1
|
Suzuki HX, Okumura H, Itoh SG. Why do histone monomethylation and dimethylation cause a significant difference in binding to LEDGF? J Chem Phys 2025; 162:185102. [PMID: 40337939 DOI: 10.1063/5.0259337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025] Open
Abstract
Lens epithelium-derived growth factor (LEDGF) is a chromatin-binding protein. It regulates gene transcription and is associated with acquired immunodeficiency syndrome and cancer. Its PWWP domain binds to histone H3 at K36 (H3K36). The binding affinity depends on H3K36 methylation. To investigate this dependency, we performed molecular dynamics simulations of the PWWP domain and histone fragments. We found that not only hydrophobic interaction but also electrostatic interaction is important. The binding is not maintained with nonmethylated and monomethylated H3K36 because the tips of these H3K36s form hydrogen bonds with water molecules, while dimethylated and trimethylated H3K36 form no such hydrogen bond, making this binding stable.
Collapse
Affiliation(s)
- Hinako X Suzuki
- Faculty of Science, Shinshu University, Matsumoto, Japan
- Institute for Molecular Science, Okazaki, Japan
| | - Hisashi Okumura
- Institute for Molecular Science, Okazaki, Japan
- Exploratory Research Center on Life and Living Systems, Okazaki, Japan
- Graduate University for Advanced Studies, Okazaki, Japan
| | - Satoru G Itoh
- Institute for Molecular Science, Okazaki, Japan
- Exploratory Research Center on Life and Living Systems, Okazaki, Japan
- Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
2
|
Seo HU, Jang CS. Mutation of a gene with PWWP domain confers salt tolerance in rice. PLANT MOLECULAR BIOLOGY 2025; 115:63. [PMID: 40327136 DOI: 10.1007/s11103-025-01581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/18/2025] [Indexed: 05/07/2025]
Abstract
Salinity is a major problem due to the continuous increase in the salinization of agricultural lands, particularly, paddy fields. Using a forward genetics approach, salt-insensitive TILLING line 3, sitl3, was selected from a core population induced by gamma-ray irradiation. Under salt stress, sitl3 had greater fresh weight and chlorophyll content, and lower H2O2 and Na+ contents than the wild-type. In the gene (LOC_Os07g46180) with two PWWP domains (named Oyza sativa PWWP4, OsPWWP4) of sitl3, a premature stop was caused by an SNP, and was named OsPWWP4p.Gly462* (a stop gain occurred from the 462th amino acid residue). The OsPWWP4 and substrate proteins (OsEULS2, OsEULS3, and OsEULD2) were identified using yeast two-hybrid, bimolecular fluorescence complementation, in vitro pull-down, and in vitro methyltransferase assays. Subcellular localization of OsPWWP4 and OsPWWP4p.Gly462*GFP-tagged proteins revealed they were both localized in the nucleus, while OsEULS2, OsEULS3, and OsEULD2 GFP-tagged proteins were found in the nucleus and cytosol of rice protoplasts. The expression levels of OsEULS2, OsEULS3, OsEULD2 under salt stress were higher in sitl3 than in wild-type plants. In contrast, OsPWWP4 expression was higher in the latter. Genes involved in the salt overly sensitive (SOS) pathway showed higher expression in the aerial tissues of silt3 than in the wild-type. CRISPR/Cas9-mediated OsPWWP4 knock-out transgenic plants showed salt tolerance phenotypes with low Na+ contents and low Na+/K+ ratios. The data suggest that sitl3 is a valuable genetic resource for understanding protein post-translational regulation-related salinity tolerance mechanisms such as methyltransferase activities, and for improving salt tolerance in rice through breeding.
Collapse
Affiliation(s)
- Hyeon Ung Seo
- Plant Genomics Laboratory, Graduate School, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Graduate School, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
3
|
Li J, Li Z, Yin J, Wang Y, Zheng D, Cai L, Wang GG. The sotos syndrome gene Nsd1 safeguards developmental gene enhancers poised for transcription by maintaining the precise deposition of histone methylation. J Biol Chem 2025; 301:108423. [PMID: 40118455 PMCID: PMC12033923 DOI: 10.1016/j.jbc.2025.108423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025] Open
Abstract
Germline haploinsufficiency of NSD1 is implicated as the etiology of Sotos syndrome; however, the underlying mechanism remains far from being clear. Here, we use mouse embryonic stem cell (mESC) differentiation as a model system to address this question. We found Nsd1 to be indispensable for the faithful differentiation of mESCs into three primary germ layers, particularly, meso-endodermal cell lineages related to the development of the heart and the skeletal system. Time-course transcriptomic profiling following the mESC differentiation revealed that Nsd1 not only facilitates the basal expression but also permits the differentiation-accompanied rapid induction of a suite of meso-endoderm lineage-specifying transcription factor genes such as T and Gata4. Mechanistically, Nsd1 directly occupies putative distal enhancers of the lineage transcription factor genes under the pluripotent cell state, where it deposits H3K36me2 to antagonize the excessive H3K27me3 and maintains the basal H3K27ac level, thereby safeguarding these gene enhancers at a primed state that responds readily to differentiation cues. In agreement, gene rescue assays using the Nsd1 KO mESCs showed that the H3K36me2 catalysis by Nsd1 requires several functional modules within Nsd1 (namely, PHD1-4, PWWP2, and SET) to a similar degree. Disruption of either one of these Nsd1 modules severely abrogated H3K36me2 in mESCs and significantly impaired appropriate induction of developmental genes upon mESC differentiation. Altogether, our study provides novel molecular insight into how the NSD1 perturbation derails normal development and causes the disease.
Collapse
Affiliation(s)
- Jie Li
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Zhucui Li
- Department of Biochemistry, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Jiekai Yin
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California Riverside, Riverside, California, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California Riverside, Riverside, California, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Neurology and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ling Cai
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Gang Greg Wang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
4
|
El-Banna AA, Eltamany EE, Yassen ASA, Lotfy A, El-Tanahy AHH, Badr JM, Algandaby MM, Murshid SS, Elhady SS, Abdelhameed RFA. Integrated Network Pharmacology, Molecular Modeling, LC-MS Profiling, and Semisynthetic Approach for the Roots of Rubia tinctorum L. Metabolites in Cancer Treatment. ACS OMEGA 2025; 10:13027-13045. [PMID: 40224436 PMCID: PMC11983213 DOI: 10.1021/acsomega.4c09853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025]
Abstract
Rubia tinctorum L. is one of the most widely used plants in folk medicine, with many reported pharmacological activities. One of these valuable activities is its anticancer efficacy. The aim of this study is to explore the multilevel mechanisms of R. tinctorum metabolites in cancer treatment using network pharmacology, together with molecular docking and in vitro studies. The network pharmacology analysis enabled us to reveal the hit anticancer R. tinctorum constituents, which were found to be acacetin, alizarin, anthragallol, 2-hydroxyanthraquinone, and xanthopurpurin. The most enriched cancer-linked target genes were PLCG1, BCL2, CYP1B1, NSD2, and ESR2. The pathways that were mostly involved in the anticancer mechanism of R. tinctorum metabolites were found to be metabolic pathways as well as pathways in cancer and apoptosis. Molecular docking of the identified hit anticancer constituents on the active sites of the most enriched genes unveiled that acacetin and alizarin possessed the lowest binding energies on the active sites of NSD2 and BCL2, respectively. While anthragallol showed the most stabilized interaction on the active sites of PLCG1, CYP1B1, and ESR2. Consequently, R. tinctorum extracts were evaluated for their in vitro cytotoxicity on a panel of cancerous cells. Among the tested R. tinctorum extracts, the chloroform extract was the strongest one with an IC50 = 3.987 μg/mL on the MCF-7 breast cancer cell line. Consequently, it was subjected to chromatographic separation and purification to isolate its major components with reported anticancer activity (scopoletin, rubiadin, chrysophanic acid, alizarin, purpurin, nor-damnacanthal, emodin, and rutin). Alizarin and purpurin constituted the main anthraquinones in R. tinctorum . Thus, they were quantified using LC/MS analysis. Moreover, a semisynthetic approach of alizarin toward the enhancement of its anticancer effect on the tested cancer cells was attained. Among the synthesized compounds, 2-methyl alizarin was the most active one with an IC50 = 8.878 μg/mL against the HepG2 cell line. This study provides deep insights into the anticancer mechanisms of R. tinctorum metabolites for the first time using network pharmacology and valorizes their significance as valuable anticancer agents.
Collapse
Affiliation(s)
- Alaa A. El-Banna
- Department
of Pharmacognosy, Faculty of Pharmacy, Alexandria
University, Alexandria 21521, Egypt
- Department
of Pharmacognosy, College of Pharmacy, Najran
University, Najran 66454, Saudi Arabia
| | - Enas E. Eltamany
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Asmaa S. A. Yassen
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed Lotfy
- Egyptian
Liver Research Institute and Hospital (ELRIAH), Mansoura 35111, Egypt
- Department
of Surgery, Medical University of South
Carolina, Charleston, South Carolina 29425, United States
| | - Aya H. H. El-Tanahy
- Department
of Pharmacognosy, Faculty of Pharmacy, Delta
University for Science and Technology, Gamasa 7730103, Egypt
| | - Jihan M. Badr
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Mardi M. Algandaby
- Department
of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samar S. Murshid
- Department
of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sameh S. Elhady
- Department
of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reda F. A. Abdelhameed
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
- Department of Pharmacognosy, Faculty of
Pharmacy, Galala University, New Galala 43713, Egypt
| |
Collapse
|
5
|
Jin Z, Meng Z, Liu Y, Li C, Zhang X, Yin Y, Gao G, Dou K, Huang Y. Structural basis of thymidine-rich DNA recognition by Drosophila P75 PWWP domain. Commun Biol 2025; 8:445. [PMID: 40089621 PMCID: PMC11910589 DOI: 10.1038/s42003-025-07895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
Drosophila P75 (dP75), a homolog of the human LEDGF/p75, is crucial for oogenesis by recruiting the histone kinase Jil-1 to euchromatin and impeding H3K9me2 spreading. Like LEDGF, dP75 binds transcriptionally active chromatin, but its precise mechanism remains unclear. Here we show that its PWWP domain prefers binding to thymidine-rich DNA over GC-rich sequences. Crystal structures both in apo and ssDNA-bound states, reveal a domain-swapped homodimer. The aromatic cage, known to recognize histone methyllysine, also engages thymine. Mutations in this cage mimic dP75 knockout phenotypes, including impaired chromatin binding, transposon upregulation, and female sterility. Although dP75 maintains chromatin-bound in H3K36A mutant flies, alterations in the aromatic cage disrupt this localization, underscoring its role in DNA binding. These findings reveal how dP75 targets euchromatin through a PWWP domain that integrates histone reading and nucleotide recognition, advancing our understanding of PWWP domains.
Collapse
Affiliation(s)
- Zhaohui Jin
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Meng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yanchao Liu
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chongyang Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xuedi Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Guanjun Gao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kun Dou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Ying Huang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Berardi A, Kaestner C, Ghitti M, Quilici G, Cocomazzi P, Li J, Ballabio F, Zucchelli C, Knapp S, Licht J, Musco G. The C-terminal PHDVC5HCH tandem domain of NSD2 is a combinatorial reader of unmodified H3K4 and tri-methylated H3K27 that regulates transcription of cell adhesion genes in multiple myeloma. Nucleic Acids Res 2025; 53:gkae1121. [PMID: 39656918 PMCID: PMC11724302 DOI: 10.1093/nar/gkae1121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024] Open
Abstract
Histone methyltransferase NSD2 (MMSET) overexpression in multiple myeloma (MM) patients plays an important role in the development of this disease subtype. Through the expansion of transcriptional activating H3K36me2 and the suppression of repressive H3K27me3 marks, NSD2 activates an aberrant set of genes that contribute to myeloma growth, adhesive and invasive activities. NSD2 transcriptional activity also depends on its non-catalytic domains, which facilitate its recruitment to chromatin through histone binding. In this study, using NMR, ITC and molecular dynamics simulations, we show that the tandem PHD domain of NSD2 (PHDVC5HCHNSD2) is a combinatorial reader of unmodified histone H3K4 and tri-methylated H3K27 (H3K27me3). This is the first PHD tandem cassette known to decode the methylation status of H3K27. Importantly, in a NSD2-dependent MM cellular model, we show that expression of NSD2 mutants, engineered to disrupt the interaction between H3K27me3 and PHDVC5HCH, display in comparison to wild-type NSD2: incomplete loss of H3K27 methylation throughout the genome, decreased activation of adhesive properties and cell adhesion genes, and a decrease of the corresponding H3K27ac signal at promoters. Collectively, these data suggest that the PHDVC5HCH domain of NSD2 plays an important role in modulating gene expression and chromatin modification, providing new opportunities for pharmacological intervention.
Collapse
Affiliation(s)
- Andrea Berardi
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology c/o IRCCS Ospedale San Raffaele Via Olgettina 58, 20132 Milan, Italy
| | - Charlotte Leonie Kaestner
- Division of Hematology/Oncology, The University of Florida Health Cancer, 2033 Mowry Road, Gainesville, FL 32610, USA
| | - Michela Ghitti
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology c/o IRCCS Ospedale San Raffaele Via Olgettina 58, 20132 Milan, Italy
| | - Giacomo Quilici
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology c/o IRCCS Ospedale San Raffaele Via Olgettina 58, 20132 Milan, Italy
| | - Paolo Cocomazzi
- Biophysics Institute, CNR-IBF, Via Corti 12, 20133 Milan, Italy
| | - Jianping Li
- Division of Hematology/Oncology, The University of Florida Health Cancer, 2033 Mowry Road, Gainesville, FL 32610, USA
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Federico Ballabio
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology c/o IRCCS Ospedale San Raffaele Via Olgettina 58, 20132 Milan, Italy
| | - Chiara Zucchelli
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology c/o IRCCS Ospedale San Raffaele Via Olgettina 58, 20132 Milan, Italy
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, 60438 Frankfurt am Main, Germany
| | - Jonathan D Licht
- Division of Hematology/Oncology, The University of Florida Health Cancer, 2033 Mowry Road, Gainesville, FL 32610, USA
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology c/o IRCCS Ospedale San Raffaele Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
7
|
Ghiani L, Chiocca S. The oncogenic role of the NSD histone methyltransferases in head and neck and cervical cancers. Tumour Virus Res 2024; 19:200301. [PMID: 39645166 DOI: 10.1016/j.tvr.2024.200301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024] Open
Abstract
Understanding the role of NSD proteins in virus-induced cancers could reveal new therapeutic strategies. Targeting NSD proteins may not only disrupt the epigenetic changes triggered by viruses but also help restore normal cellular function. For instance, developing NSD inhibitors could counteract abnormal histone modifications caused by viral infections and slow cancer progression. Our review on the NSD protein family emphasizes its critical role in epigenetic regulation and cancer progression, also in virus-induced cancers. As research on the molecular mechanisms of NSD proteins advances, these proteins are emerging as promising candidates for targeted cancer therapies, particularly in cancers driven by histone modifications and transcriptional dysregulation.
Collapse
Affiliation(s)
- Lavinia Ghiani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
8
|
Iwasaki K, Tojo A, Kobayashi H, Shimizu K, Kamimura Y, Horikoshi Y, Fukuto A, Sun J, Yasui M, Honma M, Okabe A, Fujiki R, Nakajima NI, Kaneda A, Tashiro S, Sassa A, Ura K. Dose-dependent effects of histone methyltransferase NSD2 on site-specific double-strand break repair. Genes Cells 2024; 29:951-965. [PMID: 39245559 DOI: 10.1111/gtc.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/10/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
Histone modifications are catalyzed and recognized by specific proteins to regulate dynamic DNA metabolism processes. NSD2 is a histone H3 lysine 36 (H3K36)-specific methyltransferase that is associated with both various transcription regulators and DNA repair factors. Specifically, it has been implicated in the repair of DNA double-strand breaks (DSBs); however, the role of NSD2 during DSB repair remains enigmatic. Here, we show that NSD2 does not accumulate at DSB sites and that it is not further mobilized by DSB formation. Using three different DSB repair reporter systems, which contained the endonuclease site in the active thymidine kinase gene (TK) locus, we demonstrated separate dose-dependent effects of NSD2 on homologous recombination (HR), canonical-non-homologous end joining (c-NHEJ), and non-canonical-NHEJ (non-c-NHEJ). Endogenous NSD2 has a role in repressing non-c-NHEJ, without affecting DSB repair efficiency by HR or total NHEJ. Furthermore, overexpression of NSD2 promotes c-NHEJ repair and suppresses HR repair. Therefore, we propose that NSD2 has functions in chromatin integrity at the active regions during DSB repair.
Collapse
Affiliation(s)
- Koh Iwasaki
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Akari Tojo
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Haruka Kobayashi
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Kai Shimizu
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Yoshitaka Kamimura
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasunori Horikoshi
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Atsuhiko Fukuto
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Jiying Sun
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryoji Fujiki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu City, Chiba, Japan
| | - Nakako Izumi Nakajima
- Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Sciences and Technology (iQMS, QST), Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akira Sassa
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Kiyoe Ura
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| |
Collapse
|
9
|
Rolls W, Wilson MD, Sproul D. Using human disease mutations to understand de novo DNA methyltransferase function. Biochem Soc Trans 2024; 52:2059-2075. [PMID: 39446312 PMCID: PMC11555716 DOI: 10.1042/bst20231017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 11/01/2024]
Abstract
DNA methylation is a repressive epigenetic mark that is pervasive in mammalian genomes. It is deposited by DNA methyltransferase enzymes (DNMTs) that are canonically classified as having de novo (DNMT3A and DNMT3B) or maintenance (DNMT1) function. Mutations in DNMT3A and DNMT3B cause rare Mendelian diseases in humans and are cancer drivers. Mammalian DNMT3 methyltransferase activity is regulated by the non-catalytic region of the proteins which contain multiple chromatin reading domains responsible for DNMT3A and DNMT3B recruitment to the genome. Characterising disease-causing missense mutations has been central in dissecting the function and regulation of DNMT3A and DNMT3B. These observations have also motivated biochemical studies that provide the molecular details as to how human DNMT3A and DNMT3B mutations drive disorders. Here, we review progress in this area highlighting recent work that has begun dissecting the function of the disordered N-terminal regions of DNMT3A and DNMT3B. These studies have elucidated that the N-terminal regions of both proteins mediate novel chromatin recruitment pathways that are central in our understanding of human disease mechanisms. We also discuss how disease mutations affect DNMT3A and DNMT3B oligomerisation, a process that is poorly understood in the context of whole proteins in cells. This dissection of de novo DNMT function using disease-causing mutations provides a paradigm of how genetics and biochemistry can synergise to drive our understanding of the mechanisms through which chromatin misregulation causes human disease.
Collapse
Affiliation(s)
- Willow Rolls
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, U.K
| | - Marcus D. Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, U.K
| | - Duncan Sproul
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
10
|
Wei J, Shi Q, Li B, Yang H, Liu L, Zhou R, Feng Z, Yang Z, Zhan J, Xiong XF, Huang X, Wang Y. Discovery of a Highly Potent and Selective Inhibitor Targeting Protein Lysine Methyltransferase NSD2. J Med Chem 2024; 67:16056-16071. [PMID: 39230932 DOI: 10.1021/acs.jmedchem.4c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The histone lysine methyltransferase NSD2 has been recognized as an attractive target for cancer treatment, due to the functional implication of its dysregulation in the initiation and progression of many cancers. Although considerable efforts have been made to develop NSD2 small-molecule inhibitors, highly potent and selective ones are still rarely available till now. Here, we report the discovery of a series of novel NSD2 inhibitors via an extensive SAR exploration of the privileged quinazoline scaffold within compound 8. The most promising compound 42 showed excellent NSD2 enzymatic inhibitory activity and good antiproliferative activity in cells. In addition, it demonstrated favorable pharmacokinetic properties and significantly inhibited the tumor growth in a RS411 tumor xenograft model with good safety. Taken together, compound 42 could be a promising NSD2 inhibitor and deserves further investigation.
Collapse
Affiliation(s)
- Jianwei Wei
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | | | - Bang Li
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hong Yang
- Lingang Laboratory, Shanghai 200031, China
| | - Li Liu
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ruilin Zhou
- Lingang Laboratory, Shanghai 200031, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Zongbo Feng
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhenjiao Yang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jinhong Zhan
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiao-Feng Xiong
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- State Key Laboratory of Anti-Infective Drug Development, Guangzhou 510006, China
| | - Xun Huang
- Lingang Laboratory, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- State Key Laboratory of Anti-Infective Drug Development, Guangzhou 510006, China
| |
Collapse
|
11
|
Zhang Y, Qiao Y, Li Z, Liu D, Jin Q, Guo J, Li X, Chen L, Liu L, Peng L. Intestinal NSD2 Aggravates Nonalcoholic Steatohepatitis Through Histone Modifications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402551. [PMID: 38923875 PMCID: PMC11434126 DOI: 10.1002/advs.202402551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/09/2024] [Indexed: 06/28/2024]
Abstract
Mounting clinical evidence suggests that a comprised intestinal barrier contributes to the progression of nonalcoholic steatohepatitis (NASH); nevertheless, the precise mechanism remains elusive. This study unveils a significant upregulation of nuclear receptor-binding SET domain protein 2 (NSD2) in the intestines of obese humans and mice subjected to a high-fat cholesterol diet (HFCD). Intestine-specific NSD2 knockout attenuated the progression of intestinal barrier impairment and NASH, whereas NSD2 overexpression exacerbated this progression. Mechanistically, NSD2 directly regulates the transcriptional activation of Ern1 by demethylating histone H3 at lysine 36 (H3K36me2), thus activating the ERN1-JNK axis to intensify intestinal barrier impairment and subsequently foster NASH progression. These findings elucidate the crucial role of NSD2-mediated H3K36me2 in intestinal barrier impairment, suggesting that targeting intestinal NSD2 can represent a novel therapeutic approach for NASH.
Collapse
Affiliation(s)
- Yijia Zhang
- Beijing Key Laboratory of BioprocessCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Yuan Qiao
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Zecheng Li
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Donghai Liu
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Qi Jin
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Jing Guo
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Xin Li
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Long Chen
- Beijing Key Laboratory of BioprocessCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Lihong Liu
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| | - Liang Peng
- Beijing Key Laboratory for Immune‐Mediated Inflammatory DiseasesInstitute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijing100029P. R. China
| |
Collapse
|
12
|
Conteduca G, Cangelosi D, Baldo C, Arado A, Testa B, Wagner RT, Robertson KD, Dequiedt F, Fitzsimmons L, Malacarne M, Filaci G, Coviello DA. Impact of NSD1 Alternative Transcripts in Actin Filament Formation and Cellular Division Pathways in Fibroblasts. Genes (Basel) 2024; 15:1117. [PMID: 39336709 PMCID: PMC11431170 DOI: 10.3390/genes15091117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Germline variants in the NSD1 gene are responsible for Sotos syndrome, while somatic variants promote neoplastic cell transformation. Our previous studies revealed three alternative RNA isoforms of NSD1 present in fibroblast cell lines (FBs): the canonical full transcript and 2 alternative transcripts, termed AT2 (NSD1 Δ5Δ7) and AT3 (NSD1 Δ19-23 at the 5' end). The precise molecular pathways affected by each specific isoform of NSD1 are uncharacterized to date. To elucidate the role of these isoforms, their expression was suppressed by siRNA knockdown in FBs and protein expression and transcriptome data was explored. We demonstrate that one gene target of NSD1 isoform AT2 is ARP3 actin-related protein 3 homolog B (ACTR3B). We show that loss of both canonical NSD1 and AT2 isoforms impaired the ability of fibroblasts to regulate the actin cytoskeleton, and we observed that this caused selective loss of stress fibers. Our findings provide novel insights into NSD1 function by distinguishing isoform function and demonstrating an essential role of NSD1 in regulating the actin cytoskeleton and stress fiber formation in fibroblasts.
Collapse
Affiliation(s)
| | - Davide Cangelosi
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Chiara Baldo
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Alessia Arado
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Barbara Testa
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Ryan T Wagner
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Franck Dequiedt
- GIGA-Molecular Biology of Diseases Laboratory of Gene Expression and Cancer, University of Liege, 4000 Liège, Belgium
| | - Lane Fitzsimmons
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michela Malacarne
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Gilberto Filaci
- Biotherapy Unit, IRCCS San Martino, 16132 Genoa, Italy
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Domenico A Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
13
|
Goto N, Suke K, Yonezawa N, Nishihara H, Handa T, Sato Y, Kujirai T, Kurumizaka H, Yamagata K, Kimura H. ISWI chromatin remodeling complexes recruit NSD2 and H3K36me2 in pericentromeric heterochromatin. J Cell Biol 2024; 223:e202310084. [PMID: 38709169 PMCID: PMC11076809 DOI: 10.1083/jcb.202310084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/04/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Histone H3 lysine36 dimethylation (H3K36me2) is generally distributed in the gene body and euchromatic intergenic regions. However, we found that H3K36me2 is enriched in pericentromeric heterochromatin in some mouse cell lines. We here revealed the mechanism of heterochromatin targeting of H3K36me2. Among several H3K36 methyltransferases, NSD2 was responsible for inducing heterochromatic H3K36me2. Depletion and overexpression analyses of NSD2-associating proteins revealed that NSD2 recruitment to heterochromatin was mediated through the imitation switch (ISWI) chromatin remodeling complexes, such as BAZ1B-SMARCA5 (WICH), which directly binds to AT-rich DNA via a BAZ1B domain-containing AT-hook-like motifs. The abundance and stoichiometry of NSD2, SMARCA5, and BAZ1B could determine the localization of H3K36me2 in different cell types. In mouse embryos, H3K36me2 heterochromatin localization was observed at the two- to four-cell stages, suggesting its physiological relevance.
Collapse
Affiliation(s)
- Naoki Goto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kazuma Suke
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Nao Yonezawa
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Tetsuya Handa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuko Sato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Yamagata
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Hiroshi Kimura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
14
|
Weirich S, Kusevic D, Schnee P, Reiter J, Pleiss J, Jeltsch A. Discovery of NSD2 non-histone substrates and design of a super-substrate. Commun Biol 2024; 7:707. [PMID: 38851815 PMCID: PMC11162472 DOI: 10.1038/s42003-024-06395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
The human protein lysine methyltransferase NSD2 catalyzes dimethylation at H3K36. It has very important roles in development and disease but many mechanistic features and its full spectrum of substrate proteins are unclear. Using peptide SPOT array methylation assays, we investigate the substrate sequence specificity of NSD2 and discover strong readout of residues between G33 (-3) and P38 (+2) on H3K36. Unexpectedly, we observe that amino acid residues different from natural ones in H3K36 are preferred at some positions. Combining four preferred residues led to the development of a super-substrate which is methylated much faster by NSD2 at peptide and protein level. Molecular dynamics simulations demonstrate that this activity increase is caused by distinct hyperactive conformations of the enzyme-peptide complex. To investigate the substrate spectrum of NSD2, we conducted a proteome wide search for nuclear proteins matching the specificity profile and discovered 22 peptide substrates of NSD2. In protein methylation studies, we identify K1033 of ATRX and K819 of FANCM as NSD2 methylation sites and also demonstrate their methylation in human cells. Both these proteins have important roles in DNA repair strengthening the connection of NSD2 and H3K36 methylation to DNA repair.
Collapse
Affiliation(s)
- Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Denis Kusevic
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jessica Reiter
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
15
|
Huang X, Chen Y, Xiao Q, Shang X, Liu Y. Chemical inhibitors targeting histone methylation readers. Pharmacol Ther 2024; 256:108614. [PMID: 38401773 DOI: 10.1016/j.pharmthera.2024.108614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Histone methylation reader domains are protein modules that recognize specific histone methylation marks, such as methylated or unmethylated lysine or arginine residues on histones. These reader proteins play crucial roles in the epigenetic regulation of gene expression, chromatin structure, and DNA damage repair. Dysregulation of these proteins has been linked to various diseases, including cancer, neurodegenerative diseases, and developmental disorders. Therefore, targeting these proteins with chemical inhibitors has emerged as an attractive approach for therapeutic intervention, and significant progress has been made in this area. In this review, we will summarize the development of inhibitors targeting histone methylation readers, including MBT domains, chromodomains, Tudor domains, PWWP domains, PHD fingers, and WD40 repeat domains. For each domain, we will briefly discuss its identification and biological/biochemical functions, and then focus on the discovery of inhibitors tailored to target this domain, summarizing the property and potential application of most inhibitors. We will also discuss the structural basis for the potency and selectivity of these inhibitors, which will aid in further lead generation and optimization. Finally, we will also address the challenges and strategies involved in the development of these inhibitors. It should facilitate the rational design and development of novel chemical scaffolds and new targeting strategies for histone methylation reader domains with the help of this body of data.
Collapse
Affiliation(s)
- Xiaolei Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yichang Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Qin Xiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xinci Shang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yanli Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
16
|
Belviso BD, Shen Y, Carrozzini B, Morishita M, di Luccio E, Caliandro R. Structural insights into the C-terminus of the histone-lysine N-methyltransferase NSD3 by small-angle X-ray scattering. Front Mol Biosci 2024; 11:1191246. [PMID: 38516186 PMCID: PMC10955146 DOI: 10.3389/fmolb.2024.1191246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
NSD3 is a member of six H3K36-specific histone lysine methyltransferases in metazoans. Its overexpression or mutation is implicated in developmental defects and oncogenesis. Aside from the well-characterized catalytic SET domain, NSD3 has multiple clinically relevant potential chromatin-binding motifs, such as the proline-tryptophan-tryptophan-proline (PWWP), the plant homeodomain (PHD), and the adjacent Cys-His-rich domain located at the C-terminus. The crystal structure of the individual domains is available, and this structural knowledge has allowed the designing of potential inhibitors, but the intrinsic flexibility of larger constructs has hindered the characterization of mutual domain conformations. Here, we report the first structural characterization of the NSD3 C-terminal region comprising the PWWP2, SET, and PHD4 domains, which has been achieved at a low resolution in solution by small-angle X-ray scattering (SAXS) data on two multiple-domain NSD3 constructs complemented with size-exclusion chromatography and advanced computational modeling. Structural models predicted by machine learning have been validated in direct space, by comparison with the SAXS-derived molecular envelope, and in reciprocal space, by reproducing the experimental SAXS profile. Selected models have been refined by SAXS-restrained molecular dynamics. This study shows how SAXS data can be used with advanced computational modeling techniques to achieve a detailed structural characterization and sheds light on how NSD3 domains are interconnected in the C-terminus.
Collapse
Affiliation(s)
| | - Yunpeng Shen
- Department of Biotechnology, School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | | | - Masayo Morishita
- Department of Genetic Engineering, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Eric di Luccio
- Department of Genetic Engineering, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | | |
Collapse
|
17
|
Weinzapfel EN, Fedder-Semmes KN, Sun ZW, Keogh MC. Beyond the tail: the consequence of context in histone post-translational modification and chromatin research. Biochem J 2024; 481:219-244. [PMID: 38353483 PMCID: PMC10903488 DOI: 10.1042/bcj20230342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
The role of histone post-translational modifications (PTMs) in chromatin structure and genome function has been the subject of intense debate for more than 60 years. Though complex, the discourse can be summarized in two distinct - and deceptively simple - questions: What is the function of histone PTMs? And how should they be studied? Decades of research show these queries are intricately linked and far from straightforward. Here we provide a historical perspective, highlighting how the arrival of new technologies shaped discovery and insight. Despite their limitations, the tools available at each period had a profound impact on chromatin research, and provided essential clues that advanced our understanding of histone PTM function. Finally, we discuss recent advances in the application of defined nucleosome substrates, the study of multivalent chromatin interactions, and new technologies driving the next era of histone PTM research.
Collapse
|
18
|
LegaardAndersson J, Christensen J, Kleine-Kohlbrecher D, Vacher Comet I, Fullerton Støier J, Antoku Y, Poljak V, Moretti L, Dolberg J, Jacso T, Jensby Nielsen S, Nørregaard-Madsen M, Franch T, Helin K, Cloos PAC. Discovery of NSD2-Degraders from Novel and Selective DEL Hits. Chembiochem 2023; 24:e202300515. [PMID: 37807669 DOI: 10.1002/cbic.202300515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
NSD2 is a histone methyltransferase predominantly catalyzing di-methylation of histone H3 on lysine K36. Increased NSD2 activity due to mutations or fusion-events affecting the gene encoding NSD2 is considered an oncogenic event and a driver in various cancers, including multiple myelomas carrying t(4;14) chromosomal translocations and acute lymphoblastic leukemia's expressing the hyperactive NSD2 mutant E1099 K. Using DNA-encoded libraries, we have identified small molecule ligands that selectively and potently bind to the PWWP1 domain of NSD2, inhibit NSD2 binding to H3K36me2-bearing nucleosomes, but do not inhibit the methyltransferase activity. The ligands were subsequently converted to selective VHL1-recruiting NSD2 degraders and by using one of the most efficacious degraders in cell lines, we show that it leads to NSD2 degradation, decrease in K3 K36me2 levels and inhibition of cell proliferation.
Collapse
Affiliation(s)
- Jan LegaardAndersson
- Nuevolution A/S / Amgen Research Copenhagen, Rønnegade 8, 2100, Copenhagen, Denmark
| | - Jesper Christensen
- University of Copenhagen, Biotech Research & Innovation Centre (BRIC), Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Daniela Kleine-Kohlbrecher
- University of Copenhagen, Biotech Research & Innovation Centre (BRIC), Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Itys Vacher Comet
- University of Copenhagen, Biotech Research & Innovation Centre (BRIC), Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
- Bioorigin Aps, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark
| | - Jonatan Fullerton Støier
- University of Copenhagen, Biotech Research & Innovation Centre (BRIC), Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
- Bioorigin Aps, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark
| | - Yasuko Antoku
- University of Copenhagen, Biotech Research & Innovation Centre (BRIC), Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Visnja Poljak
- Nuevolution A/S / Amgen Research Copenhagen, Rønnegade 8, 2100, Copenhagen, Denmark
| | - Loris Moretti
- Nuevolution A/S / Amgen Research Copenhagen, Rønnegade 8, 2100, Copenhagen, Denmark
| | - Johannes Dolberg
- Nuevolution A/S / Amgen Research Copenhagen, Rønnegade 8, 2100, Copenhagen, Denmark
| | - Tomas Jacso
- Nuevolution A/S / Amgen Research Copenhagen, Rønnegade 8, 2100, Copenhagen, Denmark
| | - Søren Jensby Nielsen
- Nuevolution A/S / Amgen Research Copenhagen, Rønnegade 8, 2100, Copenhagen, Denmark
| | | | - Thomas Franch
- Nuevolution A/S / Amgen Research Copenhagen, Rønnegade 8, 2100, Copenhagen, Denmark
| | - Kristian Helin
- University of Copenhagen, Biotech Research & Innovation Centre (BRIC), Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
- The Institute of Cancer Research (ICR), 237 Fulham Road, London, SW3 6JB, UK
| | - Paul A C Cloos
- University of Copenhagen, Biotech Research & Innovation Centre (BRIC), Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
- Bioorigin Aps, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark
| |
Collapse
|
19
|
Koutná E, Lux V, Kouba T, Škerlová J, Nováček J, Srb P, Hexnerová R, Šváchová H, Kukačka Z, Novák P, Fábry M, Poepsel S, Veverka V. Multivalency of nucleosome recognition by LEDGF. Nucleic Acids Res 2023; 51:10011-10025. [PMID: 37615563 PMCID: PMC10570030 DOI: 10.1093/nar/gkad674] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/01/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Eukaryotic transcription is dependent on specific histone modifications. Their recognition by chromatin readers triggers complex processes relying on the coordinated association of transcription regulatory factors. Although various modification states of a particular histone residue often lead to differential outcomes, it is not entirely clear how they are discriminated. Moreover, the contribution of intrinsically disordered regions outside of the specialized reader domains to nucleosome binding remains unexplored. Here, we report the structures of a PWWP domain from transcriptional coactivator LEDGF in complex with the H3K36 di- and trimethylated nucleosome, indicating that both methylation marks are recognized by PWWP in a highly conserved manner. We identify a unique secondary interaction site for the PWWP domain at the interface between the acidic patch and nucleosomal DNA that might contribute to an H3K36-methylation independent role of LEDGF. We reveal DNA interacting motifs in the intrinsically disordered region of LEDGF that discriminate between the intra- or extranucleosomal DNA but remain dynamic in the context of dinucleosomes. The interplay between the LEDGF H3K36-methylation reader and protein binding module mediated by multivalent interactions of the intrinsically disordered linker with chromatin might help direct the elongation machinery to the vicinity of RNA polymerase II, thereby facilitating productive elongation.
Collapse
Affiliation(s)
- Eliška Koutná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Vanda Lux
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | - Tomáš Kouba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | - Jana Škerlová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | | | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | - Rozálie Hexnerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | - Hana Šváchová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | - Zdeněk Kukačka
- Institute of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Petr Novák
- Institute of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Milan Fábry
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | - Simon Poepsel
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, Cologne 509 31, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne 509 31, Germany
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| |
Collapse
|
20
|
Ma Z, Bolinger AA, Chen H, Zhou J. Drug Discovery Targeting Nuclear Receptor Binding SET Domain Protein 2 (NSD2). J Med Chem 2023; 66:10991-11026. [PMID: 37578463 PMCID: PMC11092389 DOI: 10.1021/acs.jmedchem.3c00948] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nuclear receptor binding SET domain proteins (NSDs) catalyze the mono- or dimethylation of histone 3 lysine 36 (H3K36me1 and H3K36me2), using S-adenosyl-l-methionine (SAM) as a methyl donor. As a key member of the NSD family of proteins, NSD2 plays an important role in the pathogenesis and progression of various diseases such as cancers, inflammations, and infectious diseases, serving as a promising drug target. Developing potent and specific NSD2 inhibitors may provide potential novel therapeutics. Several NSD2 inhibitors and degraders have been discovered while remaining in the early stage of drug development. Excitingly, KTX-1001, a selective NSD2 inhibitor, has entered clinical trials. In this Perspective, the structures and functions of NSD2, its roles in various human diseases, and the recent advances in drug discovery strategies targeting NSD2 have been summarized. The challenges, opportunities, and future directions for developing NSD2 inhibitors and degraders are also discussed.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Andrew A Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| |
Collapse
|
21
|
Xiu S, Chi X, Jia Z, Shi C, Zhang X, Li Q, Gao T, Zhang L, Liu Z. NSD3: Advances in cancer therapeutic potential and inhibitors research. Eur J Med Chem 2023; 256:115440. [PMID: 37182335 DOI: 10.1016/j.ejmech.2023.115440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
Nuclear receptor-binding SET domain 3, otherwise known as NSD3, is a member of the group of lysine methyltransferases and is involved in a variety of cellular processes, including transcriptional regulation, DNA damage repair, non-histone related functions and several others. NSD3 gene is mutated or loss of function in a variety of cancers, including breast, lung, pancreatic, and osteosarcoma. These mutations produce dysfunction of the corresponding tumor tissue proteins, leading to tumorigenesis, progression, chemoresistance, and unfavorable prognosis, which suggests that the development of NSD3 probe molecules is important for understanding the specific role of NSD3 in disease and drug discovery. In recent years, NSD3 has been increasingly reported, demonstrating that this target is a very hot epigenetic target. However, the number of NSD3 inhibitors available for cancer therapy is limited and none of the drugs that target NSD3 are currently available on the market. In addition, there are very few reviews describing NSD3. Within this review, we highlight the role of NSD3 in tumorigenesis and the development of NSD3 targeted small-molecule inhibitors over the last decade. We hope that this publication can serve as a guide for the development of potential drug candidates for various diseases in the field of epigenetics, especially for the NSD3 target.
Collapse
Affiliation(s)
- Siyu Xiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xiaowei Chi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Zhenyu Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Cheng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xiangyu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Qi Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Tongfei Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
22
|
Khella MS, Schnee P, Weirich S, Bui T, Bröhm A, Bashtrykov P, Pleiss J, Jeltsch A. The T1150A cancer mutant of the protein lysine dimethyltransferase NSD2 can introduce H3K36 trimethylation. J Biol Chem 2023:104796. [PMID: 37150325 DOI: 10.1016/j.jbc.2023.104796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play essential roles in gene expression regulation and cancer development. Somatic mutations in PKMTs are frequently observed in cancer cells. In biochemical experiments, we show here that the NSD1 mutations Y1971C, R2017Q and R2017L observed mostly in solid cancers are catalytically inactive suggesting that NSD1 acts as tumor suppressor gene in these tumors. In contrast, the frequently observed T1150A in NSD2 and its T2029A counterpart in NSD1, both observed in leukemia, are hyperactive and introduce up to thee methyl groups in H3K36 in biochemical and cellular assays, while wildtype NSD2 and NSD1 only introduce up to two methyl groups. In molecular dynamics simulations, we determine key mechanistic and structural features controlling the product specificity of this class of enzymes. Simulations with NSD2 revealed that H3K36me3 formation is possible due to an enlarged active site pocket of T1150A and loss of direct contacts of T1150 to critical residues which regulate the product specificity of NSD2. Bioinformatic analyses of published data suggested that the generation of H3K36me3 by NSD2 T1150A could alter gene regulation by antagonizing H3K27me3 finally leading to the upregulation of oncogenes.
Collapse
Affiliation(s)
- Mina S Khella
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, 11566, Egypt
| | - Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Tan Bui
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Alexander Bröhm
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
23
|
Recent advances in nuclear receptor-binding SET domain 2 (NSD2) inhibitors: An update and perspectives. Eur J Med Chem 2023; 250:115232. [PMID: 36863225 DOI: 10.1016/j.ejmech.2023.115232] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Nuclear receptor-binding SET domain 2 (NSD2) is a histone lysine methyltransferase (HKMTase), which is mainly responsible for the di-methylation of lysine residues on histones, which are involved in the regulation of various biological pathways. The amplification, mutation, translocation, or overexpression of NSD2 can be linked to various diseases. NSD2 has been identified as a promising drug target for cancer therapy. However, relatively few inhibitors have been discovered and this field still needs further exploration. This review provides a detailed summary of the biological studies related to NSD2 and the current progress of inhibitors, research, and describes the challenges in the development of NSD2 inhibitors, including SET (su(var), enhancer-of-zeste, trithorax) domain inhibitors and PWWP1 (proline-tryptophan-tryptophan-proline 1) domain inhibitors. Through analysis and discussion of the NSD2-related crystal complexes and the biological evaluation of related small molecules, we hope to provide insights for future drug design and optimization methods that will stimulate the development of novel NSD2 inhibitors.
Collapse
|
24
|
Hamagami N, Wu DY, Clemens AW, Nettles SA, Gabel HW. NSD1 deposits histone H3 lysine 36 dimethylation to pattern non-CG DNA methylation in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528965. [PMID: 36824816 PMCID: PMC9949142 DOI: 10.1101/2023.02.17.528965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
During postnatal development the DNA methyltransferase DNMT3A deposits high levels of non-CG cytosine methylation in neurons. This unique methylation is critical for transcriptional regulation in the mature mammalian brain, and loss of this mark is implicated in DNMT3A-associated neurodevelopmental disorders (NDDs). The mechanisms determining genomic non-CG methylation profiles are not well defined however, and it is unknown if this pathway is disrupted in additional NDDs. Here we show that genome topology and gene expression converge to shape histone H3 lysine 36 dimethylation (H3K36me2) profiles, which in turn recruit DNMT3A and pattern neuronal non-CG methylation. We show that NSD1, the H3K36 methyltransferase mutated in the NDD, Sotos syndrome, is required for megabase-scale patterning of H3K36me2 and non-CG methylation in neurons. We find that brain-specific deletion of NSD1 causes alterations in DNA methylation that overlap with models of DNMT3A disorders and define convergent disruption in the expression of key neuronal genes in these models that may contribute to shared phenotypes in NSD1- and DNMT3A-associated NDD. Our findings indicate that H3K36me2 deposited by NSD1 is an important determinant of neuronal non-CG DNA methylation and implicates disruption of this methylation in Sotos syndrome. Highlights Topology-associated DNA methylation and gene expression independently contribute to neuronal gene body and enhancer non-CG DNA methylation patterns.Topology-associated H3K36me2 patterns and local enrichment of H3K4 methylation impact deposition of non-CG methylation by DNMT3A. Disruption of NSD1 in vivo leads to alterations in H3K36me2, DNA methylation, and gene expression that overlap with models of DNMT3A disorders.
Collapse
Affiliation(s)
- Nicole Hamagami
- Department of Neuroscience, Washington University School of Medicine, St Louis MO 63110-1093, USA
- These authors contributed equally
| | - Dennis Y Wu
- Department of Neuroscience, Washington University School of Medicine, St Louis MO 63110-1093, USA
- These authors contributed equally
| | - Adam W Clemens
- Department of Neuroscience, Washington University School of Medicine, St Louis MO 63110-1093, USA
| | - Sabin A Nettles
- Department of Neuroscience, Washington University School of Medicine, St Louis MO 63110-1093, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St Louis MO 63110-1093, USA
- Lead contact
| |
Collapse
|
25
|
Discovery of cysteine-targeting covalent histone methyltransferase inhibitors. Eur J Med Chem 2023; 246:115028. [PMID: 36528996 DOI: 10.1016/j.ejmech.2022.115028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Post-translational methylation of histone lysine or arginine residues by histone methyltransferases (HMTs) plays crucial roles in gene regulation and diverse physiological processes and is implicated in a plethora of human diseases, especially cancer. Therefore, histone methyltransferases have been increasingly recognized as potential therapeutic targets. Consequently, the discovery and development of histone methyltransferase inhibitors have been pursued with steadily increasing interest over the past decade. However, the disadvantages of limited clinical efficacy, moderate selectivity, and propensity for acquired resistance have hindered the development of HMTs inhibitors. Targeted covalent modification represents a proven strategy for kinase drug development and has gained increasing attention in HMTs drug discovery. In this review, we focus on the discovery, characterization, and biological applications of covalent inhibitors for HMTs with emphasis on advancements in the field. In addition, we identify the challenges and future directions in this fast-growing research area of drug discovery.
Collapse
|
26
|
Xu Q, Zhu F, Pan Y, Ren Y, Li J, Huang N, Liu K, Wang Y. HIV Tat-Conjugated Histone H3 Peptides Induce Tumor Cell Death Via Cellular Stress Responses. Hum Gene Ther 2023; 34:42-55. [PMID: 36373826 DOI: 10.1089/hum.2022.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Histone H3 is a nucleosome scaffold protein that is involved in a variety of intracellular processes. Aberrant modification of H3 is important in carcinogenesis. In contrast, free histones in cells can act as stimuli to trigger cellular immune responses and cell death. In this study, we linked cell-penetrating peptide HIV Tat to a histone H3 fragment to achieve intracellular delivery in tumor cells. We found that Tat-conjugated histone polypeptides localized to nuclei of lung and breast cancer cells and caused cell death. A trans-configured Tat sequence displayed dramatically improved peptide half-life and cytotoxicity. Mechanistic studies demonstrated that treatment with the peptides significantly elevated mitogen-activated protein kinase (MAPK) signaling, reactive oxygen species (ROS) production, as well as levels of stress-inducible transcription factor ATF3 (activating transcription factor 3) and AP-1 (activating protein-1). Cytotoxicity of the peptide was significantly reduced by inhibition of AP-1 activity and ROS production. These results suggest the potential of Tat-conjugated H3 peptides as antitumor agents to induce cell death via increased cellular stress response by activating p38-MAPK signaling and intracellular ROS production.
Collapse
Affiliation(s)
- Qian Xu
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Feimei Zhu
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yixuan Pan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanlin Ren
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jingyu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ning Huang
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Keyun Liu
- Department of Physiology, School of Medicine, Hubei Minzu University, Enshi, China
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Murali M, Saloura V. Understanding the Roles of the NSD Protein Methyltransferases in Head and Neck Squamous Cell Carcinoma. Genes (Basel) 2022; 13:2013. [PMID: 36360250 PMCID: PMC9689908 DOI: 10.3390/genes13112013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 09/18/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent non-skin cancer in the world. While immunotherapy has revolutionized the standard of care treatment in patients with recurrent/metastatic HNSCC, more than 70% of patients do not respond to this treatment, making the identification of novel therapeutic targets urgent. Recently, research endeavors have focused on how epigenetic modifications may affect tumor initiation and progression of HNSCC. The nuclear receptor binding SET domain (NSD) family of protein methyltransferases NSD1-NSD3 is of particular interest for HNSCC, with NSD1 and NSD3 being amongst the most commonly mutated or amplified genes respectively in HNSCC. Preclinical studies have identified both oncogenic and tumor-suppressing properties across NSD1, NSD2, and NSD3 within the context of HNSCC. The purpose of this review is to provide a better understanding of the contribution of the NSD family of protein methyltransferases to the pathogenesis of HNSCC, underscoring their promise as novel therapeutic targets in this devastating disease.
Collapse
Affiliation(s)
- Madhavi Murali
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- School of Medicine, The University of Missouri-Kansas City, Kansas City, MO 64018, USA
| | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Krossa I, Strub T, Aplin AE, Ballotti R, Bertolotto C. Lysine Methyltransferase NSD1 and Cancers: Any Role in Melanoma? Cancers (Basel) 2022; 14:cancers14194865. [PMID: 36230787 PMCID: PMC9563040 DOI: 10.3390/cancers14194865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Epigenetic events, which comprise post-translational modifications of histone tails or DNA methylation, control gene expression by altering chromatin structure without change in the DNA sequence. Histone tails modifications are driven by specific cellular enzymes such as histone methyltransferases or histone acetylases, which play a key role in regulating diverse biological processes. Their alteration may have consequences on growth and tumorigenesis. Abstract Epigenetic regulations, that comprise histone modifications and DNA methylation, are essential to processes as diverse as development and cancer. Among the histone post-translational modifications, lysine methylation represents one of the most important dynamic marks. Here, we focused on methyltransferases of the nuclear binding SET domain 1 (NSD) family, that catalyze the mono- and di-methylation of histone H3 lysine 36. We review the loss of function mutations of NSD1 in humans that are the main cause of SOTOS syndrome, a disease associated with an increased risk of developing cancer. We then report the role of NSD1 in triggering tumor suppressive or promoter functions according to the tissue context and we discuss the role of NSD1 in melanoma. Finally, we examine the ongoing efforts to target NSD1 signaling in cancers.
Collapse
Affiliation(s)
- Imène Krossa
- Université Côte d’Azur, 06100 Nice, France
- Team 1, Biology and Pathologies of melanocytes, Inserm, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2022, Centre Méditerranéen de Médecine Moléculaire, 06200 Nice, France
- Correspondence: (I.K.); (C.B.)
| | - Thomas Strub
- Université Côte d’Azur, 06100 Nice, France
- Team 1, Biology and Pathologies of melanocytes, Inserm, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2022, Centre Méditerranéen de Médecine Moléculaire, 06200 Nice, France
| | - Andrew E. Aplin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert Ballotti
- Université Côte d’Azur, 06100 Nice, France
- Team 1, Biology and Pathologies of melanocytes, Inserm, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2022, Centre Méditerranéen de Médecine Moléculaire, 06200 Nice, France
| | - Corine Bertolotto
- Université Côte d’Azur, 06100 Nice, France
- Team 1, Biology and Pathologies of melanocytes, Inserm, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2022, Centre Méditerranéen de Médecine Moléculaire, 06200 Nice, France
- Correspondence: (I.K.); (C.B.)
| |
Collapse
|
29
|
Azagra A, Cobaleda C. NSD2 as a Promising Target in Hematological Disorders. Int J Mol Sci 2022; 23:11075. [PMID: 36232375 PMCID: PMC9569587 DOI: 10.3390/ijms231911075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations of the epigenetic machinery are critically involved in cancer development and maintenance; therefore, the proteins in charge of the generation of epigenetic modifications are being actively studied as potential targets for anticancer therapies. A very important and widespread epigenetic mark is the dimethylation of Histone 3 in Lysine 36 (H3K36me2). Until recently, it was considered as merely an intermediate towards the generation of the trimethylated form, but recent data support a more specific role in many aspects of genome regulation. H3K36 dimethylation is mainly carried out by proteins of the Nuclear SET Domain (NSD) family, among which NSD2 is one of the most relevant members with a key role in normal hematopoietic development. Consequently, NSD2 is frequently altered in several types of tumors-especially in hematological malignancies. Herein, we discuss the role of NSD2 in these pathological processes, and we review the most recent findings in the development of new compounds aimed against the oncogenic forms of this novel anticancer candidate.
Collapse
Affiliation(s)
| | - César Cobaleda
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CSIC–Universidad Autónoma de Madrid), 28049 Madrid, Spain
| |
Collapse
|
30
|
Chemical biology and pharmacology of histone lysine methylation inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194840. [PMID: 35753676 DOI: 10.1016/j.bbagrm.2022.194840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/20/2022]
Abstract
Histone lysine methylation is a post-translational modification that plays a key role in the epigenetic regulation of a broad spectrum of biological processes. Moreover, the dysregulation of histone lysine methyltransferases (KMTs) has been implicated in the pathogenesis of several diseases particularly cancer. Due to their pathobiological importance, KMTs have garnered immense attention over the last decade as attractive therapeutic targets. These endeavors have culminated in tens of chemical probes that have been used to interrogate many aspects of histone lysine methylation. Besides, over a dozen inhibitors have been advanced to clinical trials, including the EZH2 inhibitor tazemetostat approved for the treatment of follicular lymphoma and advanced epithelioid sarcoma. In this Review, we highlight the chemical biology and pharmacology of KMT inhibitors and targeted protein degraders focusing on the clinical development of EZH1/2, DOT1L, Menin-MLL, and WDR5-MLL inhibitors. We also briefly discuss the pharmacologic targeting of other KMTs.
Collapse
|
31
|
Li Z, Zhang X, Xie S, Liu X, Fei C, Huang X, Tang Y, Zhou LQ. H3K36me2 methyltransferase NSD2 orchestrates epigenetic reprogramming during spermatogenesis. Nucleic Acids Res 2022; 50:6786-6800. [PMID: 35736136 PMCID: PMC9262605 DOI: 10.1093/nar/gkac533] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023] Open
Abstract
Spermatogenesis is precisely controlled by sophisticated gene expression programs and is driven by epigenetic reprogramming, including histone modification alterations and histone-to-protamine transition. Nuclear receptor binding SET domain protein 2 (Nsd2) is the predominant histone methyltransferase catalyzing H3K36me2 and its role in male germ cell development remains elusive. Here, we report that NSD2 protein is abundant in spermatogenic cells. Conditional loss of Nsd2 in postnatal germ cells impaired fertility owing to apoptosis of spermatocytes and aberrant spermiogenesis. Nsd2 deficiency results in dysregulation of thousands of genes and remarkable reduction of both H3K36me2 and H3K36me3 in spermatogenic cells, with H3K36me2 occupancy correlating positively with expression of germline genes. Nsd2 deficiency leads to H4K16ac elevation in spermatogenic cells, probably through interaction between NSD2 and PSMA8, which regulates acetylated histone degradation. We further reveal that Nsd2 deficiency impairs EP300-induced H4K5/8ac, recognized by BRDT to mediate the eviction of histones. Accordingly, histones are largely retained in Nsd2-deficient spermatozoa. In addition, Nsd2 deficiency enhances expression of protamine genes, leading to increased protamine proteins in Nsd2-deficient spermatozoa. Our findings thus reveal a previously unappreciated role of the Nsd2-dependent chromatin remodeling during spermatogenesis and provide clues to the molecular mechanisms in epigenetic abnormalities impacting male reproductive health.
Collapse
Affiliation(s)
- Zhiming Li
- Correspondence may also be addressed to Zhiming Li.
| | | | - Shiming Xie
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xingping Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Caifeng Fei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xunbin Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yunge Tang
- Correspondence may also be addressed to Yunge Tang.
| | - Li-quan Zhou
- To whom correspondence should be addressed. Tel: +86 27 83692651; Fax: +86 27 83692651;
| |
Collapse
|
32
|
Li N, Yang H, Liu K, Zhou L, Huang Y, Cao D, Li Y, Sun Y, Yu A, Du Z, Yu F, Zhang Y, Wang B, Geng M, Li J, Xiong B, Xu S, Huang X, Liu T. Structure-Based Discovery of a Series of NSD2-PWWP1 Inhibitors. J Med Chem 2022; 65:9459-9477. [PMID: 35704853 DOI: 10.1021/acs.jmedchem.2c00709] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Overexpression, point mutations, or translocations of protein lysine methyltransferase NSD2 occur in many types of cancer cells. Therefore, it was recognized as onco-protein and considered as a promising anticancer drug target. NSD2 consists of multiple domains including a SET catalytic domain and two PWWP domains binding to methylated histone proteins. Here, we reported our efforts to develop a series of NSD2-PWWP1 inhibitors, and further structure-based optimization resulted in a potent inhibitor 38, which has high selectivity toward the NSD2-PWWP1 domain. The detailed biological evaluation revealed that compound 38 can bind to NSD2-PWWP1 and then affect the expression of genes regulated by NSD2. The current discovery will provide a useful chemical probe to the future research in understanding the specific regulation mode of NSD2 by PWWP1 recognition and pave the way to develop potential drugs targeting NSD2 protein.
Collapse
Affiliation(s)
- Na Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Hong Yang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Ke Liu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201210, P. R. China
| | - Liwei Zhou
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yuting Huang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Danyan Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yanlian Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yaoliang Sun
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 ZuChong Zhi Road, Shanghai 201203, P. R. China
| | - Aisong Yu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Zhiyan Du
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201210, P. R. China
| | - Ying Zhang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Bingyang Wang
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 ZuChong Zhi Road, Shanghai 201203, P. R. China
| | - Meiyu Geng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Shilin Xu
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 ZuChong Zhi Road, Shanghai 201203, P. R. China
| | - Xun Huang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Tongchao Liu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| |
Collapse
|
33
|
Lam UTF, Tan BKY, Poh JJX, Chen ES. Structural and functional specificity of H3K36 methylation. Epigenetics Chromatin 2022; 15:17. [PMID: 35581654 PMCID: PMC9116022 DOI: 10.1186/s13072-022-00446-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
The methylation of histone H3 at lysine 36 (H3K36me) is essential for maintaining genomic stability. Indeed, this methylation mark is essential for proper transcription, recombination, and DNA damage response. Loss- and gain-of-function mutations in H3K36 methyltransferases are closely linked to human developmental disorders and various cancers. Structural analyses suggest that nucleosomal components such as the linker DNA and a hydrophobic patch constituted by histone H2A and H3 are likely determinants of H3K36 methylation in addition to the histone H3 tail, which encompasses H3K36 and the catalytic SET domain. Interaction of H3K36 methyltransferases with the nucleosome collaborates with regulation of their auto-inhibitory changes fine-tunes the precision of H3K36me in mediating dimethylation by NSD2 and NSD3 as well as trimethylation by Set2/SETD2. The identification of specific structural features and various cis-acting factors that bind to different forms of H3K36me, particularly the di-(H3K36me2) and tri-(H3K36me3) methylated forms of H3K36, have highlighted the intricacy of H3K36me functional significance. Here, we consolidate these findings and offer structural insight to the regulation of H3K36me2 to H3K36me3 conversion. We also discuss the mechanisms that underlie the cooperation between H3K36me and other chromatin modifications (in particular, H3K27me3, H3 acetylation, DNA methylation and N6-methyladenosine in RNAs) in the physiological regulation of the epigenomic functions of chromatin.
Collapse
Affiliation(s)
- Ulysses Tsz Fung Lam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan Kok Yan Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John Jia Xin Poh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National University Health System (NUHS), Singapore, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Integrative Sciences & Engineering Programme, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
34
|
Marunde MR, Popova IK, Weinzapfel EN, Keogh MC. The dCypher Approach to Interrogate Chromatin Reader Activity Against Posttranslational Modification-Defined Histone Peptides and Nucleosomes. Methods Mol Biol 2022; 2458:231-255. [PMID: 35103971 DOI: 10.1007/978-1-0716-2140-0_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bulk chromatin encompasses complex sets of histone posttranslational modifications (PTMs) that recruit (or repel) the diverse reader domains of Chromatin-Associated Proteins (CAPs) to regulate genome processes (e.g., gene expression, DNA repair, mitotic transmission). The binding preference of reader domains for their PTMs mediates localization and functional output, and are often dysregulated in disease. As such, understanding chromatin interactions may lead to novel therapeutic strategies, However the immense chemical diversity of histone PTMs, combined with low-throughput, variable, and nonquantitative methods, has defied accurate CAP characterization. This chapter provides a detailed protocol for dCypher, a novel approach for the rapid, quantitative interrogation of CAPs (as mono- or multivalent Queries) against large panels (10s to 100s) of PTM-defined histone peptide and semisynthetic nucleosomes (the potential Targets). We describe key optimization steps and controls to generate robust binding data. Further, we compare the utility of histone peptide and nucleosome substrates in CAP studies, outlining important considerations in experimental design and data interpretation.
Collapse
|
35
|
Dilworth D, Hanley RP, Ferreira de Freitas R, Allali-Hassani A, Zhou M, Mehta N, Marunde MR, Ackloo S, Carvalho Machado RA, Khalili Yazdi A, Owens DDG, Vu V, Nie DY, Alqazzaz M, Marcon E, Li F, Chau I, Bolotokova A, Qin S, Lei M, Liu Y, Szewczyk MM, Dong A, Kazemzadeh S, Abramyan T, Popova IK, Hall NW, Meiners MJ, Cheek MA, Gibson E, Kireev D, Greenblatt JF, Keogh MC, Min J, Brown PJ, Vedadi M, Arrowsmith CH, Barsyte-Lovejoy D, James LI, Schapira M. A chemical probe targeting the PWWP domain alters NSD2 nucleolar localization. Nat Chem Biol 2022; 18:56-63. [PMID: 34782742 PMCID: PMC9189931 DOI: 10.1038/s41589-021-00898-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/09/2021] [Indexed: 01/03/2023]
Abstract
Nuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1, antagonizes PWWP1 interaction with nucleosomal H3K36me2 and selectively engages endogenous NSD2 in cells. UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 that result from translocations prevalent in multiple myeloma (MM). Mutations of other NSD2 chromatin reader domains also increase NSD2 nucleolar localization and enhance the effect of UNC6934. This chemical probe and the accompanying negative control UNC7145 will be useful tools in defining NSD2 biology.
Collapse
Affiliation(s)
- David Dilworth
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada.
- BlueRock Therapeutics, Toronto, Ontario, Canada.
| | - Ronan P Hanley
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- C4 Therapeutics, Watertown, MA, USA
| | - Renato Ferreira de Freitas
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Arcturus 3, São Bernardo do Campo, Brazil
| | - Abdellah Allali-Hassani
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Incyte, Wilmington, DE, USA
| | - Mengqi Zhou
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Naimee Mehta
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Nurix Therapeutics, San Francisco, CA, USA
| | | | - Suzanne Ackloo
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Dominic D G Owens
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - David Y Nie
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mona Alqazzaz
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Albina Bolotokova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Su Qin
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Life Science Research Center, Southern University of Science and Technology, Shenzhen, China
| | - Ming Lei
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yanli Liu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | | | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Sina Kazemzadeh
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tigran Abramyan
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Atomwise, San Francisco, CA, USA
| | | | | | | | | | - Elisa Gibson
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Dmitri Kireev
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
36
|
Shrestha A, Kim N, Lee SJ, Jeon YH, Song JJ, An H, Cho SJ, Kadayat TM, Chin J. Targeting the Nuclear Receptor-Binding SET Domain Family of Histone Lysine Methyltransferases for Cancer Therapy: Recent Progress and Perspectives. J Med Chem 2021; 64:14913-14929. [PMID: 34488340 DOI: 10.1021/acs.jmedchem.1c01116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear receptor-binding SET domain (NSD) proteins are a class of histone lysine methyltransferases (HKMTases) that are amplified, mutated, translocated, or overexpressed in various types of cancers. Several campaigns to develop NSD inhibitors for cancer treatment have begun following recent advances in knowledge of NSD1, NSD2, and NSD3 structures and functions as well as the U.S. FDA approval of the first HKMTase inhibitor (tazemetostat, an EZH2 inhibitor) to treat follicular lymphoma and epithelioid sarcoma. This perspective highlights recent findings on the structures of catalytic su(var), enhancer-of-zeste, trithorax (SET) domains and other functional domains of NSD methyltransferases. In addition, recent progress and efforts to discover NSD-specific small molecule inhibitors against cancer-targeting catalytic SET domains, plant homeodomains, and proline-tryptophan-tryptophan-proline domains are summarized.
Collapse
Affiliation(s)
- Aarajana Shrestha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Nayeon Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Su-Jeong Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hongchan An
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Sung Jin Cho
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Tara Man Kadayat
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| |
Collapse
|
37
|
Yang C, Wang K, Liang Q, Tian TT, Zhong Z. Role of NSD1 as potential therapeutic target in tumor. Pharmacol Res 2021; 173:105888. [PMID: 34536546 DOI: 10.1016/j.phrs.2021.105888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/29/2022]
Abstract
Nuclear receptor binding SET Domain Protein 1 (NSD1) is a bifunctional transcriptional regulatory protein that encodes histone methyltransferase. Mono- and di-methylation of H3K36 by NSD1 is mainly primarily involved in the regulation of gene expression, DNA repair, alternative splicing, and other important biological processes. Many types of cancers, including acute myelogenous leukemia (AML), liver cancer, lung cancer, endometrial carcinoma, colorectal cancer, and pancreatic cancer, are associated with NSD1 fusion, missense mutation, nonsense mutation, silent mutation, deletion, and insertion of frameshift, and deletion in a frame. Therefore, targeting NSD1 may be a potential strategy for tumor therapy. An in-depth study of the structure and biological activities of NSD1 sets the groundwork for improving tumor therapy and creating NSD1 inhibitors. This article emphasizes the role of NSD1 in tumorigenesis and the development of NSD1 targeted small-molecule inhibitors.
Collapse
Affiliation(s)
- Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Kai Wang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Qilian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524001, China
| | - Tian-Tian Tian
- Center for Biological Science and Technology, Beijing Normal University, Zhuhai, Guangdong Province 519087, China.
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
38
|
An update on allosteric modulators as a promising strategy targeting histone methyltransferase. Pharmacol Res 2021; 172:105865. [PMID: 34474102 DOI: 10.1016/j.phrs.2021.105865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Histone methylation is a vital post-translational modification process in epigenetic regulation. The perturbation of histone methylation accounts for many diseases, including malignant cancers. Although achieving significant advances over past decades, orthosteric inhibitors targeting histone methyltransferases still suffer from challenges on subtype selectivity and acquired drug-resistant mutations. As an alternative, new compounds targeting the evolutionarily less conserved allosteric sites, exemplified by HKMTs and PRMTs inhibitors, offer a promising strategy to address this quandary. Herein, we highlight the allosteric sites and mechanisms in histone methyltransferases along with representative allosteric modulators, expecting to facilitate the discovery of allosteric modulators in favor of epigenetic therapy.
Collapse
|
39
|
Lindroth AM, Park YJ, Matía V, Squatrito M. The mechanistic GEMMs of oncogenic histones. Hum Mol Genet 2021; 29:R226-R235. [PMID: 32639003 DOI: 10.1093/hmg/ddaa143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/28/2022] Open
Abstract
The last decade's progress unraveling the mutational landscape of all age groups of cancer has uncovered mutations in histones as vital contributors of tumorigenesis. Here we review three new aspects of oncogenic histones: first, the identification of additional histone mutations potentially contributing to cancer formation; second, tumors expressing histone mutations to study the crosstalk of post-translational modifications, and; third, development of sophisticated biological model systems to reproduce tumorigenesis. At the outset, we recapitulate the firstly discovered histone mutations in pediatric and adolescent tumors of the brain and bone, which still remain the most pronounced histone alterations in cancer. We branch out to discuss the ramifications of histone mutations, including novel ones, that stem from altered protein-protein interactions of cognate histone modifiers as well as the stability of the nucleosome. We close by discussing animal models of oncogenic histones that reproduce tumor formation molecularly and morphologically and the prospect of utilizing them for drug testing, leading to efficient treatment and cure of deadly cancers with histone mutations.
Collapse
Affiliation(s)
- Anders M Lindroth
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Republic of Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Verónica Matía
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Program, Spanish National Cancer Research Center, CNIO, 28029 Madrid, Spain
| | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Program, Spanish National Cancer Research Center, CNIO, 28029 Madrid, Spain
| |
Collapse
|
40
|
Yan L, Jin W, Zhao Q, Cui X, Shi T, Xu Y, Li F, Jin W, Zhang Z, Zhang Z, Tang Q, Pan D. PWWP2B Fine-Tunes Adipose Thermogenesis by Stabilizing HDACs in a NuRD Subcomplex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102060. [PMID: 34180153 PMCID: PMC8373154 DOI: 10.1002/advs.202102060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 05/05/2023]
Abstract
Histone deacetylases (HDACs) are widely involved in many biological processes, as well as in control of brown and beige adipose physiology, but the precise molecular mechanisms by which HDACs are assembled into transcriptional machinery to fine-tune thermogenic program remain ill-defined. PWWP domain containing 2b (PWWP2B), which is identified as a component of the nucleosome remodeling and deacetylation complex (NuRD), interacts and stabilizes HDAC1/2 at the thermogenic gene promoters to suppress their expression. Ablation of Pwwp2b promotes adipocyte thermogenesis and ameliorates diet-induced obesity in vivo. Intriguingly, Pwwp2b is not only a brown fat-enriched gene but also dramatically induced by cold and sympathetic stimulation, which may serve as a physiological brake to avoid over-activation of thermogenesis in brown and beige fat cells.
Collapse
Affiliation(s)
- Linyu Yan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education Department of Biochemistry and Molecular Biology of School of Basic Medical SciencesFudan UniversityShanghai200 032China
| | - Weiwei Jin
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education Department of Biochemistry and Molecular Biology of School of Basic Medical SciencesFudan UniversityShanghai200 032China
| | - Qingwen Zhao
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education Department of Biochemistry and Molecular Biology of School of Basic Medical SciencesFudan UniversityShanghai200 032China
| | - Xuan Cui
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education Department of Biochemistry and Molecular Biology of School of Basic Medical SciencesFudan UniversityShanghai200 032China
| | - Ting Shi
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education Department of Biochemistry and Molecular Biology of School of Basic Medical SciencesFudan UniversityShanghai200 032China
| | - Yingjiang Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education Department of Biochemistry and Molecular Biology of School of Basic Medical SciencesFudan UniversityShanghai200 032China
| | - Feiyan Li
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education Department of Biochemistry and Molecular Biology of School of Basic Medical SciencesFudan UniversityShanghai200 032China
| | - Wenfang Jin
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education Department of Biochemistry and Molecular Biology of School of Basic Medical SciencesFudan UniversityShanghai200 032China
| | - Zhe Zhang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education Department of Biochemistry and Molecular Biology of School of Basic Medical SciencesFudan UniversityShanghai200 032China
| | - Zhao Zhang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education Department of Biochemistry and Molecular Biology of School of Basic Medical SciencesFudan UniversityShanghai200 032China
| | - Qi‐Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education Department of Biochemistry and Molecular Biology of School of Basic Medical SciencesFudan UniversityShanghai200 032China
| | - Dongning Pan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education Department of Biochemistry and Molecular Biology of School of Basic Medical SciencesFudan UniversityShanghai200 032China
| |
Collapse
|
41
|
Rathert P. Structure, Activity and Function of the NSD3 Protein Lysine Methyltransferase. Life (Basel) 2021; 11:726. [PMID: 34440470 PMCID: PMC8398374 DOI: 10.3390/life11080726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
NSD3 is one of six H3K36-specific lysine methyltransferases in metazoans, and the methylation of H3K36 is associated with active transcription. NSD3 is a member of the nuclear receptor-binding SET domain (NSD) family of histone methyltransferases together with NSD1 and NSD2, which generate mono- and dimethylated lysine on histone H3. NSD3 is mutated and hyperactive in some human cancers, but the biochemical mechanisms underlying such dysregulation are barely understood. In this review, the current knowledge of NSD3 is systematically reviewed. Finally, the molecular and functional characteristics of NSD3 in different tumor types according to the current research are summarized.
Collapse
Affiliation(s)
- Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
42
|
Yu JR, LeRoy G, Bready D, Frenster JD, Saldaña-Meyer R, Jin Y, Descostes N, Stafford JM, Placantonakis DG, Reinberg D. The H3K36me2 writer-reader dependency in H3K27M-DIPG. SCIENCE ADVANCES 2021; 7:eabg7444. [PMID: 34261657 PMCID: PMC8279504 DOI: 10.1126/sciadv.abg7444] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/01/2021] [Indexed: 05/12/2023]
Abstract
Histone H3K27M is a driving mutation in diffuse intrinsic pontine glioma (DIPG), a deadly pediatric brain tumor. H3K27M reshapes the epigenome through a global inhibition of PRC2 catalytic activity and displacement of H3K27me2/3, promoting oncogenesis of DIPG. As a consequence, a histone modification H3K36me2, antagonistic to H3K27me2/3, is aberrantly elevated. Here, we investigate the role of H3K36me2 in H3K27M-DIPG by tackling its upstream catalyzing enzymes (writers) and downstream binding factors (readers). We determine that NSD1 and NSD2 are the key writers for H3K36me2. Loss of NSD1/2 in H3K27M-DIPG impedes cellular proliferation and tumorigenesis by disrupting tumor-promoting transcriptional programs. Further, we demonstrate that LEDGF and HDGF2 are the main readers mediating the protumorigenic effects downstream of NSD1/2-H3K36me2. Treatment with a chemically modified peptide mimicking endogenous H3K36me2 dislodges LEDGF/HDGF2 from chromatin and specifically inhibits the proliferation of H3K27M-DIPG. Our results indicate a functional pathway of NSD1/2-H3K36me2-LEDGF/HDGF2 as an acquired dependency in H3K27M-DIPG.
Collapse
Affiliation(s)
- Jia-Ray Yu
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Gary LeRoy
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Devin Bready
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Joshua D Frenster
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Ricardo Saldaña-Meyer
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Ying Jin
- Shared Bioinformatics Core Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Nicolas Descostes
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY, USA
- EMBL Rome, Adriano Buzzati-Traverso Campus, Rome, Italy
| | - James M Stafford
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, USA
- Kimmel Center for Stem Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Brain and Spine Tumor Center, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
43
|
Li Y, Chen X, Lu C. The interplay between DNA and histone methylation: molecular mechanisms and disease implications. EMBO Rep 2021; 22:e51803. [PMID: 33844406 PMCID: PMC8097341 DOI: 10.15252/embr.202051803] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/16/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
Methylation of cytosine in CpG dinucleotides and histone lysine and arginine residues is a chromatin modification that critically contributes to the regulation of genome integrity, replication, and accessibility. A strong correlation exists between the genome-wide distribution of DNA and histone methylation, suggesting an intimate relationship between these epigenetic marks. Indeed, accumulating literature reveals complex mechanisms underlying the molecular crosstalk between DNA and histone methylation. These in vitro and in vivo discoveries are further supported by the finding that genes encoding DNA- and histone-modifying enzymes are often mutated in overlapping human diseases. Here, we summarize recent advances in understanding how DNA and histone methylation cooperate to maintain the cellular epigenomic landscape. We will also discuss the potential implication of these insights for understanding the etiology of, and developing biomarkers and therapies for, human congenital disorders and cancers that are driven by chromatin abnormalities.
Collapse
Affiliation(s)
- Yinglu Li
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Xiao Chen
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| |
Collapse
|
44
|
Loss-of-function and missense variants in NSD2 cause decreased methylation activity and are associated with a distinct developmental phenotype. Genet Med 2021; 23:1474-1483. [PMID: 33941880 PMCID: PMC8354849 DOI: 10.1038/s41436-021-01158-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose Despite a few recent reports of patients harboring truncating variants in NSD2, a gene considered critical for the Wolf–Hirschhorn syndrome (WHS) phenotype, the clinical spectrum associated with NSD2 pathogenic variants remains poorly understood. Methods We collected a comprehensive series of 18 unpublished patients carrying heterozygous missense, elongating, or truncating NSD2 variants; compared their clinical data to the typical WHS phenotype after pooling them with ten previously described patients; and assessed the underlying molecular mechanism by structural modeling and measuring methylation activity in vitro. Results The core NSD2-associated phenotype includes mostly mild developmental delay, prenatal-onset growth retardation, low body mass index, and characteristic facial features distinct from WHS. Patients carrying missense variants were significantly taller and had more frequent behavioral/psychological issues compared with those harboring truncating variants. Structural in silico modeling suggested interference with NSD2’s folding and function for all missense variants in known structures. In vitro testing showed reduced methylation activity and failure to reconstitute H3K36me2 in NSD2 knockout cells for most missense variants. Conclusion NSD2 loss-of-function variants lead to a distinct, rather mild phenotype partially overlapping with WHS. To avoid confusion for patients, NSD2 deficiency may be named Rauch–Steindl syndrome after the delineators of this phenotype.
Collapse
|
45
|
Zhang M, Lei M, Qin S, Dong A, Yang A, Li Y, Loppnau P, Hughes TR, Min J, Liu Y. Crystal structure of the BRPF2 PWWP domain in complex with DNA reveals a different binding mode than the HDGF family of PWWP domains. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194688. [PMID: 33556623 DOI: 10.1016/j.bbagrm.2021.194688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/22/2023]
Abstract
The PWWP domain was first identified in the HDGF protein family and named after the conserved Proline-Tryptophan-Tryptophan-Proline motif in WHSC1. The PWWP domain-containing proteins play important roles in different biological processes, such as DNA replication, transcription, DNA repair, pre-mRNA processing by recognizing methylated histone and dsDNA simultaneously. Recently, how the HDGF family of PWWP domains recognize histone H3K36me3-modified nucleosome has been reported. In order to better understand the interactions between the PWWP domain and dsDNA, we carried out family-wide characterization of dsDNA binding abilities of human PWWP domains. Our binding assays confirmed that PWWP domains bind to dsDNA without sequence selectivity. Our crystal structure of the BRPF2 PWWP domain in complex with a 12-mer dsDNA reveals that the PWWP domain interacts with dsDNA by binding to its major groove, instead of the minor groove observed in the HDGF family of PWWP domains. Our study indicates that PWWP domains could bind to dsDNA in different modes.
Collapse
Affiliation(s)
- Mengmeng Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ming Lei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Su Qin
- Life Science Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Ally Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China; Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
46
|
Ferreira de Freitas R, Liu Y, Szewczyk MM, Mehta N, Li F, McLeod D, Zepeda-Velázquez C, Dilworth D, Hanley RP, Gibson E, Brown PJ, Al-Awar R, James LI, Arrowsmith CH, Barsyte-Lovejoy D, Min J, Vedadi M, Schapira M, Allali-Hassani A. Discovery of Small-Molecule Antagonists of the PWWP Domain of NSD2. J Med Chem 2021; 64:1584-1592. [PMID: 33522809 DOI: 10.1021/acs.jmedchem.0c01768] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increased activity of the lysine methyltransferase NSD2 driven by translocation and activating mutations is associated with multiple myeloma and acute lymphoblastic leukemia, but no NSD2-targeting chemical probe has been reported to date. Here, we present the first antagonists that block the protein-protein interaction between the N-terminal PWWP domain of NSD2 and H3K36me2. Using virtual screening and experimental validation, we identified the small-molecule antagonist 3f, which binds to the NSD2-PWWP1 domain with a Kd of 3.4 μM and abrogates histone H3K36me2 binding to the PWWP1 domain in cells. This study establishes an alternative approach to targeting NSD2 and provides a small-molecule antagonist that can be further optimized into a chemical probe to better understand the cellular function of this protein.
Collapse
Affiliation(s)
| | - Yanli Liu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Naimee Mehta
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - David McLeod
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Carlos Zepeda-Velázquez
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - David Dilworth
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ronan P Hanley
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Elisa Gibson
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
47
|
Xu W, Li J, Rong B, Zhao B, Wang M, Dai R, Chen Q, Liu H, Gu Z, Liu S, Guo R, Shen H, Wu F, Lan F. DNMT3A reads and connects histone H3K36me2 to DNA methylation. Protein Cell 2020; 11:150-154. [PMID: 31758527 PMCID: PMC6954886 DOI: 10.1007/s13238-019-00672-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Wenqi Xu
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University, and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China
| | - Jiahui Li
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University, and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China
| | - Bowen Rong
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University, and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China
| | - Bin Zhao
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University, and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China
| | - Mei Wang
- Department of Geriatrics, Shanghai General Hospital, Shanghai, 201103, China
| | - Ruofei Dai
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University, and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China
| | - Qilong Chen
- Research Center for Chinese Traditional Medicine Complexity System, Shanghai University of Chinese Traditional Medicine, Shanghai, 201203, China
| | - Hang Liu
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University, and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China
| | - Zhongkai Gu
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University, and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China
| | - Shuxian Liu
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University, and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China
| | - Rui Guo
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University, and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China
| | - Hongjie Shen
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University, and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China.
| | - Feizhen Wu
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University, and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China.
| | - Fei Lan
- Key Laboratory of Birth Defects, Children's Hospital, Fudan University, and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 201102, China.
| |
Collapse
|
48
|
Chen R, Chen Y, Zhao W, Fang C, Zhou W, Yang X, Ji M. The Role of Methyltransferase NSD2 as a Potential Oncogene in Human Solid Tumors. Onco Targets Ther 2020; 13:6837-6846. [PMID: 32764971 PMCID: PMC7367929 DOI: 10.2147/ott.s259873] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/10/2020] [Indexed: 12/23/2022] Open
Abstract
Malignant solid tumors are the leading cause of death in humans, and epigenetic regulation plays a significant role in studying the mechanism of human solid tumors. Recently, histone lysine methylation has been demonstrated to be involved in the development of human solid tumors due to its epigenetic stability and some other advantages. The 90-kb protein methyltransferase nuclear receptor SET domain-containing 2 (NSD2) is a member of nuclear receptor SET domain-containing (NSD) protein lysine methyltransferase (KMT) family, which can cause epigenomic aberrations via altering the methylation states. Studies have shown that NSD2 is frequently over-expressed in multiple types of aggressive solid tumors, including breast cancer, renal cancer, prostate cancer, cervical cancer, and osteosarcoma, and such up-regulation has been linked to poor prognosis and recurrence. Further studies have identified that over-expression of NSD2 promotes cell proliferation, migration, invasion, and epithelial–mesenchymal transformation (EMT), suggesting its potential oncogenic role in solid tumors. Moreover, Gene Expression Profiling Interactive Analysis (GEPIA) was searched for validation of prognostic value of NSD2 in human solid tumors. However, the underlying specific mechanism remains unclear. In our present work, we summarized the latest advances in NSD2 expression and clinical applications in solid tumors, and our findings provided valuable insights into the targeted therapeutic regimens of solid tumors.
Collapse
Affiliation(s)
- Rui Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Yan Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Weiqing Zhao
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Cheng Fang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Wenjie Zhou
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Xin Yang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| |
Collapse
|
49
|
Linhares BM, Grembecka J, Cierpicki T. Targeting epigenetic protein-protein interactions with small-molecule inhibitors. Future Med Chem 2020; 12:1305-1326. [PMID: 32551894 PMCID: PMC7421387 DOI: 10.4155/fmc-2020-0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetic protein-protein interactions (PPIs) play essential roles in regulating gene expression, and their dysregulations have been implicated in many diseases. These PPIs are comprised of reader domains recognizing post-translational modifications on histone proteins, and of scaffolding proteins that maintain integrities of epigenetic complexes. Targeting PPIs have become focuses for development of small-molecule inhibitors and anticancer therapeutics. Here we summarize efforts to develop small-molecule inhibitors targeting common epigenetic PPI domains. Potent small molecules have been reported for many domains, yet small domains that recognize methylated lysine side chains on histones are challenging in inhibitor development. We posit that the development of potent inhibitors for difficult-to-prosecute epigenetic PPIs may be achieved by interdisciplinary approaches and extensive explorations of chemical space.
Collapse
Affiliation(s)
- Brian M Linhares
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tomasz Cierpicki
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
50
|
Zaghi M, Broccoli V, Sessa A. H3K36 Methylation in Neural Development and Associated Diseases. Front Genet 2020; 10:1291. [PMID: 31998360 PMCID: PMC6962298 DOI: 10.3389/fgene.2019.01291] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Post-translational methylation of H3 lysine 36 (H3K36) is an important epigenetic marker that majorly contributes to the functionality of the chromatin. This mark is interpreted by the cell in several crucial biological processes including gene transcription and DNA methylation. The homeostasis of H3K36 methylation is finely regulated by different enzyme classes which, when impaired, lead to a plethora of diseases; ranging from multi-organ syndromes to cancer, to pure neurological diseases often associated with brain development. This mini-review summarizes current knowledge on these important epigenetic signals with emphasis on the molecular mechanisms that (i) regulate their abundance, (ii) are influenced by H3K36 methylation, and (iii) the associated diseases.
Collapse
Affiliation(s)
- Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,Concilio Nazionale Delle Ricerche (CNR), Instituto di Neuroscienze, Milan, Italy
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|