1
|
Sui Y, Mortensen M, Yuan B, Nicholson MW, Smart TG, Jovanovic JN. GABA A receptors and neuroligin 2 synergize to promote synaptic adhesion and inhibitory synaptogenesis. Front Cell Neurosci 2024; 18:1423471. [PMID: 39100896 PMCID: PMC11295144 DOI: 10.3389/fncel.2024.1423471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
GABAA receptors (γ-aminobutyric acid-gated receptors type A; GABAARs), the major structural and functional postsynaptic components of inhibitory synapses in the mammalian brain, belong to a family of GABA-gated Cl-/HCO3 - ion channels. They are assembled as heteropentamers from a family of subunits including: α (1-6), β(1-3), γ(1-3), δ, ε, π, θ and ρ(1-3). GABAARs together with the postsynaptic adhesion protein Neuroligin 2 (NL2) and many other pre- and post-synaptic proteins guide the initiation and functional maturation of inhibitory GABAergic synapses. This study examined how GABAARs and NL2 interact with each other to initiate the formation of synapses. Two functionally distinct GABAAR subtypes, the synaptic type α2β2γ2-GABAARs versus extrasynaptic type α4β3δ-GABAARs were expressed in HEK293 cells alone or together with NL2 and co-cultured with striatal GABAergic medium spiny neurons to enable innervation of HEK293 cells by GABAergic axons. When expressed alone, only the synaptic α2β2γ2-GABAARs induced innervation of HEK293 cells. However, when GABAARs were co-expressed with NL2, the effect on synapse formation exceeded the individual effects of these proteins indicating a synergistic interaction, with α2β2γ2-GABAAR/NL2 showing a significantly greater synaptogenic activity than α4β3δ-GABAAR/NL2 or NL2 alone. To investigate the molecular basis of this interaction, different combinations of GABAAR subunits and NL2 were co-expressed, and the degree of innervation and synaptic activity assessed, revealing a key role of the γ2 subunit. In biochemical assays, the interaction between NL2 and α2β2γ2-GABAAR was established and mapped to the large intracellular domain of the γ2 subunit.
Collapse
Affiliation(s)
- Yusheng Sui
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| | - Martin Mortensen
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London, United Kingdom
| | - Banghao Yuan
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| | - Martin W. Nicholson
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| | - Trevor G. Smart
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London, United Kingdom
| | - Jasmina N. Jovanovic
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
2
|
Zhu X, Joo Y, Bossi S, McDevitt RA, Xie A, Wang Y, Xue Y, Su S, Lee SK, Sah N, Zhang S, Ye R, Pinto A, Zhang Y, Araki K, Araki M, Morales M, Mattson MP, van Praag H, Wang W. Tdrd3-null mice show post-transcriptional and behavioral impairments associated with neurogenesis and synaptic plasticity. Prog Neurobiol 2024; 233:102568. [PMID: 38216113 PMCID: PMC10922770 DOI: 10.1016/j.pneurobio.2024.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
The Topoisomerase 3B (Top3b) - Tudor domain containing 3 (Tdrd3) protein complex is the only dual-activity topoisomerase complex that can alter both DNA and RNA topology in animals. TOP3B mutations in humans are associated with schizophrenia, autism and cognitive disorders; and Top3b-null mice exhibit several phenotypes observed in animal models of psychiatric and cognitive disorders, including impaired cognitive and emotional behaviors, aberrant neurogenesis and synaptic plasticity, and transcriptional defects. Similarly, human TDRD3 genomic variants have been associated with schizophrenia, verbal short-term memory and educational attainment. However, the importance of Tdrd3 in normal brain function has not been examined in animal models. Here we generated a Tdrd3-null mouse strain and demonstrate that these mice display both shared and unique defects when compared to Top3b-null mice. Shared defects were observed in cognitive behaviors, synaptic plasticity, adult neurogenesis, newborn neuron morphology, and neuronal activity-dependent transcription; whereas defects unique to Tdrd3-deficient mice include hyperactivity, changes in anxiety-like behaviors, olfaction, increased new neuron complexity, and reduced myelination. Interestingly, multiple genes critical for neurodevelopment and cognitive function exhibit reduced levels in mature but not nascent transcripts. We infer that the entire Top3b-Tdrd3 complex is essential for normal brain function, and that defective post-transcriptional regulation could contribute to cognitive and psychiatric disorders.
Collapse
Affiliation(s)
- Xingliang Zhu
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Yuyoung Joo
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Simone Bossi
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Ross A McDevitt
- Comparative Medicine Section, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Aoji Xie
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Yue Wang
- Lab of Neuroscience, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Yutong Xue
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Seung Kyu Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Nirnath Sah
- Lab of Neuroscience, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Shiliang Zhang
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse, National Institute of Health, Baltimore, MD 21224, USA
| | - Rong Ye
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse, National Institute of Health, Baltimore, MD 21224, USA
| | - Alejandro Pinto
- Stiles-Nicholson Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1, Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Masatake Araki
- Division of Genomics, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1, Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Marisela Morales
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse, National Institute of Health, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Lab of Neuroscience, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Henriette van Praag
- Stiles-Nicholson Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
3
|
Zhu X, Joo Y, Bossi S, McDevitt R, Xie A, Wang Y, Xue Y, Su S, Lee SK, Sah N, Zhang S, Ye R, Pinto A, Zhang Y, Araki K, Araki M, Morales M, Mattson M, van Praag H, Wang W. Tdrd3-null mice show post-transcriptional and behavioral impairments associated with neurogenesis and synaptic plasticity. RESEARCH SQUARE 2023:rs.3.rs-2597043. [PMID: 36909584 PMCID: PMC10002826 DOI: 10.21203/rs.3.rs-2597043/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The Topoisomerase 3B (Top3b) - Tudor domain containing 3 (Tdrd3) protein complex is the only dual-activity topoisomerase complex in animals that can alter the topology of both DNA and RNA. TOP3B mutations in humans are associated with schizophrenia, autism and cognitive disorders; and Top3b-null mice exhibit several phenotypes observed in animal models of psychiatric and cognitive disorders, including impairments in cognitive and emotional behaviors, aberrant neurogenesis and synaptic plasticity, and transcriptional defects. Similarly, human TDRD3 genomic variants have been associated with schizophrenia, verbal shorten-memory and learning, and educational attainment. However, the importance of Tdrd3 in normal brain function has not been examined in animal models. Here we built a Tdrd3-null mouse strain and demonstrate that these mice display both shared and unique defects when compared to Top3b-null mice. Shared defects were observed in cognitive behaviors, synaptic plasticity, adult neurogenesis, newborn neuron morphology, and neuronal activity-dependent transcription; whereas defects unique to Tdrd3-deficient mice include hyperactivity, changes in anxiety-like behaviors, increased new neuron complexity, and reduced myelination. Interestingly, multiple genes critical for neurodevelopment and cognitive function exhibit reduced levels in mature but not nascent transcripts. We infer that the entire Top3b-Tdrd3 complex is essential for normal brain function, and that defective post-transcriptional regulation could contribute to cognitive impairment and psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University
| | - Masatake Araki
- Institute of Resource Development and Analysis, Kumamoto University
| | | | - Mark Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine
| | | | | |
Collapse
|
4
|
Chan ES, Ge Y, So YW, Bai YF, Liu L, Wang YT. Allosteric potentiation of GABAA receptor single-channel conductance by netrin-1 during neuronal-excitation-induced inhibitory synaptic homeostasis. Cell Rep 2022; 41:111584. [DOI: 10.1016/j.celrep.2022.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/13/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
|
5
|
Control of cell surface expression of GABA A receptors by a conserved region at the end of the N-terminal extracellular domain of receptor subunits. J Biol Chem 2022; 298:102590. [PMID: 36244453 PMCID: PMC9672411 DOI: 10.1016/j.jbc.2022.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Type A γ-aminobutyric acid receptors (GABAARs) represent a family of pentameric GABA-gated Cl-/HCO3- ion channels which mediate inhibitory transmission in the central nervous system. Cell surface expression of GABAARs, a prerequisite for their function, is dependent on the appropriate assembly of the receptor subunits and their transient interactions with molecular chaperones within the endoplasmic reticulum (ER) and Golgi apparatus. Here, we describe a highly conserved amino acid sequence within the extracellular N-terminal domain of the receptor subunits adjoining the first transmembrane domain as a region important for GABAAR processing within the ER. Modifications of this region in the α1, β3, and γ2 subunits using insertion or site-directed mutagenesis impaired GABAAR trafficking to the cell surface in heterologous cell systems although they had no effect on the subunit assembly. We found that mutated receptors accumulated in the ER where they were shown to associate with chaperones calnexin, BiP, and Grp94. However, their surface expression was increased when ER-associated degradation or proteosome function was inhibited, while modulation of ER calcium stores had little effect. When compared to the wt, mutated receptors showed decreased interaction with calnexin, similar binding to BiP, and increased association with Grp94. Structural modeling of calnexin interaction with the wt or mutated GABAAR revealed that disruption in structure caused by mutations in the conserved region adjoining the first transmembrane domain may impair calnexin binding. Thus, this previously uncharacterized region plays an important role in intracellular processing of GABAARs at least in part by stabilizing their interaction with calnexin.
Collapse
|
6
|
Altered Behavioral Responses Show GABA Sensitivity in Muscleblind-Like 2-Deficient Mice: Implications for CNS Symptoms in Myotonic Dystrophy. eNeuro 2022; 9:ENEURO.0218-22.2022. [PMID: 36150891 PMCID: PMC9557336 DOI: 10.1523/eneuro.0218-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/17/2023] Open
Abstract
Considerable evidence from mouse models and human postmortem brain suggests loss of Muscleblind-like protein 2 (MBNL2) function in brain is a major driver of CNS symptoms in Myotonic dystrophy type 1 (DM1). Increased hypersomnia, fatigue, and surgical complications associated with general anesthesia suggest possible sensitivity to GABAergic inhibition in DM1. To test the hypothesis that MBNL2 depletion leads to behavioral sensitivity to GABAA receptor (GABAA-R) modulation, Mbnl2 knock-out (KO) and wild-type (WT) littermates were treated with the anesthetic sevoflurane, the benzodiazepine diazepam, the imidazopyridine zolpidem, and the benzodiazepine rescue agent, flumazenil (Ro 15-1788), and assessed for various behavioral metrics. Mbnl2 KO mice exhibited delayed recovery following sevoflurane, delayed emergence and recovery from zolpidem, and enhanced sleep time at baseline that was modulated by flumazenil. A significantly higher proportion of Mbnl2 KO mice also loss their righting reflex [loss of righting reflex (LORR)] from a standard diazepam dose. We further examined whether MBNL2 depletion affects total GABAA-R mRNA subunit levels and validated RNA-sequencing data of mis-spliced Gabrg2, whose isoform ratios are known to regulate GABA sensitivity and associated behaviors. While no other GABAA-R subunit mRNA levels tested were altered in Mbnl2 KO mouse prefrontal cortex, Gabrg2S/L mRNA ratio levels were significantly altered. Taken together, our findings indicate that loss of MBNL2 function affects GABAergic function in a mouse model of myotonic dystrophy (DM1).
Collapse
|
7
|
Hari K, Lucas-Osma AM, Metz K, Lin S, Pardell N, Roszko DA, Black S, Minarik A, Singla R, Stephens MJ, Pearce RA, Fouad K, Jones KE, Gorassini MA, Fenrich KK, Li Y, Bennett DJ. GABA facilitates spike propagation through branch points of sensory axons in the spinal cord. Nat Neurosci 2022; 25:1288-1299. [PMID: 36163283 PMCID: PMC10042549 DOI: 10.1038/s41593-022-01162-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
Movement and posture depend on sensory feedback that is regulated by specialized GABAergic neurons (GAD2+) that form axo-axonic contacts onto myelinated proprioceptive sensory axons and are thought to be inhibitory. However, we report here that activating GAD2+ neurons directly with optogenetics or indirectly by cutaneous stimulation actually facilitates sensory feedback to motor neurons in rodents and humans. GABAA receptors located at or near nodes of Ranvier of sensory axons cause this facilitation by preventing spike propagation failure at the many axon branch points, which is otherwise common without GABA. In contrast, GABAA receptors are generally lacking from axon terminals and so cannot inhibit transmitter release onto motor neurons, unlike GABAB receptors that cause presynaptic inhibition. GABAergic innervation near nodes and branch points allows individual branches to function autonomously, with GAD2+ neurons regulating which branches conduct, adding a computational layer to the neuronal networks generating movement and likely generalizing to other central nervous system axons.
Collapse
Affiliation(s)
- Krishnapriya Hari
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ana M Lucas-Osma
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Krista Metz
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Shihao Lin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Noah Pardell
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - David A Roszko
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Sophie Black
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Anna Minarik
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Rahul Singla
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Marilee J Stephens
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Karim Fouad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kelvin E Jones
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Monica A Gorassini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Yaqing Li
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, Emory University, Atlanta, GA, USA
| | - David J Bennett
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Syed P, Durisic N, Harvey RJ, Sah P, Lynch JW. Effects of GABA A Receptor α3 Subunit Epilepsy Mutations on Inhibitory Synaptic Signaling. Front Mol Neurosci 2020; 13:602559. [PMID: 33328885 PMCID: PMC7714833 DOI: 10.3389/fnmol.2020.602559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Missense mutations T166M, Q242L, T336M, and Y474C in the GABAA receptor (GABAAR) α3 subunit gene are associated with epileptic seizures, dysmorphic features, intellectual disability, and developmental delay. When incorporated into GABAARs expressed in oocytes, all mutations are known to reduce GABA-evoked whole-cell currents. However, their impact on the properties of inhibitory synaptic currents (IPSCs) is unknown, largely because it is difficult to establish, much less control, the stoichiometry of GABAAR expressed in native neuronal synapses. To circumvent this problem, we employed a HEK293 cell-neuron co-culture expression system that permits the recording of IPSCs mediated by a pure population of GABAARs with a defined stoichiometry. We first demonstrated that IPSCs mediated by α3-containing GABAARs (α3β3γ2) decay significantly slower than those mediated by α1-containing isoforms (α1β2γ2 or α1β3γ2). GABAAR α3 mutations did not affect IPSC peak amplitudes or 10-90% rise times, but three of the mutations affected IPSC decay. T336M significantly accelerated the IPSC decay rate whereas T166M and Y474C had the opposite effect. The acceleration of IPSC decay kinetics caused by the T366M mutation was returned to wild-type-like values by the anti-epileptic medication, midazolam. Quantification experiments in HEK293 cells revealed a significant reduction in cell-surface expression for all mutants, in agreement with previous oocyte data. Taken together, our results show that impaired surface expression and altered IPSC decay rates could both be significant factors underlying the pathologies associated with these mutations.
Collapse
Affiliation(s)
- Parnayan Syed
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Robert J Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Department of Biology, Joint Center for Neuroscience and Neural Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Petrache AL, Khan AA, Nicholson MW, Monaco A, Kuta-Siejkowska M, Haider S, Hilton S, Jovanovic JN, Ali AB. Selective Modulation of α5 GABA A Receptors Exacerbates Aberrant Inhibition at Key Hippocampal Neuronal Circuits in APP Mouse Model of Alzheimer's Disease. Front Cell Neurosci 2020; 14:568194. [PMID: 33262690 PMCID: PMC7686552 DOI: 10.3389/fncel.2020.568194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Selective negative allosteric modulators (NAMs), targeting α5 subunit-containing GABAA receptors (GABAARs) as potential therapeutic targets for disorders associated with cognitive deficits, including Alzheimer's disease (AD), continually fail clinical trials. We investigated whether this was due to the change in the expression of α5 GABAARs, consequently altering synaptic function during AD pathogenesis. Using medicinal chemistry and computational modeling, we developed aqueous soluble hybrids of 6,6-dimethyl-3-(2-hydroxyethyl) thio-1-(thiazol-2-yl)-6,7-dihydro-2-benzothiophene-4(5H)-one, that demonstrated selective binding and high negative allosteric modulation, specifically for the α5 GABAAR subtypes in constructed HEK293 stable cell-lines. Using a knock-in mouse model of AD (APP NL-F/NL-F), which expresses a mutant form of human amyloid-β (Aβ), we performed immunofluorescence studies combined with electrophysiological whole-cell recordings to investigate the effects of our key molecule, α5-SOP002 in the hippocampal CA1 region. In aged APP NL-F/NL-F mice, selective preservation of α5 GABAARs was observed in, calretinin- (CR), cholecystokinin- (CCK), somatostatin- (SST) expressing interneurons, and pyramidal cells. Previously, we reported that CR dis-inhibitory interneurons, specialized in regulating other interneurons displayed abnormally high levels of synaptic inhibition in the APP NL-F/NL-F mouse model, here we show that this excessive inhibition was "normalized" to control values with bath-applied α5-SOP002 (1 μM). However, α5-SOP002, further impaired inhibition onto CCK and pyramidal cells that were already largely compromised by exhibiting a deficit of inhibition in the AD model. In summary, using a multi-disciplinary approach, we show that exposure to α5 GABAAR NAMs may further compromise aberrant synapses in AD. We, therefore, suggest that the α5 GABAAR is not a suitable therapeutic target for the treatment of AD or other cognitive deficits due to the widespread neuronal-networks that use α5 GABAARs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Afia B. Ali
- UCL School of Pharmacy, London, United Kingdom
| |
Collapse
|
10
|
Duan J, Pandey S, Li T, Castellano D, Gu X, Li J, Tian Q, Lu W. Genetic Deletion of GABA A Receptors Reveals Distinct Requirements of Neurotransmitter Receptors for GABAergic and Glutamatergic Synapse Development. Front Cell Neurosci 2019; 13:217. [PMID: 31231192 PMCID: PMC6558517 DOI: 10.3389/fncel.2019.00217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
In the adult brain GABAA receptors (GABAARs) mediate the majority of synaptic inhibition that provides inhibitory balance to excitatory drive and controls neuronal output. In the immature brain GABAAR signaling is critical for neuronal development. However, the cell-autonomous role of GABAARs in synapse development remains largely unknown. We have employed the CRISPR-CAS9 technology to genetically eliminate GABAARs in individual hippocampal neurons and examined GABAergic and glutamatergic synapses. We found that development of GABAergic synapses, but not glutamatergic synapses, critically depends on GABAARs. By combining different genetic approaches, we have also removed GABAARs and two ionotropic glutamate receptors, AMPA receptors (AMPARs) and NMDA receptors (NMDARs), in single neurons and discovered a striking dichotomy. Indeed, while development of glutamatergic synapses and spines does not require signaling mediated by these receptors, inhibitory synapse formation is crucially dependent on them. Our data reveal a critical cell-autonomous role of GABAARs in inhibitory synaptogenesis and demonstrate distinct molecular mechanisms for development of inhibitory and excitatory synapses.
Collapse
Affiliation(s)
- Jingjing Duan
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.,Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Saurabh Pandey
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Tianming Li
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - David Castellano
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Xinglong Gu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jun Li
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Qingjun Tian
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Wei Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Geisler S, Schöpf CL, Stanika R, Kalb M, Campiglio M, Repetto D, Traxler L, Missler M, Obermair GJ. Presynaptic α 2δ-2 Calcium Channel Subunits Regulate Postsynaptic GABA A Receptor Abundance and Axonal Wiring. J Neurosci 2019; 39:2581-2605. [PMID: 30683685 PMCID: PMC6445987 DOI: 10.1523/jneurosci.2234-18.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 01/26/2023] Open
Abstract
Presynaptic α2δ subunits of voltage-gated calcium channels regulate channel abundance and are involved in glutamatergic synapse formation. However, little is known about the specific functions of the individual α2δ isoforms and their role in GABAergic synapses. Using primary neuronal cultures of embryonic mice of both sexes, we here report that presynaptic overexpression of α2δ-2 in GABAergic synapses strongly increases clustering of postsynaptic GABAARs. Strikingly, presynaptic α2δ-2 exerts the same effect in glutamatergic synapses, leading to a mismatched localization of GABAARs. This mismatching is caused by an aberrant wiring of glutamatergic presynaptic boutons with GABAergic postsynaptic positions. The trans-synaptic effect of α2δ-2 is independent of the prototypical cell-adhesion molecules α-neurexins (α-Nrxns); however, α-Nrxns together with α2δ-2 can modulate postsynaptic GABAAR abundance. Finally, exclusion of the alternatively spliced exon 23 of α2δ-2 is essential for the trans-synaptic mechanism. The novel function of α2δ-2 identified here may explain how abnormal α2δ subunit expression can cause excitatory-inhibitory imbalance often associated with neuropsychiatric disorders.SIGNIFICANCE STATEMENT Voltage-gated calcium channels regulate important neuronal functions such as synaptic transmission. α2δ subunits modulate calcium channels and are emerging as regulators of brain connectivity. However, little is known about how individual α2δ subunits contribute to synapse specificity. Here, we show that presynaptic expression of a single α2δ variant can modulate synaptic connectivity and the localization of inhibitory postsynaptic receptors. Our findings provide basic insights into the development of specific synaptic connections between nerve cells and contribute to our understanding of normal nerve cell functions. Furthermore, the identified mechanism may explain how an altered expression of calcium channel subunits can result in aberrant neuronal wiring often associated with neuropsychiatric disorders such as autism or schizophrenia.
Collapse
Affiliation(s)
- Stefanie Geisler
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| | - Clemens L Schöpf
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| | - Ruslan Stanika
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| | - Marcus Kalb
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| | - Marta Campiglio
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| | - Daniele Repetto
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Larissa Traxler
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Gerald J Obermair
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| |
Collapse
|
12
|
Nicholson MW, Sweeney A, Pekle E, Alam S, Ali AB, Duchen M, Jovanovic JN. Diazepam-induced loss of inhibitory synapses mediated by PLCδ/ Ca 2+/calcineurin signalling downstream of GABAA receptors. Mol Psychiatry 2018; 23:1851-1867. [PMID: 29904150 PMCID: PMC6232101 DOI: 10.1038/s41380-018-0100-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/09/2018] [Accepted: 05/01/2018] [Indexed: 11/29/2022]
Abstract
Benzodiazepines facilitate the inhibitory actions of GABA by binding to γ-aminobutyric acid type A receptors (GABAARs), GABA-gated chloride/bicarbonate channels, which are the key mediators of transmission at inhibitory synapses in the brain. This activity underpins potent anxiolytic, anticonvulsant and hypnotic effects of benzodiazepines in patients. However, extended benzodiazepine treatments lead to development of tolerance, a process which, despite its important therapeutic implications, remains poorly characterised. Here we report that prolonged exposure to diazepam, the most widely used benzodiazepine in clinic, leads to a gradual disruption of neuronal inhibitory GABAergic synapses. The loss of synapses and the preceding, time- and dose-dependent decrease in surface levels of GABAARs, mediated by dynamin-dependent internalisation, were blocked by Ro 15-1788, a competitive benzodiazepine antagonist, and bicuculline, a competitive GABA antagonist, indicating that prolonged enhancement of GABAAR activity by diazepam is integral to the underlying molecular mechanism. Characterisation of this mechanism has revealed a metabotropic-type signalling downstream of GABAARs, involving mobilisation of Ca2+ from the intracellular stores and activation of the Ca2+/calmodulin-dependent phosphatase calcineurin, which, in turn, dephosphorylates GABAARs and promotes their endocytosis, leading to disassembly of inhibitory synapses. Furthermore, functional coupling between GABAARs and Ca2+ stores was sensitive to phospholipase C (PLC) inhibition by U73122, and regulated by PLCδ, a PLC isoform found in direct association with GABAARs. Thus, a PLCδ/Ca2+/calcineurin signalling cascade converts the initial enhancement of GABAARs by benzodiazepines to a long-term downregulation of GABAergic synapses, this potentially underpinning the development of pharmacological and behavioural tolerance to these widely prescribed drugs.
Collapse
Affiliation(s)
| | - Aaron Sweeney
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Eva Pekle
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Sabina Alam
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Afia B Ali
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Michael Duchen
- Neuroscience, Physiology and Pharmacology, University College London, WC1E 6BT, London, UK
| | | |
Collapse
|
13
|
Lorenz-Guertin JM, Jacob TC. GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol 2018; 78:238-270. [PMID: 28901728 PMCID: PMC6589839 DOI: 10.1002/dneu.22536] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
Ubiquitous expression of GABA type A receptors (GABAA R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABAA Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABAA R function. Here we review the current understanding of how GABAA Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABAA R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABAA R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
14
|
Gu X, Lu W. Genetic deletion of NMDA receptors suppresses GABAergic synaptic transmission in two distinct types of central neurons. Neurosci Lett 2018; 668:147-153. [PMID: 29355693 DOI: 10.1016/j.neulet.2018.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/23/2017] [Accepted: 01/12/2018] [Indexed: 01/30/2023]
Abstract
NMDA-type ionotropic glutamate receptors (NMDARs) play an important role in the regulation of synapse development and function in the brain. Recently we have shown that NMDARs are critical for GABAergic synapse development in developing hippocampal neurons. However, it remains unclear whether NMDARs are important for establishment of GABAergic synaptic transmission in other types of neurons in the brain. Here we report that in both cortical pyramidal neurons and midbrain dopamine neurons in ventral tegmental area (VTA), genetic deletion of the GluN1 subunit, which is required for assembly of functional NMDARs, leads to a strong reduction of GABAergic synaptic transmission. These data demonstrate that NMDARs play an important role in the development of GABAergic synaptic transmission in two types of neurons with distinct developmental origins, and suggest that NMDARs are commonly involved in development of GABAergic synaptic transmission in different types of neurons in the brain.
Collapse
Affiliation(s)
- Xinglong Gu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Inhibitory synapse deficits caused by familial α1 GABA A receptor mutations in epilepsy. Neurobiol Dis 2017; 108:213-224. [PMID: 28870844 DOI: 10.1016/j.nbd.2017.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/17/2017] [Accepted: 08/24/2017] [Indexed: 11/20/2022] Open
Abstract
Epilepsy is a spectrum of neurological disorders with many causal factors. The GABA type-A receptor (GABAAR) is a major genetic target for heritable human epilepsies. Here we examine the functional effects of three epilepsy-causing mutations to the α1 subunit (α1T10'I, α1D192N and α1A295D) on inhibitory postsynaptic currents (IPSCs) mediated by the major synaptic GABAAR isoform, α1β2γ2L. We employed a neuron - HEK293 cell heterosynapse preparation to record IPSCs mediated by mutant-containing GABAARs in isolation from other GABAAR isoforms. IPSCs were recorded in the presence of the anticonvulsant drugs, carbamazepine and midazolam, and at elevated temperatures (22, 37 and 40°C) to gain insight into mechanisms of febrile seizures. The mutant subunits were also transfected into cultured cortical neurons to investigate changes in synapse formation and neuronal morphology using fluorescence microscopy. We found that IPSCs mediated by α1T10'Iβ2γ2L, α1D192Nβ2γ2L GABAARs decayed faster than those mediated by α1β2γ2L receptors. IPSCs mediated by α1D192Nβ2γ2L and α1A295Dβ2γ2L receptors also exhibited a heightened temperature sensitivity. In addition, the α1T10'Iβ2γ2L GABAARs were refractory to modulation by carbamazepine or midazolam. In agreement with previous studies, we found that α1A295Dβ2γ2L GABAARs were retained intracellularly in HEK293 cells and neurons. However, pre-incubation with 100nM suberanilohydroxamic acid (SAHA) induced α1A295Dβ2γ2L GABAARs to mediate IPSCs that were indistinguishable in magnitude and waveform from those mediated by α1β2γ2L receptors. Finally, mutation-specific changes to synaptic bouton size, synapse number and neurite branching were also observed. These results provide new insights into the mechanisms of epileptogenesis of α1 epilepsy mutations and suggest possible leads for improving treatments for patients harbouring these mutations.
Collapse
|
16
|
Differential role of GABA A receptors and neuroligin 2 for perisomatic GABAergic synapse formation in the hippocampus. Brain Struct Funct 2017. [PMID: 28643105 DOI: 10.1007/s00429-017-1462-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Perisomatic GABAergic synapses onto hippocampal pyramidal cells arise from two populations of basket cells with different neurochemical and functional properties. The presence of the dystrophin-glycoprotein complex in their postsynaptic density (PSD) distinguishes perisomatic synapses from GABAergic synapses on dendrites and the axon-initial segment. Targeted deletion of neuroligin 2 (NL2), a transmembrane protein interacting with presynaptic neurexin, has been reported to disrupt postsynaptic clustering of GABAA receptors (GABAAR) and their anchoring protein, gephyrin, at perisomatic synapses. In contrast, targeted deletion of Gabra2 disrupts perisomatic clustering of gephyrin, but not of α1-GABAAR, NL2, or dystrophin/dystroglycan. Unexpectedly, conditional deletion of Dag1, encoding dystroglycan, selectively prevents the formation of perisomatic GABAergic synapses from basket cells expressing cholecystokinin. Collectively, these observations suggest that multiple mechanisms regulate formation and molecular composition of the GABAergic PSD at perisomatic synapses. Here, we further explored this issue by investigating the effect of targeted deletion of Gabra1 and NL2 on the dystrophin-glycoprotein complex and on perisomatic synapse formation, using immunofluorescence analysis with a battery of GABAergic pre- and postsynaptic markers. We show that the absence of α1-GABAAR increases GABAergic synapses containing the α2 subunit, without affecting the clustering of dystrophin and NL2; in contrast, the absence of NL2 produces highly variable effects postsynaptically, not restricted to perisomatic synapses and being more severe for the GABAAR subunits and gephyrin than dystrophin. Altogether, the results confirm the importance of NL2 as organizer of the GABAergic PSD and unravel distinct roles for α1- and α2-GABAARs in the formation of GABAergic circuits in close interaction with the dystrophin-glycoprotein complex.
Collapse
|
17
|
Regulation of GABAergic synapse development by postsynaptic membrane proteins. Brain Res Bull 2016; 129:30-42. [PMID: 27453545 DOI: 10.1016/j.brainresbull.2016.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023]
Abstract
In the adult mammalian brain, GABAergic neurotransmission provides the majority of synaptic inhibition that balances glutamatergic excitatory drive and thereby controls neuronal output. It is generally accepted that synaptogenesis is initiated through highly specific protein-protein interactions mediated by membrane proteins expressed in developing presynaptic terminals and postsynaptic membranes. Accumulating studies have uncovered a number of membrane proteins that regulate different aspects of GABAergic synapse development. In this review, we summarize recent advances in understanding of GABAergic synapse development with a focus on postsynaptic membrane molecules, including receptors, synaptogenic cell adhesion molecules and immunoglobulin superfamily proteins.
Collapse
|