1
|
Umar SIU, Prasad S, Naskar S, Das PJ, Sharma M, Pattanayak A, Murasing DK, Bhadana VP, Rakshit S. Comparative transcriptome analysis of bull X- and Y-spermatozoa. Sci Rep 2025; 15:14593. [PMID: 40287506 PMCID: PMC12033294 DOI: 10.1038/s41598-025-99438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
Sex-sorted bovine semen is a major breakthrough in the dairy sector. The current flow cytometer-based technology for sex-sorting of bovine semen is proprietary, slow, expensive, and associated with lower conception rates. Therefore, developing alternative technologies is crucial for advancing milk production globally through use of sexed semen. However, lack of a comprehensive omics dataset hinders the ability to comprehend significant differences between the sorted sperm types and develop robust biomarkers for sex-sorting. Here, we reported the RNA-Seq analysis of unsorted, X- and Y-sperm in Bos indicus cattle. The differential gene expression analysis revealed significant upregulation of 47 genes in bovine Y-sperm and downregulation of 20 genes in comparison to X-sperm (adjusted p value < 0.05). Sixteen percent of the transcripts were unique to X-sperm, whereas 20.7% were unique to Y-sperm. The top 22 differentially expressed genes (DEGs) were validated using qPCR. A significant up- or down-regulation was detected in 21 of the 22 genes when comparing bovine Y-sperm to X-sperm (p < 0.01 and p < 0.05). The transcriptome dataset, the first in the league of bovine X- and Y-sperm, will aid in biomarker discovery for sex-sorting of bovine semen and improved fertility outcomes.
Collapse
Affiliation(s)
- Sofi Imran Ul Umar
- ICAR-Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, 834003, India
- Birsa Agricultural University, Kanke, Ranchi, 834006, India
| | - Sushil Prasad
- Birsa Agricultural University, Kanke, Ranchi, 834006, India
| | - Soumen Naskar
- ICAR-Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, 834003, India.
| | - Pranab Jyoti Das
- ICAR-National Research Centre on Pig, Rani, Guwahati, 781131, India
| | - Mridula Sharma
- G. B. Pant University of Agriculture and Technology, Pantnagar, 263145, India
| | - Arunava Pattanayak
- ICAR-Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, 834003, India
| | - Dhanu Kumar Murasing
- ICAR-Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, 834003, India
- G. B. Pant University of Agriculture and Technology, Pantnagar, 263145, India
| | - Vijai Pal Bhadana
- ICAR-Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, 834003, India
| | - Sujay Rakshit
- ICAR-Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, 834003, India
| |
Collapse
|
2
|
Chávez JC, Carrasquel-Martínez G, Hernández-Garduño S, Matamoros Volante A, Treviño CL, Nishigaki T, Darszon A. Cytosolic and Acrosomal pH Regulation in Mammalian Sperm. Cells 2024; 13:865. [PMID: 38786087 PMCID: PMC11120249 DOI: 10.3390/cells13100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
As in most cells, intracellular pH regulation is fundamental for sperm physiology. Key sperm functions like swimming, maturation, and a unique exocytotic process, the acrosome reaction, necessary for gamete fusion, are deeply influenced by pH. Sperm pH regulation, both intracellularly and within organelles such as the acrosome, requires a coordinated interplay of various transporters and channels, ensuring that this cell is primed for fertilization. Consistent with the pivotal importance of pH regulation in mammalian sperm physiology, several of its unique transporters are dependent on cytosolic pH. Examples include the Ca2+ channel CatSper and the K+ channel Slo3. The absence of these channels leads to male infertility. This review outlines the main transport elements involved in pH regulation, including cytosolic and acrosomal pH, that participate in these complex functions. We present a glimpse of how these transporters are regulated and how distinct sets of them are orchestrated to allow sperm to fertilize the egg. Much research is needed to begin to envision the complete set of players and the choreography of how cytosolic and organellar pH are regulated in each sperm function.
Collapse
Affiliation(s)
- Julio C. Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Gabriela Carrasquel-Martínez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
- CITMER, Medicina Reproductiva, México City 11520, Mexico
| | - Sandra Hernández-Garduño
- Departamento de Morfología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico;
| | - Arturo Matamoros Volante
- Department of Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Claudia L. Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| |
Collapse
|
3
|
Viana Neto AM, Guerreiro DD, Martins JAM, Vasconcelos FÁR, Melo RÉBF, Velho ALMCS, Neila-Montero M, Montes-Garrido R, Nagano CS, Araújo AA, Moura AA. Sperm traits and seminal plasma proteome of locally adapted hairy rams subjected to intermittent scrotal insulation. Anim Reprod Sci 2024; 263:107439. [PMID: 38447240 DOI: 10.1016/j.anireprosci.2024.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024]
Abstract
The present study evaluated the effects of heat stress on reproductive parameters of hairy rams. Six animals were subjected to scrotal insulation during four consecutive nights (6 PM - 6 AM). Day (D) 0 was the first day of insulation. Scrotal circumference increased from 30.5 ± 0.3 cm (at pre-insulation) to 31.8 ± 0.4 cm on D4, decreased 3.9 cm on D28, returning to 30.6 ± 0.6 cm on D57. Sperm concentration decreased from 3.7 ± 0.12 ×109 sperm/mL before insulation to 2.6 ± 0.1 ×109 on D23, returning to normal on D57. Sperm motility averaged 75 ± 2.9% before insulation, was undetectable on D23, and became normal on D77. Sperm with normal morphology reached 5.9 ± 2.6% on D35 but recovered (86.8 ± 2.1%) on D91. Sperm DNA integrity decreased from 86.5 ± 4.7% before insulation to 11.1 ± 3.7% on D63, returning to pre-insulation values on D120. Sperm BSP immunostaining was reduced after scrotal insulation. Variations in seminal protein abundances coincided with changes in sperm parameters. Seminal plasma superoxide dismutase, carboxypeptidase Q-precursor and NPC intracellular cholesterol transporter 2 decreased on D18, returning to normal after D28. Albumin, inhibitor of carbonic anhydrase precursor, EGF-like repeat and discoid I-like domain-containing protein 3 and polymeric immunoglobulin receptor increased after insulation. In summary, intermittent scrotal insulation drastically altered ram sperm attributes and seminal proteins, especially those associated with oxidative stress. Knowledge of animal´s response to thermal stress is vital in the scenario of climate changes.
Collapse
Affiliation(s)
| | - Denise D Guerreiro
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Jorge A M Martins
- School of Veterinary Medicine, Federal University of Cariri, Juazeiro do Norte, Brazil
| | | | - R Évila B F Melo
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | | | - Marta Neila-Montero
- Itra-ULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Rafael Montes-Garrido
- Itra-ULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Celso S Nagano
- Department of Fisheries Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Airton A Araújo
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil; School of Veterinary Medicine, Ceará State University, Fortaleza, Brazil
| | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
4
|
Takei GL. Molecular mechanisms of mammalian sperm capacitation, and its regulation by sodium-dependent secondary active transporters. Reprod Med Biol 2024; 23:e12614. [PMID: 39416520 PMCID: PMC11480905 DOI: 10.1002/rmb2.12614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Background Mammalian spermatozoa have to be "capacitated" to be fertilization-competent. Capacitation is a collective term for the physiological and biochemical changes in spermatozoa that occur within the female body. However, the regulatory mechanisms underlying capacitation have not been fully elucidated. Methods Previously published papers on capacitation, especially from the perspective of ions/channels/transporters, were extracted and summarized. Results Capacitation can be divided into two processes: earlier events (membrane potential hyperpolarization, intracellular pH rise, intracellular Ca2+ rise, etc.) and two major later events: hyperactivation and the acrosome reaction. Earlier events are closely interconnected with each other. Various channels/transporters are involved in the regulation of them, which ultimately lead to the later events. Manipulating the extracellular K+ concentration based on the oviductal concentration modifies membrane potential; however, the later events and fertilization are not affected, suggesting the uninvolvement of membrane potential in capacitation. Hyperpolarization is a highly conserved phenomenon among mammalian species, indicating its importance in capacitation. Therefore, the physiological importance of hyperpolarization apart from membrane potential is suggested. Conclusion The hypotheses are (1) hyperpolarizing Na+ dynamics (decrease in intracellular Na+) and Na+-driven secondary active transporters play a vital role in capacitation and (2) the sperm-specific potassium channel Slo3 is involved in volume and/or morphological regulation.
Collapse
Affiliation(s)
- Gen L. Takei
- Department of Pharmacology and ToxicologyDokkyo Medical UniversityTochigiJapan
| |
Collapse
|
5
|
Grahn E, Kaufmann SV, Askarova M, Ninov M, Welp LM, Berger TK, Urlaub H, Kaupp UB. Control of intracellular pH and bicarbonate by CO 2 diffusion into human sperm. Nat Commun 2023; 14:5395. [PMID: 37669933 PMCID: PMC10480191 DOI: 10.1038/s41467-023-40855-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
The reaction of CO2 with H2O to form bicarbonate (HCO3-) and H+ controls sperm motility and fertilization via HCO3--stimulated cAMP synthesis. A complex network of signaling proteins participates in this reaction. Here, we identify key players that regulate intracellular pH (pHi) and HCO3- in human sperm by quantitative mass spectrometry (MS) and kinetic patch-clamp fluorometry. The resting pHi is set by amiloride-sensitive Na+/H+ exchange. The sperm-specific putative Na+/H+ exchanger SLC9C1, unlike its sea urchin homologue, is not gated by voltage or cAMP. Transporters and channels implied in HCO3- transport are not detected, and may be present at copy numbers < 10 molecules/sperm cell. Instead, HCO3- is produced by diffusion of CO2 into cells and readjustment of the CO2/HCO3-/H+ equilibrium. The proton channel Hv1 may serve as a unidirectional valve that blunts the acidification ensuing from HCO3- synthesis. This work provides a new framework for the study of male infertility.
Collapse
Affiliation(s)
- Elena Grahn
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Svenja V Kaufmann
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Malika Askarova
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Momchil Ninov
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Luisa M Welp
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Thomas K Berger
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstrasse 1-2, 35037, Marburg, Germany.
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany.
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
- Cluster of Excellence, Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany.
| | - U Benjamin Kaupp
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Life & Medical Sciences Institute (LIMES), University Bonn, Carl-Troll-Strasse 31, 53115, Bonn, Germany.
| |
Collapse
|
6
|
Pintus E, Chinn AF, Kadlec M, García-Vázquez FA, Novy P, Matson JB, Ros-Santaella JL. N-thiocarboxyanhydrides, amino acid-derived enzyme-activated H 2S donors, enhance sperm mitochondrial activity in presence and absence of oxidative stress. BMC Vet Res 2023; 19:52. [PMID: 36797726 PMCID: PMC9933379 DOI: 10.1186/s12917-023-03593-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) donors are crucial tools not only for understanding the role of H2S in cellular function but also as promising therapeutic agents for oxidative stress-related diseases. This study aimed to explore the effect of amino acid-derived N-thiocarboxyanhydrides (NTAs), which release physiological H2S levels in the presence of carbonic anhydrase, on porcine sperm function during short-term incubation with and without induced oxidative stress. For this purpose, we employed two H2S-releasing NTAs with release half-lives (t1/2) in the range of hours that derived from the amino acids glycine (Gly-NTA) or leucine (Leu-NTA). Because carbonic anhydrase is crucial for H2S release from NTAs, we first measured the activity of this enzyme in the porcine ejaculate. Then, we tested the effect of Gly- and Leu-NTAs at 10 and 1 nM on sperm mitochondrial activity, plasma membrane integrity, acrosomal status, motility, motile subpopulations, and redox balance during short-term incubation at 38 °C with and without a reactive oxygen species (ROS)-generating system. RESULTS Our results show that carbonic anhydrase is found both in spermatozoa and seminal plasma, with activity notably higher in the latter. Both Gly- and Leu-NTAs did not exert any noxious effects, but they enhanced sperm mitochondrial activity in the presence and absence of oxidative stress. Moreover, NTAs (except for Leu-NTA 10 nM) tended to preserve the sperm redox balance against the injuries provoked by oxidative stress, which provide further support to the antioxidant effect of H2S on sperm function. Both compounds also increased progressive motility over short-term incubation, which may translate into prolonged sperm survival. CONCLUSIONS The presence of carbonic anhydrase activity in mammalian spermatozoa makes NTAs promising molecules to investigate the role of H2S in sperm biology. For the first time, beneficial effects of NTAs on mitochondrial activity have been found in mammalian cells in the presence and absence of oxidative stress. NTAs are interesting compounds to investigate the role of H2S in sperm mitochondria-dependent events and to develop H2S-related therapeutic protocols against oxidative stress in assisted reproductive technologies.
Collapse
Affiliation(s)
- Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic.
| | - Abigail F. Chinn
- grid.438526.e0000 0001 0694 4940Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - Martin Kadlec
- grid.15866.3c0000 0001 2238 631XDepartment of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Francisco Alberto García-Vázquez
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Internacional Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Pavel Novy
- grid.15866.3c0000 0001 2238 631XDepartment of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - John B. Matson
- grid.438526.e0000 0001 0694 4940Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - José Luis Ros-Santaella
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic.
| |
Collapse
|
7
|
Cordero-Martínez J, Jimenez-Gutierrez GE, Aguirre-Alvarado C, Alacántara-Farfán V, Chamorro-Cevallos G, Roa-Espitia AL, Hernández-González EO, Rodríguez-Páez L. Participation of signaling proteins in sperm hyperactivation. Syst Biol Reprod Med 2022; 68:315-330. [DOI: 10.1080/19396368.2022.2122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Joaquín Cordero-Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | | - Charmina Aguirre-Alvarado
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Unidad de Investigación Médica en Inmunología e Infectología Centro Médico Nacional La Raza, IMSS, Ciudad de México, Mexico
| | - Verónica Alacántara-Farfán
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Germán Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica Departamento de Farmacia Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ana L. Roa-Espitia
- Departamento de Biología Celular Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional, México City, Mexico
| | - Enrique O. Hernández-González
- Departamento de Biología Celular Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional, México City, Mexico
| | - Lorena Rodríguez-Páez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
8
|
Kyrgiafini MA, Sarafidou T, Mamuris Z. The Role of Long Noncoding RNAs on Male Infertility: A Systematic Review and In Silico Analysis. BIOLOGY 2022; 11:biology11101510. [PMID: 36290414 PMCID: PMC9598197 DOI: 10.3390/biology11101510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
Abstract
Male infertility is a complex disorder affecting many couples worldwide. Long noncoding RNAs (lncRNAs) regulate important cellular processes; however, a comprehensive understanding of their role in male infertility is limited. This systematic review investigates the differential expressions of lncRNAs in male infertility or variations in lncRNA regions associated with it. The PRISMA guidelines were used to search Pubmed and Web of Science (1 June 2022). Inclusion criteria were human participants, patients diagnosed with male infertility, and English language speakers. We also performed an in silico analysis investigating lncRNAs that are reported in many subtypes of male infertility. A total of 625 articles were found, and after the screening and eligibility stages, 20 studies were included in the final sample. Many lncRNAs are deregulated in male infertility, and interactions between lncRNAs and miRNAs play an important role. However, there is a knowledge gap regarding the impact of variants found in lncRNA regions. Furthermore, eight lncRNAs were identified as differentially expressed in many subtypes of male infertility. After in silico analysis, gene ontology (GO) and KEGG enrichment analysis of the genes targeted by them revealed their association with bladder and prostate cancer. However, pathways involved in general in tumorigenesis and cancer development of all types, such as p53 pathways, apoptosis, and cell death, were also enriched, indicating a link between cancer and male infertility. This evidence, however, is preliminary. Future research is needed to explore the exact mechanism of action of the identified lncRNAs and investigate the association between male infertility and cancer.
Collapse
|
9
|
Proteomic analysis of rabbit fresh and cryopreserved semen provides an important insight into molecular mechanisms of cryoinjuries to spermatozoa. Theriogenology 2022; 191:77-95. [DOI: 10.1016/j.theriogenology.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
|
10
|
Delgado-Bermúdez A, Yeste M, Bonet S, Pinart E. A Review on the Role of Bicarbonate and Proton Transporters during Sperm Capacitation in Mammals. Int J Mol Sci 2022; 23:ijms23116333. [PMID: 35683013 PMCID: PMC9180951 DOI: 10.3390/ijms23116333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Alkalinization of sperm cytosol is essential for plasma membrane hyperpolarization, hyperactivation of motility, and acrosomal exocytosis during sperm capacitation in mammals. The plasma membrane of sperm cells contains different ion channels implicated in the increase of internal pH (pHi) by favoring either bicarbonate entrance or proton efflux. Bicarbonate transporters belong to the solute carrier families 4 (SLC4) and 26 (SLC26) and are currently grouped into Na+/HCO3− transporters and Cl−/HCO3− exchangers. Na+/HCO3− transporters are reported to be essential for the initial and fast entrance of HCO3− that triggers sperm capacitation, whereas Cl−/HCO3− exchangers are responsible for the sustained HCO3− entrance which orchestrates the sequence of changes associated with sperm capacitation. Proton efflux is required for the fast alkalinization of capacitated sperm cells and the activation of pH-dependent proteins; according to the species, this transport can be mediated by Na+/H+ exchangers (NHE) belonging to the SLC9 family and/or voltage-gated proton channels (HVCN1). Herein, we discuss the involvement of each of these channels in sperm capacitation and the acrosome reaction.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), ES-08010 Barcelona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Correspondence: ; Tel.: +34-972-419-514
| |
Collapse
|
11
|
Tian Y, Sun P, Liu WX, Shan LY, Hu YT, Fan HT, Shen W, Liu YB, Zhou Y, Zhang T. Single-cell RNA sequencing of the Mongolia sheep testis reveals a conserved and divergent transcriptome landscape of mammalian spermatogenesis. FASEB J 2022; 36:e22348. [PMID: 35583907 DOI: 10.1096/fj.202200152r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/09/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is a highly coordinated and complex process, and is pivotal for transmitting genetic information between mammalian generations. In this study, we investigated the conservation, differences, and biological functions of homologous genes during spermatogenesis in Mongolia sheep, humans, cynomolgus monkey, and mice using single-cell RNA sequencing technology. We compared X chromosome meiotic inactivation events in Mongolia sheep, humans, cynomolgus monkey, and mice to uncover the concerted activity of X chromosome genes. Subsequently, we focused on the dynamics of gene expression, key biological functions, and signaling pathways at various stages of spermatogenesis in Mongolia sheep and humans. Additionally, the ligand-receptor networks of Mongolia sheep and humans in testicular somatic and germ cells at different developmental stages were mapped to reveal conserved germ cell-soma communication using single-cell resolution. These datasets provided novel information and insights to unravel the molecular regulatory mechanisms of Mongolia sheep spermatogenesis and highlight conservation in gene expression during spermatogenesis between Mongolia sheep and humans, providing a foundation for the establishment of a large mammalian disease model of male infertility.
Collapse
Affiliation(s)
- Yu Tian
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Peng Sun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China.,Laboratory of Microbiology and Immunology, College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Wen-Xiang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Li-Ying Shan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan-Ting Hu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hai-Tao Fan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yong-Bin Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China.,Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Yang Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
12
|
Wiesehöfer C, Wiesehöfer M, Dankert JT, Chung JJ, von Ostau NE, Singer BB, Wennemuth G. CatSper and its CaM-like Ca 2+ sensor EFCAB9 are necessary for the path chirality of sperm. FASEB J 2022; 36:e22288. [PMID: 35438819 PMCID: PMC9835897 DOI: 10.1096/fj.202101656rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 01/14/2023]
Abstract
Successful fertilization depends on sperm motility adaptation. Ejaculated and activated sperm beat symmetrically in high frequency, move linearly, and swim with clockwise chirality. After capacitation, sperm beat asymmetrically with lower amplitude and a high lateral head excursion. This motility change called hyperactivation requires CatSper activation and an increase in intracellular Ca2+ . However, whether CatSper-mediated Ca2+ influx participates in controlling the swim path chirality is unknown. In this study, we show that the clockwise path chirality is preserved in mouse sperm regardless of capacitation state but is lost in the sperm either lacking the entire CatSper channel or its Ca2+ sensor EFCAB9. Pharmacological inhibition of CatSper with either mibefradil or NNC 55-0396 leads to the same loss in swim path chirality. Exposure of sperm to the recombinant N-terminal part of the zona pellucida protein 2 randomizes chirality in capacitated cells, but not in non-capacitated ones. We conclude that Ca2+ sensitive regulation of CatSper activity orchestrates clockwise swim path chirality of sperm and any substantial change, such as the physiological stimulus of zona pellucida glycoproteins, results in a loss of chirality.
Collapse
Affiliation(s)
| | - Marc Wiesehöfer
- Department of Anatomy, University Duisburg-Essen, D-45147 Essen, Germany
| | | | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nicola Edith von Ostau
- Department of Anatomy, University Duisburg-Essen, D-45147 Essen, Germany,Department of Urology, University Hospital Essen, D-45147 Essen, Germany
| | | | - Gunther Wennemuth
- Department of Anatomy, University Duisburg-Essen, D-45147 Essen, Germany,Correspondence to
| |
Collapse
|
13
|
de Prelle B, Lybaert P, Gall D. A Minimal Model Shows that a Positive Feedback Loop Between sNHE and SLO3 can Control Mouse Sperm Capacitation. Front Cell Dev Biol 2022; 10:835594. [PMID: 35399518 PMCID: PMC8990769 DOI: 10.3389/fcell.2022.835594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
When mammalian spermatozoa are released in the female reproductive tract, they are incapable of fertilizing the oocyte. They need a prolonged exposure to the alkaline medium of the female genital tract before their flagellum gets hyperactivated and the acrosome reaction can take place, allowing the sperm to interact with the oocyte. Ionic fluxes across the sperm membrane are involved in two essential aspects of capacitation: the increase in intracellular pH and the membrane hyperpolarization. In particular, it has been shown that the SLO3 potassium channel and the sNHE sodium-proton exchanger, two sperm-specific transmembrane proteins, are necessary for the capacitation process to occur. As the SLO3 channel is activated by an increase in intracellular pH and sNHE is activated by hyperpolarization, they act together as a positive feedback system. Mathematical modeling provides a unique tool to capture the essence of a molecular mechanism and can be used to derive insight from the existing data. We have therefore developed a theoretical model formalizing the positive feedback loop between SLO3 and sHNE in mouse epididymal sperm to see if this non-linear interaction can provide the core mechanism explaining the existence of uncapacited and capacitated states. We show that the proposed model can fully explain the switch between the uncapacitated and capacited states and also predicts the existence of a bistable behaviour. Furthermore, our model indicates that SLO3 inhibition, above a certain threshold, can be effective to completely abolish capacitation.
Collapse
Affiliation(s)
- Bertrand de Prelle
- Research Laboratory on Human Reproduction, Faculté de Médecine, Université libre de Bruxelles, Brussels, Belgium
| | - Pascale Lybaert
- Research Laboratory on Human Reproduction, Faculté de Médecine, Université libre de Bruxelles, Brussels, Belgium
| | - David Gall
- Research Laboratory on Human Reproduction, Faculté de Médecine, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
14
|
Aspatwar A, Tolvanen MEE, Barker H, Syrjänen L, Valanne S, Purmonen S, Waheed A, Sly WS, Parkkila S. Carbonic Anhydrases in Metazoan Model Organisms: Molecules, Mechanisms, and Physiology. Physiol Rev 2022; 102:1327-1383. [PMID: 35166161 DOI: 10.1152/physrev.00018.2021] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During the past three decades, mice, zebrafish, fruit flies, and Caenorhabditis elegans have been the primary model organisms used for the study of various biological phenomena. These models have also been adopted and developed to investigate the physiological roles of carbonic anhydrases (CAs) and carbonic anhydrase-related proteins (CARPs). These proteins belong to eight CA families and are identified by Greek letters: α, β, γ, δ, ζ, η, θ, and ι. Studies using model organisms have focused on two CA families, α-CAs and β-CAs, which are expressed in both prokaryotic and eukaryotic organisms with species-specific distribution patterns and unique functions. This review covers the biological roles of CAs and CARPs in light of investigations performed in model organisms. Functional studies demonstrate that CAs are not only linked to the regulation of pH homeostasis, the classical role of CAs but also contribute to a plethora of previously undescribed functions.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Leo Syrjänen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Otorhinolaryngology, Tampere University Hospital, Tampere, Finland
| | - Susanna Valanne
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Purmonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Abdul Waheed
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - William S Sly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
15
|
Chakraborty S, Saha S. Understanding sperm motility mechanisms and the implication of sperm surface molecules in promoting motility. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2022. [DOI: 10.1186/s43043-022-00094-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Abstract
Background
It is estimated that approximately 8–12% of couples globally face problems associated with infertility. A large number of men exhibit suboptimal sperm parameters. Sperm motility is one of the factors that is measured when analysing sperm parameters. The indication of several crucial sperm surface molecules, having the ability to modulate motility, has opened new avenues in understanding the complex processes involved in motility.
Main body of the abstract
There are various mechanisms that regulate and enhance sperm motility. Several surface molecules on sperm cells can also regulate motility, thus showing their possible application as a treatment for infertility caused by impaired motility. Sperm motility is regulated by intracellular and extracellular pH, along with calcium ions (Ca2+) and carbonate ion (HCO3−) concentrations. Moreover, sperm cells have an array of surface proteins which play a critical role in their function and motility. The indication of surface molecules presented new opportunities for understanding sperm motility and the possibility of treating infertility caused by impaired sperm function. Infertility and problems associated with conception can cause underlying stress and mental trauma. Although there are several methods for treating infertility, most are complex, invasive, and expensive.
Conclusion
It is important to understand how surface molecules and proteins on the sperm cell regulate motility. This will enable us to treat anomalies associated with proper sperm function. This review highlights the general mechanisms that regulate sperm motility, and it stresses the importance and relevance of sperm surface molecules in regulating sperm motility.
Collapse
|
16
|
Trampert DC, van de Graaf SFJ, Jongejan A, Oude Elferink RPJ, Beuers U. Hepatobiliary acid-base homeostasis: Insights from analogous secretory epithelia. J Hepatol 2021; 74:428-441. [PMID: 33342564 DOI: 10.1016/j.jhep.2020.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/03/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
Many epithelia secrete bicarbonate-rich fluid to generate flow, alter viscosity, control pH and potentially protect luminal and intracellular structures from chemical stress. Bicarbonate is a key component of human bile and impaired biliary bicarbonate secretion is associated with liver damage. Major efforts have been undertaken to gain insight into acid-base homeostasis in cholangiocytes and more can be learned from analogous secretory epithelia. Extrahepatic examples include salivary and pancreatic duct cells, duodenocytes, airway and renal epithelial cells. The cellular machinery involved in acid-base homeostasis includes carbonic anhydrase enzymes, transporters of the solute carrier family, and intra- and extracellular pH sensors. This pH-regulatory system is orchestrated by protein-protein interactions, the establishment of an electrochemical gradient across the plasma membrane and bicarbonate sensing of the intra- and extracellular compartment. In this review, we discuss conserved principles identified in analogous secretory epithelia in the light of current knowledge on cholangiocyte physiology. We present a framework for cholangiocellular acid-base homeostasis supported by expression analysis of publicly available single-cell RNA sequencing datasets from human cholangiocytes, which provide insights into the molecular basis of pH homeostasis and dysregulation in the biliary system.
Collapse
Affiliation(s)
- David C Trampert
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Stan F J van de Graaf
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Amsterdam UMC, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Meibergdreef 9, Amsterdam, the Netherlands
| | - Ronald P J Oude Elferink
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Ulrich Beuers
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Vyklicka L, Lishko PV. Dissecting the signaling pathways involved in the function of sperm flagellum. Curr Opin Cell Biol 2020; 63:154-161. [PMID: 32097833 DOI: 10.1016/j.ceb.2020.01.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/09/2020] [Accepted: 01/26/2020] [Indexed: 01/28/2023]
Abstract
The mammalian flagellum is a specific type of motile cilium required for sperm motility and male fertility. Effective flagellar movement is dependent on axonemal function, which in turn relies on proper ion homeostasis within the flagellar compartment. This ion homeostasis is maintained by the concerted function of ion channels and transporters that initiate signal transduction pathways resulting in motility changes. Advances in electrophysiology and super-resolution microscopy have helped to identify and characterize new regulatory modalities of the mammalian flagellum. Here, we discuss what is currently known about the regulation of flagellar ion channels and transporters that maintain sodium, potassium, calcium, and proton homeostasis. Identification of new regulatory elements and their specific roles in sperm motility is imperative for improving diagnostics of male infertility.
Collapse
Affiliation(s)
- Lenka Vyklicka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
18
|
Evaluation by re-derivation of a paternal line after 18 generations on seminal traits, proteome and fertility. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Hermann BP, Cheng K, Singh A, Roa-De La Cruz L, Mutoji KN, Chen IC, Gildersleeve H, Lehle JD, Mayo M, Westernströer B, Law NC, Oatley MJ, Velte EK, Niedenberger BA, Fritze D, Silber S, Geyer CB, Oatley JM, McCarrey JR. The Mammalian Spermatogenesis Single-Cell Transcriptome, from Spermatogonial Stem Cells to Spermatids. Cell Rep 2019; 25:1650-1667.e8. [PMID: 30404016 PMCID: PMC6384825 DOI: 10.1016/j.celrep.2018.10.026] [Citation(s) in RCA: 392] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 08/15/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
Spermatogenesis is a complex and dynamic cellular differentiation process critical to male reproduction and sustained by spermatogonial stem cells (SSCs). Although patterns of gene expression have been described for aggregates of certain spermatogenic cell types, the full continuum of gene expression patterns underlying ongoing spermatogenesis in steady state was previously unclear. Here, we catalog single-cell transcriptomes for >62,000 individual spermatogenic cells from immature (postnatal day 6) and adult male mice and adult men. This allowed us to resolve SSC and progenitor spermatogonia, elucidate the full range of gene expression changes during male meiosis and spermiogenesis, and derive unique gene expression signatures for multiple mouse and human spermatogenic cell types and/or subtypes. These transcriptome datasets provide an information-rich resource for studies of SSCs, male meiosis, testicular cancer, male infertility, or contraceptive development, as well as a gene expression roadmap to be emulated in efforts to achieve spermatogenesis in vitro.
Collapse
Affiliation(s)
- Brian P Hermann
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Genomics Core, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Keren Cheng
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Anukriti Singh
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Lorena Roa-De La Cruz
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Kazadi N Mutoji
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - I-Chung Chen
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Heidi Gildersleeve
- Genomics Core, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jake D Lehle
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Max Mayo
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Birgit Westernströer
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Nathan C Law
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA
| | - Melissa J Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA
| | - Ellen K Velte
- Department of Anatomy & Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Bryan A Niedenberger
- Department of Anatomy & Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Danielle Fritze
- The UT Transplant Center, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Sherman Silber
- The Infertility Center of St. Louis, Chesterfield, MO 63017, USA
| | - Christopher B Geyer
- Department of Anatomy & Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
20
|
Niemeyer J, Mentrup T, Heidasch R, Müller SA, Biswas U, Meyer R, Papadopoulou AA, Dederer V, Haug-Kröper M, Adamski V, Lüllmann-Rauch R, Bergmann M, Mayerhofer A, Saftig P, Wennemuth G, Jessberger R, Fluhrer R, Lichtenthaler SF, Lemberg MK, Schröder B. The intramembrane protease SPPL2c promotes male germ cell development by cleaving phospholamban. EMBO Rep 2019; 20:e46449. [PMID: 30733280 PMCID: PMC6399600 DOI: 10.15252/embr.201846449] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 11/09/2022] Open
Abstract
Signal peptide peptidase (SPP) and the four homologous SPP-like (SPPL) proteases constitute a family of intramembrane aspartyl proteases with selectivity for type II-oriented transmembrane segments. Here, we analyse the physiological function of the orphan protease SPPL2c, previously considered to represent a non-expressed pseudogene. We demonstrate proteolytic activity of SPPL2c towards selected tail-anchored proteins. Despite shared ER localisation, SPPL2c and SPP exhibit distinct, though partially overlapping substrate spectra and inhibitory profiles, and are organised in different high molecular weight complexes. Interestingly, SPPL2c is specifically expressed in murine and human testis where it is primarily localised in spermatids. In mice, SPPL2c deficiency leads to a partial loss of elongated spermatids and reduced motility of mature spermatozoa, but preserved fertility. However, matings of male and female SPPL2c-/- mice exhibit reduced litter sizes. Using proteomics we identify the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2)-regulating protein phospholamban (PLN) as a physiological SPPL2c substrate. Accumulation of PLN correlates with a decrease in intracellular Ca2+ levels in elongated spermatids that likely contribute to the compromised male germ cell differentiation and function of SPPL2c-/- mice.
Collapse
Affiliation(s)
- Johannes Niemeyer
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Torben Mentrup
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Ronny Heidasch
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Stephan A Müller
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar and Institute for Advanced Study, Technical University of Munich, Munich, Germany
| | - Uddipta Biswas
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Rieke Meyer
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alkmini A Papadopoulou
- Institute for Metabolic Biochemistry, Biomedical Center (BMC) München, Ludwig Maximilians University of Munich, Munich, Germany
| | - Verena Dederer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Martina Haug-Kröper
- Institute for Metabolic Biochemistry, Biomedical Center (BMC) München, Ludwig Maximilians University of Munich, Munich, Germany
| | - Vivian Adamski
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Martin Bergmann
- Institute of Veterinary Anatomy, Justus Liebig University of Gießen, Gießen, Germany
| | - Artur Mayerhofer
- Cell Biology, Anatomy III, Biomedical Center (BMC) München, Ludwig Maximilians University of Munich, Munich, Germany
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Gunther Wennemuth
- Institute of Anatomy, University Hospital, Duisburg-Essen University, Essen, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Regina Fluhrer
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
- Institute for Metabolic Biochemistry, Biomedical Center (BMC) München, Ludwig Maximilians University of Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar and Institute for Advanced Study, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marius K Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Bernd Schröder
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
21
|
Muschol M, Wenders C, Wennemuth G. Four-dimensional analysis by high-speed holographic imaging reveals a chiral memory of sperm flagella. PLoS One 2018; 13:e0199678. [PMID: 29953515 PMCID: PMC6023239 DOI: 10.1371/journal.pone.0199678] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022] Open
Abstract
Here high-speed Digital Holographic Microscopy (DHM) records sperm flagellar waveforms and swimming paths in 4 dimensions (X, Z, and t). We find flagellar excursions into the Z-plane nearly as large as the envelope of the flagellar waveform projected onto the XY-plane. These Z-plane excursions travel as waves down the flagellum each beat cycle. DHM also tracks the heads of free-swimming sperm and the dynamics and chirality of rolling of sperm around their long axis. We find that mouse sperm roll CW at the maximum positive Z-plane excursion of the head, then roll CCW at the subsequent maximum negative Z-plane excursion. This alternating chirality of rolling indicates sperm have a chiral memory. Procrustes alignments of path trajectories for sequences of roll-counterroll cycles show that path chirality is always CW for the cells analyzed in this study. Human and bull sperm lack distinguishable left and right surfaces, but DHM still indicates coordination of Z-plane excursions and rolling events. We propose that sperm have a chiral memory that resides in a hypothetical elastic linkage within the flagellar machinery, which stores some of the torque required for a CW or CCW roll to reuse in the following counter-roll. Separate mechanisms control path chirality.
Collapse
Affiliation(s)
- Michael Muschol
- Institute for Anatomy, University Hospital, Duisburg-Essen University, Essen, Germany
| | - Caroline Wenders
- Institute for Anatomy, University Hospital, Duisburg-Essen University, Essen, Germany
| | - Gunther Wennemuth
- Institute for Anatomy, University Hospital, Duisburg-Essen University, Essen, Germany
- * E-mail:
| |
Collapse
|
22
|
Mishra AK, Kumar A, Swain DK, Yadav S, Nigam R. Insights into pH regulatory mechanisms in mediating spermatozoa functions. Vet World 2018; 11:852-858. [PMID: 30034181 PMCID: PMC6048093 DOI: 10.14202/vetworld.2018.852-858] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/17/2018] [Indexed: 12/18/2022] Open
Abstract
Regulation of pH in spermatozoa is a complex and dynamic process as sperm cells encounter different pH gradients during their journey from testes to the site of fertilization in female genital tract. The precise regulations of pH in sperm cells regulate the sperm functions such as motility, hyperactivity, capacitation, and acrosome reaction. Electrophysiological, pharmacological, and molecular studies have revealed the presence of different ion channels and exchanger systems which regulate intracellular pH in sperm cells as well as regulate sperm functions. Recent studies also have shown the potential involvement of pH in the regulation of fertility competence of sperm cells, and alterations in pH have shown to impede sperm functions. This mini-review discusses the probable mechanisms involved in pH regulation in sperm cells and how pH is involved in regulation of various sperm functions.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- College of Biotechnology, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura - 281 001, Uttar Pradesh, India
| | - Akshay Kumar
- Department of Gynaecology and Obstetrics, College of Veterinary Sciences and Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura - 281 001, Uttar Pradesh, India
| | - Dilip Kumar Swain
- Department of Physiology, College of Veterinary Sciences and Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura - 281 001, Uttar Pradesh, India
| | - Sarvajeet Yadav
- Department of Physiology, College of Veterinary Sciences and Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura - 281 001, Uttar Pradesh, India
| | - Rajesh Nigam
- College of Biotechnology, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura - 281 001, Uttar Pradesh, India
| |
Collapse
|
23
|
Puga Molina LC, Pinto NA, Torres NI, González-Cota AL, Luque GM, Balestrini PA, Romarowski A, Krapf D, Santi CM, Treviño CL, Darszon A, Buffone MG. CFTR/ENaC-dependent regulation of membrane potential during human sperm capacitation is initiated by bicarbonate uptake through NBC. J Biol Chem 2018; 293:9924-9936. [PMID: 29743243 DOI: 10.1074/jbc.ra118.003166] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/29/2018] [Indexed: 12/16/2022] Open
Abstract
To fertilize an egg, sperm must reside in the female reproductive tract to undergo several maturational changes that are collectively referred to as capacitation. From a molecular point of view, the HCO3--dependent activation of the atypical soluble adenylyl cyclase (ADCY10) is one of the first events that occurs during capacitation and leads to the subsequent cAMP-dependent activation of protein kinase A (PKA). Capacitation is also accompanied by hyperpolarization of the sperm plasma membrane. We previously reported that PKA activation is necessary for CFTR (cystic fibrosis transmembrane conductance regulator channel) activity and for the modulation of membrane potential (Em). However, the main HCO3- transporters involved in the initial transport and the PKA-dependent Em changes are not well known nor characterized. Here, we analyzed how the activity of CFTR regulates Em during capacitation and examined its relationship with an electrogenic Na+/HCO3- cotransporter (NBC) and epithelial Na+ channels (ENaCs). We observed that inhibition of both CFTR and NBC decreased HCO3- influx, resulting in lower PKA activity, and that events downstream of the cAMP activation of PKA are essential for the regulation of Em. Addition of a permeable cAMP analog partially rescued the inhibitory effects caused by these inhibitors. HCO3- also produced a rapid membrane hyperpolarization mediated by ENaC channels, which contribute to the regulation of Em during capacitation. Altogether, we demonstrate for the first time, that NBC cotransporters and ENaC channels are essential in the CFTR-dependent activation of the cAMP/PKA signaling pathway and Em regulation during human sperm capacitation.
Collapse
Affiliation(s)
- Lis C Puga Molina
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Nicolás A Pinto
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Nicolás I Torres
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Ana L González-Cota
- the Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Guillermina M Luque
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Paula A Balestrini
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Ana Romarowski
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Dario Krapf
- the Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario 2000, Argentina, and
| | - Celia M Santi
- the Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Claudia L Treviño
- the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, 62210 Morelos, México
| | - Alberto Darszon
- the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, 62210 Morelos, México
| | - Mariano G Buffone
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina,
| |
Collapse
|
24
|
Profiling of proteins secreted in the bovine oviduct reveals diverse functions of this luminal microenvironment. PLoS One 2017; 12:e0188105. [PMID: 29155854 PMCID: PMC5695823 DOI: 10.1371/journal.pone.0188105] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/01/2017] [Indexed: 11/19/2022] Open
Abstract
The oviductal microenvironment is a site for key events that involve gamete maturation, fertilization and early embryo development. Secretions into the oviductal lumen by either the lining epithelium or by transudation of plasma constituents are known to contain elements conducive for reproductive success. Although previous studies have identified some of these factors involved in reproduction, knowledge of secreted proteins in the oviductal fluid remains rudimentary with limited definition of function even in extensively studied species like cattle. In this study, we used a shotgun proteomics approach followed by bioinformatics sequence prediction to identify secreted proteins present in the bovine oviductal fluid (ex vivo) and secretions from the bovine oviductal epithelial cells (in vitro). From a total of 2087 proteins identified, 266 proteins could be classified as secreted, 109 (41%) of which were common for both in vivo and in vitro conditions. Pathway analysis indicated different classes of proteins that included growth factors, metabolic regulators, immune modulators, enzymes, and extracellular matrix components. Functional analysis revealed mechanisms in the oviductal lumen linked to immune homeostasis, gamete maturation, fertilization and early embryo development. These results point to several novel components that work together with known elements mediating functional homeostasis, and highlight the diversity of machinery associated with oviductal physiology and early events in cattle fertility.
Collapse
|
25
|
Bezerra Júnior RQ, Eloy ÂMX, Furtado JR, Pinheiro RR, Andrioli A, Moreno FB, Pinto Lobo MD, Monteiro-Moreira ACO, de Azevedo Moreira R, Farias Pinto TM, da Silva Teixeira MF. A panel of protein candidates for comprehensive study of Caprine Arthritis Encephalitis (CAE) infection. Trop Anim Health Prod 2017; 50:43-48. [DOI: 10.1007/s11250-017-1398-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/05/2017] [Indexed: 01/06/2023]
|
26
|
Sun XH, Zhu YY, Wang L, Liu HL, Ling Y, Li ZL, Sun LB. The Catsper channel and its roles in male fertility: a systematic review. Reprod Biol Endocrinol 2017; 15:65. [PMID: 28810916 PMCID: PMC5558725 DOI: 10.1186/s12958-017-0281-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
The Catsper channel is a sperm-specific, Ca2+-permeable, pH-dependent, and low voltage-dependent channel that is essential for the hyperactivity of sperm flagellum, chemotaxis towards the egg, capacitation and acrosome reaction. All of these physiological events require calcium entry into sperm cells. Remarkably, Catsper genes are exclusively expressed in the testis during spermatogenesis, and are sensitive to ion channel-induced pH change, such as NHEs, Ca2+ATPase, K+ channel, Hv1 channel and HCO3- transporters. Furthermore, the Catsper channel is regulated by some physiological stimulants, such as progesterone, cyclic nucleotides (e.g., cAMP, cGMP), zona pellucida (ZP) glycoproteins and bovine serum albumin (BSA). All of these factors normally stimulate Ca2+ entry into sperm through the Catsper channel. In addition, the Catsper channel may be a potential target for male infertility treatment or contraception. This review will focus on the structure, functions, regulation mechanisms and medicinal targets of the Catsper channel.
Collapse
Affiliation(s)
- Xiang-hong Sun
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Ying-ying Zhu
- 0000 0001 0455 0905grid.410645.2Department of pharmacy, College of pharmacy of Qingdao University, Qingdao, China
| | - Lin Wang
- grid.412521.1Department of clinical laboratory, the affiliated hospital of Qingdao University Medical College, Qingdao, China
| | - Hong-ling Liu
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Yong Ling
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Zong-li Li
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Li-bo Sun
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| |
Collapse
|
27
|
Role of carbonic anhydrases in skin wound healing. Exp Mol Med 2017; 49:e334. [PMID: 28524177 PMCID: PMC5454449 DOI: 10.1038/emm.2017.60] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 02/08/2023] Open
Abstract
Skin wound closure occurs when keratinocytes migrate from the edge of the wound and re-epithelialize the epidermis. Their migration takes place primarily before any vascularization is established, that is, under hypoxia, but relatively little is known regarding the factors that stimulate this migration. Hypoxia and an acidic environment are well-established stimuli for cancer cell migration. The carbonic anhydrases (CAs) contribute to tumor cell migration by generating an acidic environment through the conversion of carbon dioxide to bicarbonate and a proton. On this basis, we explored the possible role of CAs in tissue regeneration using mouse skin wound models. We show that the expression of mRNAs encoding CA isoforms IV and IX are increased (~25 × and 4 ×, respectively) during the wound hypoxic period (days 2-5) and that cells expressing CAs form a band-like structure beneath the migrating epidermis. RNA-Seq analysis suggested that the CA IV-specific signal in the wound is mainly derived from neutrophils. Due to the high level of induction of CA IV in the wound, we treated skin wounds locally with recombinant human CA IV enzyme. Recombinant CA IV significantly accelerated wound re-epithelialization. Thus, CA IV could contribute to wound healing by providing an acidic environment in which the migrating epidermis and neutrophils can survive and may offer novel opportunities to accelerate wound healing under compromised conditions.
Collapse
|
28
|
Sperm Capacitation and Acrosome Reaction in Mammalian Sperm. SPERM ACROSOME BIOGENESIS AND FUNCTION DURING FERTILIZATION 2016; 220:93-106. [DOI: 10.1007/978-3-319-30567-7_5] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|