1
|
Thong PM, Wong YH, Kornfeld H, Goletti D, Ong CWM. Immune dysregulation of diabetes in tuberculosis. Semin Immunol 2025; 78:101959. [PMID: 40267700 DOI: 10.1016/j.smim.2025.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/04/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
The rising prevalence of diabetes mellitus (DM) is undermining global efforts to eliminate tuberculosis (TB). Most studies found that patients with pulmonary TB and DM have more cavitary lung lesions, higher mycobacterial burden on the lungs, longer periods of infectiousness, and worse outcomes. Both human and animal studies indicate that TB-DM is associated with impaired innate and adaptive immune responses, resulting in delayed bacterial clearance. Similar observations have been noted in other infections, such as those caused by Klebsiella pneumoniae, where DM contributes to increased susceptibility and worse outcomes due to compromised immune functions including defective phagocytosis and impaired early immune cell recruitment. This review delves into the mechanisms of immune dysfunction in TB-DM, exploring how DM increases TB susceptibility and severity. By elucidating these complex interactions, this review aims to offer insights into more effective strategies for managing and improving outcomes for patients with this challenging comorbidity.
Collapse
Affiliation(s)
- Pei Min Thong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yi Hao Wong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology, National Institute for infectious diseases-IRCCS L. Spallanzani, Rome, Italy.
| | - Catherine W M Ong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore.
| |
Collapse
|
2
|
Komsa-Penkova R, Alexandrova-Watanabe A, Todinova S, Ivanova V, Stoycheva S, Temnishki P, Dimitrov B, Dimitrov D, Tonchev P, Georgieva G, Kukov A, Ivanova I, Tiankov T, Abadjieva E, Strijkova V, Altankov G. Adhesion of Mesenchymal Stem Cells to Glycated Collagen-Comparative Analysis of Dynamic and Static Conditions. Polymers (Basel) 2025; 17:821. [PMID: 40292686 PMCID: PMC11944920 DOI: 10.3390/polym17060821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Understanding mesenchymal stem cell (MSC) behavior on glycated collagen is crucial for advancing regenerative medicine and understanding pathological mechanisms in diseases such as diabetes, cancer, and aging. While previous research has demonstrated reduced MSC interaction with glycated collagen under static conditions due to disrupted integrin signaling, these studies did not accurately replicate the dynamic mechanical environment that MSCs encounter in vivo. Here we present a comprehensive investigation comparing adipose-derived MSC (ADMSC) behavior under both dynamic flow conditions and static adhesion, revealing unexpected temporal dynamics and challenging existing paradigms of cell-matrix interactions. Using a sophisticated microfluidic BioFlux system combined with traditional static adhesion assays, we examined ADMSC interactions with native collagen for 1-day glycated (GL1), and 5-day glycated (GL5) samples. Under flow conditions, MSCs demonstrated remarkably rapid attachment-within 3-5 min-contrasting sharply with the classical 2 h static incubation protocol. This rapid adhesion was particularly enhanced on 5-day glycated collagen, though subsequent testing revealed significantly weaker adhesion strength under shear stress compared to native collagen. Static conditions also showed a distinct pattern: increased ADMSC adhesion to glycated samples within the first 30 min, followed by a progressive decrease in adhesion and compromised cell spreading over longer periods. Atomic force microscopy (AFM) analysis revealed significant changes in collagen surface properties upon glycation. These included a substantial reduction in the negative surface charge (from ~800 to 600 mV), altered surface roughness patterns (Rrms varying from 3.0 ± 0.4 nm in native collagen to 7.70 ± 0.6 nm in GL5), and decreased elasticity (Young's modulus dropping from 34.8 ± 5.4 MPa to 2.07 ± 0.3 MPa in GL5). These physical alterations appear to facilitate rapid initial cell attachment while potentially compromising long-term stable adhesion through traditional integrin-mediated mechanisms. This study provides novel insights into the complex dynamics of MSC adhesion to glycated collagen, revealing previously unknown temporal patterns and challenging existing models of cell-matrix interactions. The findings suggest a need for revised approaches in tissue engineering and regenerative medicine, particularly in conditions where glycated collagen is prevalent.
Collapse
Affiliation(s)
- Regina Komsa-Penkova
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria; (V.I.); (P.T.); (B.D.)
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
| | - Anika Alexandrova-Watanabe
- Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.-W.)
- Center of Competence at Mechatronics and Clean Technologies—MIRACle, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Violina Ivanova
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria; (V.I.); (P.T.); (B.D.)
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
| | - Svetoslava Stoycheva
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria; (V.I.); (P.T.); (B.D.)
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
| | - Petar Temnishki
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria; (V.I.); (P.T.); (B.D.)
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
| | - Borislav Dimitrov
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria; (V.I.); (P.T.); (B.D.)
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
| | - Dobromir Dimitrov
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
- Department of Oncology, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Pencho Tonchev
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
- Department of Surgery, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Galya Georgieva
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria; (V.I.); (P.T.); (B.D.)
| | - Aleksandar Kukov
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “Lozenetz”, 1407 Sofia, Bulgaria
| | - Izabela Ivanova
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “Lozenetz”, 1407 Sofia, Bulgaria
| | - Tihomir Tiankov
- Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.-W.)
- Center of Competence at Mechatronics and Clean Technologies—MIRACle, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria
| | - Emilia Abadjieva
- Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.-W.)
- Center of Competence at Mechatronics and Clean Technologies—MIRACle, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria
| | - Velichka Strijkova
- Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - George Altankov
- Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, “St. Kl. Ochridski” Str., 5800 Pleven, Bulgaria
- Research Institute, Medical University Pleven, 5800 Pleven, Bulgaria
| |
Collapse
|
3
|
Birts CN, Wilton DC. Could anionic LDL be a ligand for RAGE and TREM2 in addition to LOX-1 and thus exacerbate lung disease and dementia? Biochim Biophys Acta Mol Basis Dis 2023; 1869:166837. [PMID: 37544530 DOI: 10.1016/j.bbadis.2023.166837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
We recently highlighted the potential of protein glycation to generate anionic (electronegative) surfaces. We hypothesised that these anionic proteins are perceived by the innate immune system as arising from infection or damaged cell components, producing an inflammatory response within the lung involving the receptor RAGE. We now review two other pathologies linked to the innate immune response, cardiovascular disease and dementia that involve receptors LOX-1 and TREM2 respectively. Remarkable similarities in properties between RAGE, LOX-1 and TREM2 suggest that electronegative LDL may act as a pathogenic anionic ligand for all three receptors and exacerbate lung inflammation and dementia.
Collapse
Affiliation(s)
- Charles N Birts
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK; Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - David C Wilton
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
4
|
Perkins RK, Miranda ER, Varshney P, Farabi SS, Quinn LT, Haus JM. Effects of acute aerobic exercise on circulating sTLR and sRAGE profiles in normal- and abnormal-glucose-tolerant individuals. Physiol Rep 2023; 11:e15859. [PMID: 37985201 PMCID: PMC10659941 DOI: 10.14814/phy2.15859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/11/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023] Open
Abstract
BMI-matched normal- (NGT, n = 10, 41 ± 4y, 35.6 ± 3.0 kg/m2 ) and abnormal-glucose-tolerant (AGT, n = 16, 51 ± 3y, 34.3 ± 1.5 kg/m2 ) participants were evaluated for body composition, metabolic health (oral glucose tolerance test [OGTT]), and VO2 max. Participants also completed a treadmill walking test at 65% VO2 max for 30 min. Total sRAGE, esRAGE, sTLR2, and sTLR4 were assessed via ELISA, and cRAGE was calculated. AGT exhibited greater (p < 0.05) body fat % (+24%), fasting plasma glucose (+37%), OGTT AUC (+59%), and HOMA-IR (+55%) and lower (p < 0.05) VO2 max (-24%). sTLR2 was 33% lower in AGT than NGT (main effect, p = 0.034). However, sTLR2 did not change (p > 0.05) following AE. sTLR4 tended to be 36% lower in AGT than NGT (main effect, p = 0.096) and did not change following AE (p > 0.05). Total sRAGE and isoforms were similar (p > 0.05) between groups and did not change following AE (p > 0.05). sTLR2 was correlated with (p < 0.05) basal BG (r = -0.505) and OGTT AUC (r = -0.687). sTLR4 was correlated with basal BG (p < 0.10, r = -0.374) and OGTT AUC (p < 0.05, r = -0.402). Linear regressions were predictive of sTLRs in the basal state (sTLR2: R2 = 0.641, p = 0.01; sTLR4: R2 = 0.566, p = 0.037) and after acute exercise state (sTLR2: R2 = 0.681, p = 0.004, sTLR4: R2 = 0.568, p = 0.036).These findings show circulating sTLR profiles are disrupted in AGT and acute AE minimally modulates their levels.
Collapse
Affiliation(s)
- Ryan K. Perkins
- Department of KinesiologyCalifornia State University, ChicoChicoCaliforniaUSA
| | | | | | - Sarah S. Farabi
- Center for Human NutritionWashington University School of MedicineSt. LouisMissouriUSA
- Goldfarb School of Nursing at Barnes‐Jewish CollegeSt. LouisMissouriUSA
| | - Lauretta T. Quinn
- Department of Behavioral Health SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Jacob M. Haus
- School of KinesiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
5
|
Magna M, Hwang GH, McIntosh A, Drews-Elger K, Takabatake M, Ikeda A, Mera BJ, Kwak T, Miller P, Lippman ME, Hudson BI. RAGE inhibitor TTP488 (Azeliragon) suppresses metastasis in triple-negative breast cancer. NPJ Breast Cancer 2023; 9:59. [PMID: 37443146 DOI: 10.1038/s41523-023-00564-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic cancer subtype, which is generally untreatable once it metastasizes. We hypothesized that interfering with the Receptor for Advanced Glycation End-products (RAGE) signaling with the small molecule RAGE inhibitors (TTP488/Azeliragon and FPS-ZM1) would impair TNBC metastasis and impair fundamental mechanisms underlying tumor progression and metastasis. Both TTP488 and FPS-ZM1 impaired spontaneous and experimental metastasis of TNBC models, with TTP488 reducing metastasis to a greater degree than FPS-ZM1. Transcriptomic analysis of primary xenograft tumor and metastatic tissue revealed high concordance in gene and protein changes with both drugs, with TTP488 showing greater potency against metastatic driver pathways. Phenotypic validation of transcriptomic analysis by functional cell assays revealed that RAGE inhibition impaired TNBC cell adhesion to multiple extracellular matrix proteins (including collagens, laminins, and fibronectin), migration, and invasion. Neither RAGE inhibitor impaired cellular viability, proliferation, or cell cycle in vitro. Proteomic analysis of serum from tumor-bearing mice revealed RAGE inhibition affected metastatic driver mechanisms, including multiple cytokines and growth factors. Further mechanistic studies by phospho-proteomic analysis of tumors revealed RAGE inhibition led to decreased signaling through critical BC metastatic driver mechanisms, including Pyk2, STAT3, and Akt. These results show that TTP488 impairs metastasis of TNBC and further clarifies the signaling and cellular mechanisms through which RAGE mediates metastasis. Importantly, as TTP488 displays a favorable safety profile in human studies, our study provides the rationale for evaluating TTP488 in clinical trials to treat or prevent metastatic TNBC.
Collapse
Affiliation(s)
- Melinda Magna
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Gyong Ha Hwang
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alec McIntosh
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Katherine Drews-Elger
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Masaru Takabatake
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Adam Ikeda
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Barbara J Mera
- Department of Cell Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Taekyoung Kwak
- Department of Cell Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Philip Miller
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Marc E Lippman
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Barry I Hudson
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA.
- Department of Cell Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
6
|
Taguchi K, Fukami K. RAGE signaling regulates the progression of diabetic complications. Front Pharmacol 2023; 14:1128872. [PMID: 37007029 PMCID: PMC10060566 DOI: 10.3389/fphar.2023.1128872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes, the ninth leading cause of death globally, is expected to affect 642 million people by 2040. With the advancement of an aging society, the number of patients with diabetes having multiple underlying diseases, such as hypertension, obesity, and chronic inflammation, is increasing. Thus, the concept of diabetic kidney disease (DKD) has been accepted worldwide, and comprehensive treatment of patients with diabetes is required. Receptor for advanced glycation endproducts (RAGE), a multiligand receptor, belonging to the immunoglobulin superfamily is extensively expressed throughout the body. Various types of ligands, including advanced glycation endproducts (AGEs), high mobility group box 1, S100/calgranulins, and nucleic acids, bind to RAGE, and then induces signal transduction to amplify the inflammatory response and promote migration, invasion, and proliferation of cells. Furthermore, the expression level of RAGE is upregulated in patients with diabetes, hypertension, obesity, and chronic inflammation, suggesting that activation of RAGE is a common denominator in the context of DKD. Considering that ligand–and RAGE–targeting compounds have been developed, RAGE and its ligands can be potent therapeutic targets for inhibiting the progression of DKD and its complications. Here, we aimed to review recent literature on various signaling pathways mediated by RAGE in the pathogenesis of diabetic complications. Our findings highlight the possibility of using RAGE–or ligand–targeted therapy for treating DKD and its complications.
Collapse
|
7
|
Xie W, Cao B, Zhu H, Raza A, Juckel N, Xie J, Jiang R, Vince R, Lee MK, More SS. Orally Bioavailable Prodrugs of ψ-GSH: A Potential Treatment for Alzheimer's Disease. J Med Chem 2022; 65:14441-14455. [PMID: 36353871 PMCID: PMC9662183 DOI: 10.1021/acs.jmedchem.2c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/30/2022]
Abstract
Addressing glycation-induced oxidative stress in Alzheimer's disease (AD) is an emerging pharmacotherapeutic strategy. Restoration of the brain glyoxalase enzyme system that neutralizes reactive dicarbonyls is one such approach. Toward this end, we designed, synthesized, and evaluated a γ-glutamyl transpeptidase-resistant glyoxalase substrate, ψ-GSH. Although mechanistically successful, the oral efficacy of ψ-GSH appeared as an area in need of improvement. Herein, we describe our rationale for the creation of prodrugs that mask the labile sulfhydryl group. In vitro and in vivo stability studies identified promising prodrugs that could deliver pharmacologically relevant brain levels of ψ-GSH. When administered orally to a mouse model generated by the intracerebroventricular injection of Aβ1-42, the compounds conferred cognitive benefits. Biochemical and histological examination confirmed their effects on neuroinflammation and oxidative stress. Collectively, we have identified orally efficacious prodrugs of ψ-GSH that are able to restore brain glyoxalase activity and mitigate inflammatory and oxidative pathology associated with AD.
Collapse
Affiliation(s)
- Wei Xie
- Center
for Drug Design, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bin Cao
- Center
for Drug Design, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Haizhou Zhu
- Center
for Drug Design, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Abbas Raza
- Center
for Drug Design, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nicholas Juckel
- Department
of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jiashu Xie
- Center
for Drug Design, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rongrong Jiang
- Center
for Drug Design, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert Vince
- Center
for Drug Design, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael K. Lee
- Department
of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Institute
for Translational Neuroscience, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Swati S. More
- Center
for Drug Design, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Zheng W, Li H, Go Y, Chan XH(F, Huang Q, Wu J. Research Advances on the Damage Mechanism of Skin Glycation and Related Inhibitors. Nutrients 2022; 14:4588. [PMID: 36364850 PMCID: PMC9655929 DOI: 10.3390/nu14214588] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Our skin is an organ with the largest contact area between the human body and the external environment. Skin aging is affected directly by both endogenous factors and exogenous factors (e.g., UV exposure). Skin saccharification, a non-enzymatic reaction between proteins, e.g., dermal collagen and naturally occurring reducing sugars, is one of the basic root causes of endogenous skin aging. During the reaction, a series of complicated glycation products produced at different reaction stages and pathways are usually collectively referred to as advanced glycation end products (AGEs). AGEs cause cellular dysfunction through the modification of intracellular molecules and accumulate in tissues with aging. AGEs are also associated with a variety of age-related diseases, such as diabetes, cardiovascular disease, renal failure (uremia), and Alzheimer's disease. AGEs accumulate in the skin with age and are amplified through exogenous factors, e.g., ultraviolet radiation, resulting in wrinkles, loss of elasticity, dull yellowing, and other skin problems. This article focuses on the damage mechanism of glucose and its glycation products on the skin by summarizing the biochemical characteristics, compositions, as well as processes of the production and elimination of AGEs. One of the important parts of this article would be to summarize the current AGEs inhibitors to gain insight into the anti-glycation mechanism of the skin and the development of promising natural products with anti-glycation effects.
Collapse
Affiliation(s)
- Wenge Zheng
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing 210009, China
| | - Huijuan Li
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing 210009, China
| | - Yuyo Go
- Royal Victoria Hospital, BT12 6BA Belfast, Northern Ireland, UK
| | | | - Qing Huang
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing 210009, China
| | - Jianxin Wu
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
9
|
Baek CH, Kim H, Moon SY, Yang WS. Liraglutide, a glucagon-like peptide-1 receptor agonist, induces ADAM10-dependent ectodomain shedding of RAGE via AMPK activation in human aortic endothelial cells. Life Sci 2022; 292:120331. [PMID: 35041837 DOI: 10.1016/j.lfs.2022.120331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
AIMS Glucagon-like peptide-1 alleviates the deleterious effects of advanced glycation end products (AGEs), but the underlying mechanisms are not fully understood. In this study, we investigated the protective mechanism using liraglutide, a glucagon-like peptide-1 receptor agonist, in cultured human aortic endothelial cells (HAECs). MAIN METHODS Following liraglutide treatment in HAECs, the receptor for AGEs (RAGE) was measured in both cell lysate and culture supernatant, the cytosolic free Ca2+ level was monitored using Fluo-4 AM, the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) was analyzed, and immunofluorescence staining was used to visualize a disintegrin and metalloprotease 10 (ADAM10) on the cell surface. KEY FINDINGS Liraglutide (100 nM) induced ectodomain shedding of RAGE within 30 min and inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) induced by AGEs of bovine serum albumin (AGE-BSA). Further experiments revealed that liraglutide rapidly increased extracellular Ca2+ influx through L-type calcium channels and activated AMPK, resulting in translocation of ADAM10 to the cell surface, whereas siRNA-mediated ADAM10 depletion prevented liraglutide-induced ectodomain shedding of RAGE and eliminated liraglutide's inhibitory effect on AGE-BSA-induced ICAM-1 expression. Moreover, compound C-mediated AMPK inhibition and siRNA-mediated AMPK depletion both prevented ADAM10 translocation to the cell surface and ADAM10-mediated ectodomain shedding of RAGE. SIGNIFICANCE Liraglutide reduces the number of intact RAGE on the cell surface by inducing ADAM10-mediated ectodomain shedding, which decreases the inflammatory effects of AGEs. AMPK activated by extracellular Ca2+ influx is critically involved in the translocation of ADAM10 to the cell surface, where it cleaves RAGE.
Collapse
Affiliation(s)
- Chung Hee Baek
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyosang Kim
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soo Young Moon
- Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Won Seok Yang
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Kinscherf NA, Pehar M. Role and Therapeutic Potential of RAGE Signaling in Neurodegeneration. Curr Drug Targets 2022; 23:1191-1209. [PMID: 35702767 PMCID: PMC9589927 DOI: 10.2174/1389450123666220610171005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 01/03/2023]
Abstract
Activation of the receptor for advanced glycation end products (RAGE) has been shown to play an active role in the development of multiple neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Although originally identified as a receptor for advanced glycation end products, RAGE is a pattern recognition receptor able to bind multiple ligands. The final outcome of RAGE signaling is defined in a context and cell type specific manner and can exert both neurotoxic and neuroprotective functions. Contributing to the complexity of the RAGE signaling network, different RAGE isoforms with distinctive signaling capabilities have been described. Moreover, multiple RAGE ligands bind other receptors and RAGE antagonism can significantly affect their signaling. Here, we discuss the outcome of celltype specific RAGE signaling in neurodegenerative pathologies. In addition, we will review the different approaches that have been developed to target RAGE signaling and their therapeutic potential. A clear understanding of the outcome of RAGE signaling in a cell type- and disease-specific manner would contribute to advancing the development of new therapies targeting RAGE. The ability to counteract RAGE neurotoxic signaling while preserving its neuroprotective effects would be critical for the success of novel therapies targeting RAGE signaling.
Collapse
Affiliation(s)
- Noah Alexander Kinscherf
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariana Pehar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, USA
| |
Collapse
|
11
|
Munesue SI, Liang M, Harashima A, Zhong J, Furuhara K, Boitsova EB, Cherepanov SM, Gerasimenko M, Yuhi T, Yamamoto Y, Higashida H. Transport of oxytocin to the brain after peripheral administration by membrane-bound or soluble forms of receptors for advanced glycation end-products. J Neuroendocrinol 2021; 33:e12963. [PMID: 33733541 DOI: 10.1111/jne.12963] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022]
Abstract
Oxytocin (OT) is a neuropeptide hormone. Single and repetitive administration of OT increases social interaction and maternal behaviour in humans and mammals. Recently, it was found that the receptor for advanced glycation end-products (RAGE) is an OT-binding protein and plays a critical role in the uptake of OT to the brain after peripheral OT administration. Here, we address some unanswered questions on RAGE-dependent OT transport. First, we found that, after intranasal OT administration, the OT concentration increased in the extracellular space of the medial prefrontal cortex (mPFC) of wild-type male mice, as measured by push-pull microperfusion. No increase of OT in the mPFC was observed in RAGE knockout male mice. Second, in a reconstituted in vitro blood-brain barrier system, inclusion of the soluble form of RAGE (endogenous secretory RAGE [esRAGE]), an alternative splicing variant, in the luminal (blood) side had no effect on the transport of OT to the abluminal (brain) chamber. Third, OT concentrations in the cerebrospinal fluid after i.p. OT injection were slightly higher in male mice overexpressing esRAGE (esRAGE transgenic) compared to those in wild-type male mice, although this did not reach statistical significance. Although more extensive confirmation is necessary because of the small number of experiments in the present study, the reported data support the hypothesis that RAGE may be involved in the transport of OT to the mPFC from the circulation. These results suggest that the soluble form of RAGE in the plasma does not function as a decoy in vitro.
Collapse
Affiliation(s)
- Sei-Ichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - MingKun Liang
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Jing Zhong
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Kazumi Furuhara
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Elizabeta B Boitsova
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk, Russia
| | - Stanislav M Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk, Russia
| |
Collapse
|
12
|
The cardiovascular complications of diabetes: a striking link through protein glycation. ACTA ACUST UNITED AC 2020; 58:188-198. [PMID: 32759408 DOI: 10.2478/rjim-2020-0021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus is a predominant cause of mortality and morbidity worldwide. One of its serious health problems is cardiovascular complications. Advanced glycation end products (AGEs) are a group of heterogeneous toxic oxidant compounds that are formed after a non-enzymatic reaction between monosaccharides and free amino groups of proteins, compound lipids, and nucleic acids. AGE interacts with various types of cells through a receptor for AGE (RAGE). The interaction between AGE and RAGE is responsible for a cascade of inflammation, oxidative stress, and disruption of calcium homeostasis in cardiac cells of diabetic patients. There is striking evidence that the AGE/RAGE axis with its consequences on inflammation and oxidative stress plays a major role in the development of cardiovascular complications. Therefore, considering AGE as a therapeutic target with foreseeable results would be a wise direction for future research. Interestingly, several studies on nutraceutical, pharmaceutical, and natural products have begun to reveal promising therapeutic results, and this could lead to better health outcomes for many diabetic patients worldwide. This article discusses the current literature addressing the connection between protein glycation and diabetes cardiovascular complications and suggests future avenues of research.
Collapse
|
13
|
Dwir D, Giangreco B, Xin L, Tenenbaum L, Cabungcal JH, Steullet P, Goupil A, Cleusix M, Jenni R, Chtarto A, Baumann PS, Klauser P, Conus P, Tirouvanziam R, Cuenod M, Do KQ. MMP9/RAGE pathway overactivation mediates redox dysregulation and neuroinflammation, leading to inhibitory/excitatory imbalance: a reverse translation study in schizophrenia patients. Mol Psychiatry 2020; 25:2889-2904. [PMID: 30911107 PMCID: PMC7577857 DOI: 10.1038/s41380-019-0393-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 01/09/2023]
Abstract
Various mechanisms involved in schizophrenia pathophysiology, such as dopamine dysregulation, glutamate/NMDA receptor dysfunction, neuroinflammation or redox imbalance, all appear to converge towards an oxidative stress "hub" affecting parvalbumine interneurones (PVI) and their perineuronal nets (PNN) (Lancet Psychiatry. 2015;2:258-70); (Nat Rev Neurosci. 2016;17:125-34). We aim to investigate underlying mechanisms linking oxidative stress with neuroinflammatory and their long-lasting harmful consequences. In a transgenic mouse of redox dysregulation carrying a permanent deficit of glutathione synthesis (gclm-/-), the anterior cingulate cortex presented early in the development increased oxidative stress which was prevented by the antioxidant N-acetylcysteine (Eur J Neurosci. 2000;12:3721-8). This oxidative stress induced microglia activation and redox-sensitive matrix metalloproteinase 9 (MMP9) stimulation, leading to the receptor for advanced glycation end-products (RAGE) shedding into soluble and nuclear forms, and subsequently to nuclear factor-kB (NF-kB) activation and secretion of various cytokines. Blocking MMP9 activation prevented this sequence of alterations and rescued the normal maturation of PVI/PNN, even if performed after an additional insult that exacerbated the long term PVI/PNN impairments. MMP9 inhibition thus appears to be able to interrupt the vicious circle that maintains the long-lasting deleterious effects of the reciprocal interaction between oxidative stress and neuroinflammation, impacting on PVI/PNN integrity. Translation of these experimental findings to first episode patients revealed an increase in plasma soluble RAGE relative to healthy controls. This increase was associated with low prefrontal GABA levels, potentially predicting a central inhibitory/excitatory imbalance linked to RAGE shedding. This study paves the way for mechanistically related biomarkers needed for early intervention and MMP9/RAGE pathway modulation may lead to promising drug targets.
Collapse
Affiliation(s)
- Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - Basilio Giangreco
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Liliane Tenenbaum
- Laboratory of Cellular and Molecular Neurotherapies, Department of Clinical Neuroscience, CHUV, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - Audrey Goupil
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Abdelwahed Chtarto
- Laboratory of Experimental Neurosurgery, Université Libre de Bruxelles, Erasme Hospital, 22, route de Lennik, B-1070, Bruxelles, Belgium
| | - Philipp S Baumann
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philippe Conus
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | - Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland.
| |
Collapse
|
14
|
Samotij D, Nedoszytko B, Bartosińska J, Batycka-Baran A, Czajkowski R, Dobrucki IT, Dobrucki LW, Górecka-Sokołowska M, Janaszak-Jasienicka A, Krasowska D, Kalinowski L, Macieja-Stawczyk M, Nowicki RJ, Owczarczyk-Saczonek A, Płoska A, Purzycka-Bohdan D, Radulska A, Reszka E, Siekierzycka A, Słomiński A, Słomiński R, Sobalska-Kwapis M, Strapagiel D, Szczerkowska-Dobosz A, Szczęch J, Żmijewski M, Reich A. Pathogenesis of psoriasis in the "omic" era. Part I. Epidemiology, clinical manifestation, immunological and neuroendocrine disturbances. Postepy Dermatol Alergol 2020; 37:135-153. [PMID: 32489346 PMCID: PMC7262814 DOI: 10.5114/ada.2020.94832] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a common, chronic, inflammatory, immune-mediated skin disease affecting about 2% of the world's population. According to current knowledge, psoriasis is a complex disease that involves various genes and environmental factors, such as stress, injuries, infections and certain medications. The chronic inflammation of psoriasis lesions develops upon epidermal infiltration, activation, and expansion of type 1 and type 17 Th cells. Despite the enormous progress in understanding the mechanisms that cause psoriasis, the target cells and antigens that drive pathogenic T cell responses in psoriatic lesions are still unproven and the autoimmune basis of psoriasis still remains hypothetical. However, since the identification of the Th17 cell subset, the IL-23/Th17 immune axis has been considered a key driver of psoriatic inflammation, which has led to the development of biologic agents that target crucial elements of this pathway. Here we present the current understanding of various aspects in psoriasis pathogenesis.
Collapse
Affiliation(s)
- Dominik Samotij
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| | - Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Joanna Bartosińska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Batycka-Baran
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | - Rafał Czajkowski
- Department of Dermatology and Venereology, Faculty of Medicine, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Iwona T. Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Lawrence W. Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Magdalena Górecka-Sokołowska
- Department of Dermatology, Sexually Transmitted Disorders and Immunodermatology, Jurasz University Hospital No. 1, Bydgoszcz, Poland
| | - Anna Janaszak-Jasienicka
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Dorota Krasowska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Marta Macieja-Stawczyk
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Roman J. Nowicki
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury, Olsztyn, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Dorota Purzycka-Bohdan
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Adrianna Radulska
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Andrzej Słomiński
- Department of Dermatology, Birmingham, AL, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, Birmingham, AL, USA
- VA Medical Center, Birmingham, AL, USA
| | - Radomir Słomiński
- Department of Medicine, Division of Rheumatology, University of Alabama, Birmingham, AL, USA
| | - Marta Sobalska-Kwapis
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Aneta Szczerkowska-Dobosz
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Justyna Szczęch
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| | - Michał Żmijewski
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| | - Adam Reich
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
15
|
Shao M, Yu M, Zhao J, Mei J, Pan Y, Zhang J, Wu H, Yu M, Liu F, Chen G. miR-21-3p regulates AGE/RAGE signalling and improves diabetic atherosclerosis. Cell Biochem Funct 2020; 38:965-975. [PMID: 32196704 DOI: 10.1002/cbf.3523] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/06/2020] [Accepted: 01/31/2020] [Indexed: 12/30/2022]
Abstract
To explore the effects of miR-21-3p on diabetic atherosclerosis. Using enzyme-linked immunosorbent assay (ELISA), we also detected the levels of soluble receptor for advanced glycation endproducts RAGE (sRAGE) in the cellular supernatant of vascular endothelial cells after transfecting them with adenovirus vector having miR-21-3p mimic or inhibitor. We found decrease in the expression levels of miR-21-3p in vascular endothelial cells (VECs) induced by high-concentration glucose. We also observed that the introduction of miR-21-3p mimic significantly increased the expression of ADAM10 in the VECs. Similarly, significantly higher levels of sRAGE were found in the cultured supernatant after administration of miR-21-3p mimic in human vein endothelial cells. The production of reactive oxygen species and expression of inflammatory cytokines in VECs induced by LPS and high-concentration glucose were significantly decreased after administration of miR-21-3p. in vivo studies revealed that intravenous injection of miR-21-3p at regular intervals would reduce the area of atherosclerotic lesion and elevate the serum levels of sRAGE in atherosclerotic diabetic mice. miR-21-3p may be beneficial in diabetic atherosclerosis by promoting the cleaved form of sRAGE and inhibition of RAGE/NADPH oxidase signalling depending on the increased expression of ADAM10. SIGNIFICANCE OF THE STUDY: We identified a novel microRNA, miR-21-3p, which is characteristically at elevated levels in serum derived from diabetic patients and responsible for target degradation of ADAM10 mRNA. Further, we show that miR-21-3p aggravates the atherosclerotic lesion via dysfunction of the ectodomain shedding of molecular binding RAGE in the diabetic atherosclerotic mice.
Collapse
Affiliation(s)
- Mingzhe Shao
- Department of Vascular Surgery, Multidisciplinary Collaboration Group of Diabetic Foot, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Muyu Yu
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Multidisciplinary Collaboration Group of Diabetic Foot, Shanghai Institute for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jun Zhao
- Department of Vascular Surgery, Multidisciplinary Collaboration Group of Diabetic Foot, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiacai Mei
- Department of Vascular Surgery, Multidisciplinary Collaboration Group of Diabetic Foot, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ye Pan
- Department of Vascular Surgery, Multidisciplinary Collaboration Group of Diabetic Foot, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jian Zhang
- Department of Vascular Surgery, Multidisciplinary Collaboration Group of Diabetic Foot, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haisheng Wu
- Department of Vascular Surgery, Multidisciplinary Collaboration Group of Diabetic Foot, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Min Yu
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Multidisciplinary Collaboration Group of Diabetic Foot, Shanghai Institute for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fang Liu
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Multidisciplinary Collaboration Group of Diabetic Foot, Shanghai Institute for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guangming Chen
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
De Martinis M, Ginaldi L, Sirufo MM, Pioggia G, Calapai G, Gangemi S, Mannucci C. Alarmins in Osteoporosis, RAGE, IL-1, and IL-33 Pathways: A Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:medicina56030138. [PMID: 32204562 PMCID: PMC7142770 DOI: 10.3390/medicina56030138] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
Alarmins are endogenous mediators released by cells following insults or cell death to alert the host’s innate immune system of a situation of danger or harm. Many of these, such as high-mobility group box-1 and 2 (HMGB1, HMGB2) and S100 (calgranulin proteins), act through RAGE (receptor for advanced glycation end products), whereas the IL-1 and IL-33 cytokines bind the IL-1 receptors type I and II, and the cellular receptor ST2, respectively. The alarmin family and their signal pathways share many similarities of cellular and tissue localization, functions, and involvement in various physiological processes and inflammatory diseases including osteoporosis. The aim of the review was to evaluate the role of alarmins in osteoporosis. A bibliographic search of the published scientific literature regarding the role of alarmins in osteoporosis was organized independently by two researchers in the following scientific databases: Pubmed, Scopus, and Web of Science. The keywords used were combined as follows: “alarmins and osteoporosis”, “RAGE and osteoporosis”, “HMGB1 and osteoporosis”, “IL-1 and osteoporosis”, “IL 33 and osteopororsis”, “S100s protein and osteoporosis”. The information was summarized and organized in the present review. We highlight the emerging roles of alarmins in various bone remodeling processes involved in the onset and development of osteoporosis, as well as their potential role as biomarkers of osteoporosis severity and progression. Findings of the research suggest a potential use of alarmins as pharmacological targets in future therapeutic strategies aimed at preventing bone loss and fragility fractures induced by aging and inflammatory diseases.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Lia Ginaldi
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Maria Maddalena Sirufo
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Giovanni Pioggia
- National Research Council of Italy (CNR)-Institute for Biomedical Research and Innovation (IRIB), 98164 Messina, Italy;
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +39-090-22-12-697
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The receptor for advanced glycation end products (RAGE) and several of its ligands have been implicated in the onset and progression of pathologies associated with aging, chronic inflammation, and cellular stress. In particular, the role of RAGE and its ligands in bone tissue during both physiological and pathological conditions has been investigated. However, the extent to which RAGE signaling regulates bone homeostasis and disease onset remains unclear. Further, RAGE effects in the different bone cells and whether these effects are cell-type specific is unknown. The objective of the current review is to describe the literature over RAGE signaling in skeletal biology as well as discuss the clinical potential of RAGE as a diagnostic and/or therapeutic target in bone disease. RECENT FINDINGS The role of RAGE and its ligands during skeletal homeostasis, tissue repair, and disease onset/progression is beginning to be uncovered. For example, detrimental effects of the RAGE ligands, advanced glycation end products (AGEs), have been identified for osteoblast viability/activity, while others have observed that low level AGE exposure stimulates osteoblast autophagy, which subsequently promotes viability and function. Similar findings have been reported with HMGB1, another RAGE ligand, in which high levels of the ligand are associated with osteoblast/osteocyte apoptosis, whereas low level/short-term administration stimulates osteoblast differentiation/bone formation and promotes fracture healing. Additionally, elevated levels of several RAGE ligands (AGEs, HMGB1, S100 proteins) induce osteoblast/osteocyte apoptosis and stimulate cytokine production, which is associated with increased osteoclast differentiation/activity. Conversely, direct RAGE-ligand exposure in osteoclasts may have inhibitory effects. These observations support a conclusion that elevated bone resorption observed in conditions of high circulating ligands and RAGE expression are due to actions on osteoblasts/osteocytes rather than direct actions on osteoclasts, although additional work is required to substantiate the observations. Recent studies have demonstrated that RAGE and its ligands play an important physiological role in the regulation of skeletal development, homeostasis, and repair/regeneration. Conversely, elevated levels of RAGE and its ligands are clearly related with various diseases associated with increased bone loss and fragility. However, despite the recent advancements in the field, many questions regarding RAGE and its ligands in skeletal biology remain unanswered.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., MS 5023, Indianapolis, IN, 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.
| | - Alyson L Essex
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., MS 5023, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA
| | - Hannah M Davis
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., MS 5023, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA
| |
Collapse
|
18
|
Miyoshi A, Koyama S, Sasagawa-Monden M, Kadoya M, Konishi K, Shoji T, Inaba M, Yamamoto Y, Koyama H. JNK and ATF4 as two important platforms for tumor necrosis factor-α-stimulated shedding of receptor for advanced glycation end products. FASEB J 2018; 33:3575-3589. [PMID: 30452882 DOI: 10.1096/fj.201701553rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Soluble receptor for advanced glycation end products (sRAGE), shed from cell surfaces, is found in human circulation and has been implicated in cardiovascular disease. Its pathophysiological regulation and underlying mechanisms are scarcely understood. In endothelium-specific human RAGE transgenic mice, human sRAGE was detected in circulation, whereas its level was markedly increased after LPS treatment. That increase was preceded by a rapid rise in TNF-α level. Treatment with TNF-α also significantly increased serum sRAGE. In human microvascular endothelial cells or human umbilical vein endothelial cells with RAGE overexpression, TNF-α markedly induced RAGE shedding, which was dependent on MMP9 and ADAM10. TNF-α-stimulated MMP9 expression was completely dependent on JNK activation, with its inhibition partially effective in suppressing TNF-α-induced RAGE shedding. In contrast, TNF-α transiently induced activation transcription factor (ATF)4, a major component in unfolded protein response (UPR), whereas knockdown of ATF4 abrogated TNF-α-stimulated RAGE shedding. Protein levels of the pro and activated forms of ADAM10 were also decreased by ATF4 knockdown, whereas inhibition of other components of UPR, including XBP1 and ATF6, failed to block TNF-α-stimulated RAGE shedding. Although the endoplasmic reticulum stressors thapsigargin and tunicamycin induced markedly and sustained expression of ATF4 and XBP-1, they did not induce RAGE shedding to the same level as TNF-α, suggesting that ATF4 is necessary but not sufficient alone for TNF-α-mediated RAGE shedding. ATF4 inhibition did not affect TNF-α-stimulated MMP9 expression, whereas inhibition of JNK activity did not influence ADAM10 activation. Thus, inflammatory cascades including TNF-α induced RAGE shedding in endothelial cells in vivo and in vitro. JNK and ATF4 may be 2 platforms for regulation of TNF-α-stimulated RAGE shedding.-Miyoshi, A., Koyama, S., Sasagawa-Monden, M., Kadoya, M., Konishi, K., Shoji, T., Inaba, M., Yamamoto, Y., Koyama, H. JNK and ATF4 as two important platforms for tumor necrosis factor-α-stimulated shedding of receptor for advanced glycation end products.
Collapse
Affiliation(s)
- Akio Miyoshi
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Sachie Koyama
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masayo Sasagawa-Monden
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Endocrinology, Metabolism, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan; and
| | - Manabu Kadoya
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kosuke Konishi
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takuhito Shoji
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masaaki Inaba
- Department of Endocrinology, Metabolism, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan; and
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hidenori Koyama
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
19
|
Bianchi ME, Crippa MP, Manfredi AA, Mezzapelle R, Rovere Querini P, Venereau E. High-mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair. Immunol Rev 2018; 280:74-82. [PMID: 29027228 DOI: 10.1111/imr.12601] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A single protein, HMGB1, directs the triggering of inflammation, innate and adaptive immune responses, and tissue healing after damage. HMGB1 is the best characterized damage-associated molecular pattern (DAMP), proteins that are normally inside the cell but are released after cell death, and allow the immune system to distinguish between antigens that are dangerous or not. Notably, cells undergoing severe stress actively secrete HMGB1 via a dedicated secretion pathway: HMGB1 is relocated from the nucleus to the cytoplasm and then to secretory lysosomes or directly to the extracellular space. Extracellular HMGB1 (either released or secreted) triggers inflammation and adaptive immunological responses by switching among multiple oxidation states, which direct the mutually exclusive choices of different binding partners and receptors. Immune cells are first recruited to the damaged tissue and then activated; thereafter, HMGB1 supports tissue repair and healing, by coordinating the switch of macrophages to a tissue-healing phenotype, activation and proliferation of stem cells, and neoangiogenesis. Inevitably, HMGB1 also orchestrates the support of stressed but illegitimate tissues: tumors. Concomitantly, HMGB1 enhances the immunogenicity of mutated proteins in the tumor (neoantigens), promoting anti-tumor responses and immunological memory. Tweaking the activities of HMGB1 in inflammation, immune responses and tissue repair could bring large rewards in the therapy of multiple medical conditions, including cancer.
Collapse
|
20
|
Brinkley TE, Leng X, Nicklas BJ, Kritchevsky SB, Ding J, Kitzman DW, Hundley WG. Racial differences in circulating levels of the soluble receptor for advanced glycation endproducts in middle-aged and older adults. Metabolism 2017; 70:98-106. [PMID: 28403949 PMCID: PMC5396843 DOI: 10.1016/j.metabol.2017.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Low levels of the soluble receptor for advanced glycation endproducts (sRAGE) have been implicated in a number of chronic diseases. Previous studies indicate that sRAGE levels are ~30% lower in Blacks compared to Whites. However, the reasons for these differences are unclear. PURPOSE We aimed to identify predictors of circulating sRAGE biomarkers among Black and White adults at high cardiac risk. METHODS Serum levels of total sRAGE, endogenous secretory RAGE (esRAGE), carboxymethyl-lysine (CML, a major RAGE ligand), and their ratios were measured in 99 Blacks and 454 Whites. RESULTS Blacks had a more adverse cardiovascular risk profile, as well as lower median levels of total sRAGE (972 vs. 1564pg/ml) and esRAGE (474 vs. 710pg/ml) compared to Whites (p<0.0001). In addition, the proportion of esRAGE was higher in Blacks (47% vs. 44%, p=0.02), as were the CML/total sRAGE (0.89 vs. 0.56ng/pg) and CML/esRAGE (1.72 vs. 1.20ng/pg) ratios (p<0.0001). Racial differences persisted after adjustment for key covariates including age, gender, tobacco use, comorbidities, BMI, blood pressure, glucose, insulin, triglycerides, C-reactive protein, and renal function (p<0.05). Race alone accounted for nearly half of the variability in total sRAGE levels (10.6%; model explained 23.9%). In stratified analyses, gender and heart rate were independently associated with total sRAGE and esRAGE in Whites, while CML and C-reactive protein were associated with total sRAGE in Blacks. CONCLUSIONS We identified several independent predictors of sRAGE biomarkers. Notably, Black race was associated with an adverse AGE/RAGE profile, including lower sRAGE and higher CML/sRAGE ratios.
Collapse
Affiliation(s)
- Tina E Brinkley
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC.
| | - Xiaoyan Leng
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Barbara J Nicklas
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Jingzhong Ding
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Dalane W Kitzman
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, NC
| | - W Gregory Hundley
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
21
|
Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases. Mediators Inflamm 2017; 2017:9621724. [PMID: 28260841 PMCID: PMC5316459 DOI: 10.1155/2017/9621724] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023] Open
Abstract
Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity.
Collapse
|
22
|
Fukai T. Mouse Specific Cleavage-Resistant RAGE Splice Variant. PLoS One 2016; 11:e0162120. [PMID: 27653772 PMCID: PMC5031468 DOI: 10.1371/journal.pone.0162120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/09/2016] [Indexed: 11/23/2022] Open
Affiliation(s)
- Tohru Fukai
- Depts. of Medicine (Section of Cardiololgy) and Pharmacology, University of Illinois at Chicago, Chicago, Illinois, 60612, United States of America
- * E-mail:
| |
Collapse
|
23
|
Ley K, Pramod AB, Croft M, Ravichandran KS, Ting JP. How Mouse Macrophages Sense What Is Going On. Front Immunol 2016; 7:204. [PMID: 27313577 PMCID: PMC4890338 DOI: 10.3389/fimmu.2016.00204] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/10/2016] [Indexed: 01/26/2023] Open
Abstract
Macrophages are central to both innate and adaptive immunity. With few exceptions, macrophages are the first cells that sense trouble and respond to disturbances in almost all tissues and organs. They sense their environment, inhibit or kill pathogens, take up apoptotic and necrotic cells, heal tissue damage, and present antigens to T cells. Although the origins (yolk sac versus monocyte-derived) and phenotypes (functions, gene expression profiles, surface markers) of macrophages vary between tissues, they have many receptors in common that are specific to one or a few molecular species. Here, we review the expression and function of almost 200 key macrophage receptors that help the macrophages sense what is going on, including pathogen-derived molecules, the state of the surrounding tissue cells, apoptotic and necrotic cell death, antibodies and immune complexes, altered self molecules, extracellular matrix components, and cytokines, including chemokines.
Collapse
Affiliation(s)
- Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Akula Bala Pramod
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, VA , USA
| | - Jenny P Ting
- Department of Genetics, The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| |
Collapse
|