged as vital mechanisms of myogenic regulation. We have previously established that bexarotene, a clinically approved agonist of retinoid X receptor (RXR), promotes the specification and differentiation of skeletal muscle lineage. Here, we examine the genome-wide impact of rexinoids on myogenic differentiation through integral RNA-seq and ChIP-seq analyses. We found that bexarotene promotes myoblast differentiation through the coordination of exit from the cell cycle and the activation of muscle-related genes. We uncovered a new mechanism of rexinoid action which is mediated by the nuclear receptor and largely reconciled through a direct regulation of MyoD gene expression. In addition, we determined a rexinoid-responsive residue-specific histone acetylation at a distinct chromatin state associated to MyoD and myogenin. Thus, we provide novel molecular insights into the interplay between RXR signaling and chromatin states pertinent to myogenic programs in early myoblast differentiation.
Collapse
Affiliation(s)
- Munerah Hamed
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Saadia Khilji
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Katherine Dixon
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Alexandre Blais
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,The Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Ilya Ioshikhes
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,The Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
9
|
Shoucri BM, Martinez ES, Abreo TJ, Hung VT, Moosova Z, Shioda T, Blumberg B. Retinoid X Receptor Activation Alters the Chromatin Landscape To Commit Mesenchymal Stem Cells to the Adipose Lineage. Endocrinology 2017; 158:3109-3125. [PMID: 28977589 PMCID: PMC5659689 DOI: 10.1210/en.2017-00348] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/11/2017] [Indexed: 01/15/2023]
Abstract
Developmental exposure to environmental factors has been linked to obesity risk later in life. Nuclear receptors are molecular sensors that play critical roles during development and, as such, are prime candidates to explain the developmental programming of disease risk by environmental chemicals. We have previously characterized the obesogen tributyltin (TBT), which activates the nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor (RXR) to increase adiposity in mice exposed in utero. Mesenchymal stem cells (MSCs) from these mice are biased toward the adipose lineage at the expense of the osteoblast lineage, and MSCs exposed to TBT in vitro are shunted toward the adipose fate in a PPARγ-dependent fashion. To address where in the adipogenic cascade TBT acts, we developed an in vitro commitment assay that permitted us to distinguish early commitment to the adipose lineage from subsequent differentiation. TBT and RXR activators (rexinoids) had potent effects in committing MSCs to the adipose lineage, whereas the strong PPARγ activator rosiglitazone was inactive. We show that activation of RXR is sufficient for adipogenic commitment and that rexinoids act through RXR to alter the transcriptome in a manner favoring adipogenic commitment. RXR activation alters expression of enhancer of zeste homolog 2 (EZH2) and modifies genome-wide histone 3 lysine 27 trimethylation (H3K27me3) in promoting adipose commitment and programming subsequent differentiation. These data offer insights into the roles of RXR and EZH2 in MSC lineage specification and shed light on how endocrine-disrupting chemicals such as TBT can reprogram stem cell fate.
Collapse
Affiliation(s)
- Bassem M. Shoucri
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
- Medical Scientist Training Program, University of California, Irvine, Irvine, California 92697
| | - Eric S. Martinez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
| | - Timothy J. Abreo
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
| | - Victor T. Hung
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
| | - Zdena Moosova
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
- Masaryk University, Faculty of Science, RECETOX, 625 00 Brno, Czech Republic
| | - Toshi Shioda
- Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
10
|
Dixon K, Chen J, Li Q. Gene expression profiling discerns molecular pathways elicited by ligand signaling to enhance the specification of embryonic stem cells into skeletal muscle lineage. Cell Biosci 2017; 7:23. [PMID: 28469839 PMCID: PMC5414197 DOI: 10.1186/s13578-017-0150-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/26/2017] [Indexed: 01/07/2023] Open
Abstract
Regulation of lineage specification and differentiation in embryonic stem (ES) cells can be achieved through the activation of endogenous signaling, an avenue for potential application in regenerative medicine. During vertebrate development, retinoic acid (RA) plays an important role in body axis elongation and mesoderm segmentation in that graded exposure to RA provides cells with positional identity and directs commitment to specific tissue lineages. Nevertheless, bexarotene, a clinically approved rexinoid, enhances the specification and differentiation of ES cells into skeletal myocytes more effectively than RA. Thus profiling the transcriptomes of ES cells differentiated with bexarotene or RA permits the identification of different genetic targets and signaling pathways that may contribute to the difference of bexarotene and RA in efficiency of myogenesis. Interestingly, bexarotene induces the early expression of a myogenic progenitor marker, Meox1, while the expression of many RA targets is also enhanced by bexarotene. Several signaling molecules involved in the progression of myogenic specification and commitment are differentially regulated by bexarotene and RA, suggesting that early targets of rexinoid allow the coordinated regulation of molecular events which leads to efficient myogenic differentiation in ES cells.
Collapse
Affiliation(s)
- Katherine Dixon
- 0000 0001 2182 2255grid.28046.38Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Room 2537, Ottawa, ON K1H 8M5 Canada
| | - Jihong Chen
- 0000 0001 2182 2255grid.28046.38Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Qiao Li
- 0000 0001 2182 2255grid.28046.38Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Room 2537, Ottawa, ON K1H 8M5 Canada ,0000 0001 2182 2255grid.28046.38Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|