1
|
Prochaska M, Menezes C, Ko BS, Coe F, Worcester E. Contribution of thick ascending limb and distal convoluted tubule to glucose-induced hypercalciuria in healthy controls. Am J Physiol Renal Physiol 2023; 325:F811-F816. [PMID: 37823200 PMCID: PMC10874680 DOI: 10.1152/ajprenal.00130.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
Carbohydrates increase kidney stone risk and increase urine calcium and magnesium. We hypothesize that the effects of glucose as an allosteric modulator of calcium-sensing receptors may mediate this effect. Six healthy subjects were on a low-sodium diet before consuming 100 g of glucose beverage. Timed fasting (3) and postglucose (6) urine and blood samples were collected every 30 min. Urine composition and serum markers were measured and microvesicular abundance of tubular transport proteins (NHE3, NKCC2, NCC, and TRPV5) were quantified. Postglucose, serum glucose, and insulin rose rapidly with a parallel increase in calcium and magnesium excretion and no change in fractional excretion of sodium. Both serum parathyroid hormone (PTH) and urine TRPV5 fell in the postglucose periods. The rise in the calcium and magnesium excretion likely occurred primarily in the thick ascending limb where they are both under control of the calcium-sensing receptor. The fall in PTH and TRPV5 support the role of glucose as an allosteric modulator of calcium-sensing receptor.NEW & NOTEWORTHY Sugar increases urine calcium and magnesium as well as kidney stone and bone disease risk. Our study provided new insights into the underlying mechanism as we gave healthy subjects an oral glucose load and used newer tools such as fractional excretion of lithium, serum parathyroid hormone, and microvesicular abundance of tubular transport proteins to characterize the mechanism and identify the thick ascending limb with possible calcium-sensing receptor mediation as a likely contributor to this mechanism.
Collapse
Affiliation(s)
- Megan Prochaska
- Department of Medicine, Section of Nephrology, University of Chicago, Chicago, Illinois, United States
| | - Cameron Menezes
- Department of Medicine, Section of Nephrology, University of Chicago, Chicago, Illinois, United States
| | - Benjamin S Ko
- Department of Medicine, Section of Nephrology, University of Chicago, Chicago, Illinois, United States
| | - Fredric Coe
- Department of Medicine, Section of Nephrology, University of Chicago, Chicago, Illinois, United States
| | - Elaine Worcester
- Department of Medicine, Section of Nephrology, University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
2
|
Gamba G. Thirty years of the NaCl cotransporter: from cloning to physiology and structure. Am J Physiol Renal Physiol 2023; 325:F479-F490. [PMID: 37560773 PMCID: PMC10639029 DOI: 10.1152/ajprenal.00114.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
The primary structure of the thiazide-sensitive NaCl cotransporter (NCC) was resolved 30 years ago by the molecular identification of the cDNA encoding this cotransporter, from the winter's flounder urinary bladder, following a functional expression strategy. This review outlines some aspects of how the knowledge about thiazide diuretics and NCC evolved, the history of the cloning process, and the expansion of the SLC12 family of electroneutral cotransporters. The diseases associated with activation or inactivation of NCC are discussed, as well as the molecular model by which the activity of NCC is regulated. The controversies in the field are discussed as well as recent publication of the three-dimensional model of NCC obtained by cryo-electron microscopy, revealing not only the amino acid residues critical for Na+ and Cl- translocation but also the residues critical for polythiazide binding to the transporter, opening the possibility for a new era in thiazide diuretic therapy.
Collapse
Affiliation(s)
- Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
3
|
Subramanya AR. Sweet-Talking the Distal Nephron Calcium-Sensing Receptor. J Am Soc Nephrol 2023; 34:1-2. [PMID: 36288903 PMCID: PMC10101623 DOI: 10.1681/asn.2022091054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Arohan R. Subramanya
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Bahena-Lopez JP, Rojas-Vega L, Chávez-Canales M, Bazua-Valenti S, Bautista-Pérez R, Lee JH, Madero M, Vazquez-Manjarrez N, Alquisiras-Burgos I, Hernandez-Cruz A, Castañeda-Bueno M, Ellison DH, Gamba G. Glucose/Fructose Delivery to the Distal Nephron Activates the Sodium-Chloride Cotransporter via the Calcium-Sensing Receptor. J Am Soc Nephrol 2023; 34:55-72. [PMID: 36288902 PMCID: PMC10101570 DOI: 10.1681/asn.2021121544] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/07/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The calcium-sensing receptor (CaSR) in the distal convoluted tubule (DCT) activates the NaCl cotransporter (NCC). Glucose acts as a positive allosteric modulator of the CaSR. Under physiologic conditions, no glucose is delivered to the DCT, and fructose delivery depends on consumption. We hypothesized that glucose/fructose delivery to the DCT modulates the CaSR in a positive allosteric way, activating the WNK4-SPAK-NCC pathway and thus increasing salt retention. METHODS We evaluated the effect of glucose/fructose arrival to the distal nephron on the CaSR-WNK4-SPAK-NCC pathway using HEK-293 cells, C57BL/6 and WNK4-knockout mice, ex vivo perfused kidneys, and healthy humans. RESULTS HEK-293 cells exposed to glucose/fructose increased SPAK phosphorylation in a WNK4- and CaSR-dependent manner. C57BL/6 mice exposed to fructose or a single dose of dapagliflozin to induce transient glycosuria showed increased activity of the WNK4-SPAK-NCC pathway. The calcilytic NPS2143 ameliorated this effect, which was not observed in WNK4-KO mice. C57BL/6 mice treated with fructose or dapagliflozin showed markedly increased natriuresis after thiazide challenge. Ex vivo rat kidney perfused with glucose above the physiologic threshold levels for proximal reabsorption showed increased NCC and SPAK phosphorylation. NPS2143 prevented this effect. In healthy volunteers, cinacalcet administration, fructose intake, or a single dose of dapagliflozin increased SPAK and NCC phosphorylation in urinary extracellular vesicles. CONCLUSIONS Glycosuria or fructosuria was associated with increased NCC, SPAK, and WNK4 phosphorylation in a CaSR-dependent manner.
Collapse
Affiliation(s)
- Jessica Paola Bahena-Lopez
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- MD/PhD (PECEM) program, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lorena Rojas-Vega
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Intellectual Property Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INCICH, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Silvana Bazua-Valenti
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rocío Bautista-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Ju-Hye Lee
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Magdalena Madero
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Natalia Vazquez-Manjarrez
- Nutrition Division, Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ivan Alquisiras-Burgos
- Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Hernandez-Cruz
- Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - David H. Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
- Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- MD/PhD (PECEM) program, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
von Molitor E, Riedel K, Krohn M, Hafner M, Rudolf R, Cesetti T. Sweet Taste Is Complex: Signaling Cascades and Circuits Involved in Sweet Sensation. Front Hum Neurosci 2021; 15:667709. [PMID: 34239428 PMCID: PMC8258107 DOI: 10.3389/fnhum.2021.667709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Sweetness is the preferred taste of humans and many animals, likely because sugars are a primary source of energy. In many mammals, sweet compounds are sensed in the tongue by the gustatory organ, the taste buds. Here, a group of taste bud cells expresses a canonical sweet taste receptor, whose activation induces Ca2+ rise, cell depolarization and ATP release to communicate with afferent gustatory nerves. The discovery of the sweet taste receptor, 20 years ago, was a milestone in the understanding of sweet signal transduction and is described here from a historical perspective. Our review briefly summarizes the major findings of the canonical sweet taste pathway, and then focuses on molecular details, about the related downstream signaling, that are still elusive or have been neglected. In this context, we discuss evidence supporting the existence of an alternative pathway, independent of the sweet taste receptor, to sense sugars and its proposed role in glucose homeostasis. Further, given that sweet taste receptor expression has been reported in many other organs, the physiological role of these extraoral receptors is addressed. Finally, and along these lines, we expand on the multiple direct and indirect effects of sugars on the brain. In summary, the review tries to stimulate a comprehensive understanding of how sweet compounds signal to the brain upon taste bud cells activation, and how this gustatory process is integrated with gastro-intestinal sugar sensing to create a hedonic and metabolic representation of sugars, which finally drives our behavior. Understanding of this is indeed a crucial step in developing new strategies to prevent obesity and associated diseases.
Collapse
Affiliation(s)
- Elena von Molitor
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | | | | | - Mathias Hafner
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Tiziana Cesetti
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| |
Collapse
|
6
|
Laffitte A, Gibbs M, Hernangomez de Alvaro C, Addison J, Lonsdale ZN, Giribaldi MG, Rossignoli A, Vennegeerts T, Winnig M, Klebansky B, Skiles J, Logan DW, McGrane SJ. Kokumi taste perception is functional in a model carnivore, the domestic cat (Felis catus). Sci Rep 2021; 11:10527. [PMID: 34006911 PMCID: PMC8131363 DOI: 10.1038/s41598-021-89558-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/28/2021] [Indexed: 01/03/2023] Open
Abstract
Kokumi taste is a well-accepted and characterised taste modality and is described as a sensation of enhancement of sweet, salty, and umami tastes. The Calcium Sensing Receptor (CaSR) has been designated as the putative kokumi taste receptor for humans, and a number of kokumi-active ligands of CaSR have been discovered recently with activity confirmed both in vivo and in vitro. Domestic cats (Felis catus) are obligate carnivores and accordingly, their diet is abundant in proteins, peptides, and amino acids. We hypothesised that CaSR is a key taste receptor for carnivores, due to its role in the detection of different peptides and amino acids in other species. Using in silico, in vitro and in vivo approaches, here we compare human CaSR to that of a model carnivore, the domestic cat. We found broad similarities in ligand specificity, but differences in taste sensitivity between the two species. Indeed our in vivo data shows that cats are sensitive to CaCl2 as a kokumi compound, but don't show this same activity with Glutathione, whereas for humans the reverse is true. Collectively, our data suggest that kokumi is an important taste modality for carnivores that drives the palatability of meat-derived compounds such as amino acids and peptides, and that there are differences in the perception of kokumi taste between carnivores and omnivores.
Collapse
Affiliation(s)
- A Laffitte
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - M Gibbs
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - C Hernangomez de Alvaro
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - J Addison
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - Z N Lonsdale
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - M G Giribaldi
- IMAX Discovery GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany.,AXXAM S.p.A., OpenZone, Via Meucci 3, 20091, Bresso, Milan, Italy
| | - A Rossignoli
- IMAX Discovery GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany.,AXXAM S.p.A., OpenZone, Via Meucci 3, 20091, Bresso, Milan, Italy
| | - T Vennegeerts
- IMAX Discovery GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany.,AXXAM S.p.A., OpenZone, Via Meucci 3, 20091, Bresso, Milan, Italy
| | - M Winnig
- IMAX Discovery GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany.,AXXAM S.p.A., OpenZone, Via Meucci 3, 20091, Bresso, Milan, Italy
| | - B Klebansky
- BioPredict, Inc., 4 Adele Avenue, Demarest, NJ, 07627, USA
| | - J Skiles
- BioPredict, Inc., 4 Adele Avenue, Demarest, NJ, 07627, USA.,Valis Pharma, Ins., 545 Bonair Way, La Jolla, CA, 92037, USA
| | - D W Logan
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - S J McGrane
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK.
| |
Collapse
|
7
|
Zhang F, Wan H, Chu F, Lu C, Chen J, Dong H. Small intestinal glucose and sodium absorption through calcium-induced calcium release and store-operated Ca 2+ entry mechanisms. Br J Pharmacol 2020; 178:346-362. [PMID: 33080043 DOI: 10.1111/bph.15287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Luminal glucose enhances intestinal Ca2+ absorption through apical Cav 1.3 channels necessary for GLUT2-mediated glucose absorption. As these reciprocal mechanisms are not well understood, we investigated the regulatory mechanisms of intestinal [Ca2+ ]cyt and SGLT1-mediated Na+ -glucose co-transports. EXPERIMENTAL APPROACH Glucose absorption and channel expression were examined in mouse upper jejunal epithelium using an Ussing chamber, immunocytochemistry and Ca2+ and Na+ imaging in single intestinal epithelial cells. KEY RESULTS Glucose induced jejunal Isc via Na+ -glucose cotransporter 1 (SGLT1) operated more efficiently in the presence of extracellular Ca2+ . A crosstalk between luminal Ca2+ entry via plasma Cav 1.3 channels and the ER Ca2+ release through ryanodine receptor (RYR) activation in small intestinal epithelial cell (IEC) or Ca2+ -induced Ca2+ release (CICR) mechanism was involve in Ca2+ -mediated jejunal glucose absorption. The ER Ca2+ release through RyR triggered basolateral Ca2+ entry or store-operated Ca2+ entry (SOCE) mechanism and the subsequent Ca2+ entry via Na+ /Ca2+ exchanger 1 (NCX1) were found to be critical in Na+ -glucose cotransporter-mediated glucose absorption. Blocking RyR, SOCE and NCX1 inhibited glucose induced [Na+ ]cyt and [Ca2+ ]cyt in single IEC and protein expression and co-localization of STIM1/Orai1, RyR1 and NCX1 were detected in IEC and jejunal mucosa. CONCLUSION AND IMPLICATIONS Luminal Ca2+ influx through Cav 1.3 triggers the CICR through RyR1 to deplete the ER Ca2+ , which induces the basolateral STIM1/Orai1-mediated SOCE mechanism and the subsequent Ca2+ entry via NCX1 to regulate intestinal glucose uptake via Ca2+ signalling. Targeting these mechanisms in IEC may help to modulate blood glucose and sodium in the metabolic disease.
Collapse
Affiliation(s)
- Fenglian Zhang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Fenglan Chu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jun Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China.,Department of Medicine, School of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
8
|
An alternative pathway for sweet sensation: possible mechanisms and physiological relevance. Pflugers Arch 2020; 472:1667-1691. [PMID: 33030576 DOI: 10.1007/s00424-020-02467-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Sweet substances are detected by taste-bud cells upon binding to the sweet-taste receptor, a T1R2/T1R3 heterodimeric G protein-coupled receptor. In addition, experiments with mouse models lacking the sweet-taste receptor or its downstream signaling components led to the proposal of a parallel "alternative pathway" that may serve as metabolic sensor and energy regulator. Indeed, these mice showed residual nerve responses and behavioral attraction to sugars and oligosaccharides but not to artificial sweeteners. In analogy to pancreatic β cells, such alternative mechanism, to sense glucose in sweet-sensitive taste cells, might involve glucose transporters and KATP channels. Their activation may induce depolarization-dependent Ca2+ signals and release of GLP-1, which binds to its receptors on intragemmal nerve fibers. Via unknown neuronal and/or endocrine mechanisms, this pathway may contribute to both, behavioral attraction and/or induction of cephalic-phase insulin release upon oral sweet stimulation. Here, we critically review the evidence for a parallel sweet-sensitive pathway, involved signaling mechanisms, neural processing, interactions with endocrine hormonal mechanisms, and its sensitivity to different stimuli. Finally, we propose its physiological role in detecting the energy content of food and preparing for digestion.
Collapse
|
9
|
Sensing Senses: Optical Biosensors to Study Gustation. SENSORS 2020; 20:s20071811. [PMID: 32218129 PMCID: PMC7180777 DOI: 10.3390/s20071811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
Abstract
The five basic taste modalities, sweet, bitter, umami, salty and sour induce changes of Ca2+ levels, pH and/or membrane potential in taste cells of the tongue and/or in neurons that convey and decode gustatory signals to the brain. Optical biosensors, which can be either synthetic dyes or genetically encoded proteins whose fluorescence spectra depend on levels of Ca2+, pH or membrane potential, have been used in primary cells/tissues or in recombinant systems to study taste-related intra- and intercellular signaling mechanisms or to discover new ligands. Taste-evoked responses were measured by microscopy achieving high spatial and temporal resolution, while plate readers were employed for higher throughput screening. Here, these approaches making use of fluorescent optical biosensors to investigate specific taste-related questions or to screen new agonists/antagonists for the different taste modalities were reviewed systematically. Furthermore, in the context of recent developments in genetically encoded sensors, 3D cultures and imaging technologies, we propose new feasible approaches for studying taste physiology and for compound screening.
Collapse
|
10
|
Kosiba AA, Wang Y, Chen D, Wong CKC, Gu J, Shi H. The roles of calcium-sensing receptor (CaSR) in heavy metals-induced nephrotoxicity. Life Sci 2019; 242:117183. [PMID: 31874167 DOI: 10.1016/j.lfs.2019.117183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
The kidney is a vital organ responsible for regulating water, electrolyte and acid-base balance as well as eliminating toxic substances from the blood in the body. Exposure of humans to heavy metals in their natural and occupational environments, foods, water, and drugs has serious implications on the kidney's health. The accumulation of heavy metals in the kidney has been linked to acute or chronic renal injury, kidney stones or even renal cancer, at the expense of expensive treatment options. Therefore, unearthing novel biomarkers and potential therapeutic agents or targets against kidney injury for efficient treatment are imperative. The calcium-sensing receptor (CaSR), a G-protein-coupled receptor (GPCR) is typically expressed in the parathyroid glands and renal tubules. It modulates parathyroid hormone secretion according to the serum calcium (Ca2+) concentration. In the kidney, it modulates electrolyte and water excretion by regulating the function of diverse tubular segments. Notably, CaSR lowers passive and active Ca2+ reabsorption in distal tubules, which facilitates phosphate reabsorption in proximal tubules and stimulates proton and water excretion in collecting ducts. Moreover, at the cellular level, modulation of the CaSR regulates cytosolic Ca2+ levels, reactive oxygen species (ROS) generation and the mitogen-activated protein kinase (MAPK) signaling cascades as well as autophagy and the suppression of apoptosis, an effect predominantly triggered by heavy metals. In this regard, we present a review on the CaSR at the cellular level and its potential as a therapeutic target for the development of new and efficient drugs against heavy metals-induced nephrotoxicity.
Collapse
Affiliation(s)
- Anthony A Kosiba
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanwei Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dongfeng Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Chris Kong Chu Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
11
|
Hamano K, Akita K, Takeuchi Y, Suwa T, Takeda J, Dodo S. Glucose-responsive Insulinoma with Insulin Hypersecretion Suppressed by Metformin. Intern Med 2019; 58:3563-3568. [PMID: 31462593 PMCID: PMC6949461 DOI: 10.2169/internalmedicine.3318-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In type 2 diabetes mellitus, metformin suppresses excessive insulin secretion in relation to the intake of glucose. We herein report the case of a 45-year-old man with glucose-responsive insulinoma whose responsive hypoglycemia was alleviated by metformin. The patient had a history of a postprandial loss of consciousness, resulting in hospital admission. He refused surgery and diazoxide administration. A 75-g oral glucose tolerance test after metformin administration revealed the suppression of glucose-responsive insulin hypersecretion and responsive hypoglycemia. Pancreatic head duodenectomy was performed, which alleviated the symptoms. Metformin administration in patients with glucose-responsive insulinoma may therefore be effective for preventing responsive hypoglycemia and hyperinsulinemia.
Collapse
Affiliation(s)
- Kunihisa Hamano
- Division of Nephrology and Diabetology, Narita Memorial Hospital (Meiyokai Medical Corporation), Japan
| | - Kayo Akita
- Department of Thyroidology and Diabetes, Japanese Red Cross Gifu Hospital, Japan
| | - Yoko Takeuchi
- Division of Nephrology and Diabetology, Narita Memorial Hospital (Meiyokai Medical Corporation), Japan
| | - Tetsuya Suwa
- Department of Immunity and Endocrinology Internal Medicine, Gifu University Hospital, Japan
| | | | - Shuji Dodo
- Division of Nephrology and Diabetology, Narita Memorial Hospital (Meiyokai Medical Corporation), Japan
| |
Collapse
|
12
|
Kim BH, Wang FI, Pereverzev A, Chidiac P, Dixon SJ. Toward Defining the Pharmacophore for Positive Allosteric Modulation of PTH1 Receptor Signaling by Extracellular Nucleotides. ACS Pharmacol Transl Sci 2019; 2:155-167. [PMID: 32259054 DOI: 10.1021/acsptsci.8b00053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 12/17/2022]
Abstract
The parathyroid hormone 1 receptor (PTH1R) is a Class B G-protein-coupled receptor that is a target for osteoporosis therapeutics. Activated PTH1R couples through Gs to the stimulation of adenylyl cyclase. As well, β-arrestin is recruited to PTH1R leading to receptor internalization and MAPK/ERK signaling. Previously, we reported that the agonist potency of PTH1R is increased in the presence of extracellular ATP, which acts as a positive allosteric modulator of PTH signaling. Another nucleotide, cytidine 5'-monophosphate (CMP), also enhances PTH1R signaling, suggesting that ATP and CMP share a moiety responsible for positive allostery, possibly ribose-5-phosphate. Therefore, we examined the effect of extracellular sugar phosphates on PTH1R signaling. cAMP levels and β-arrestin recruitment were monitored using luminescence-based assays. Alone, ribose-5-phosphate had no detectable effect on adenylyl cyclase activity in UMR-106 rat osteoblastic cells, which endogenously express PTH1R. However, ribose-5-phosphate markedly enhanced the activation of adenylyl cyclase induced by PTH. Other sugar phosphates, including glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, and fructose-1,6-bisphosphate, also potentiated PTH-induced adenylyl cyclase activation. As well, some sugar phosphates enhanced PTH-induced β-arrestin recruitment to human PTH1R heterologously expressed in HEK293H cells. Interestingly, the effects of glucose-1-phosphate were greater than those of its isomer glucose-6-phosphate. Our results suggest that phosphorylated monosaccharides such as ribose-5-phosphate contain the pharmacophore for positive allosteric modulation of PTH1R. At least in some cases, the extent of modulation depends on the position of the phosphate group. Knowledge of the pharmacophore may permit future development of positive allosteric modulators to increase the therapeutic efficacy of PTH1R agonists.
Collapse
Affiliation(s)
- Brandon H Kim
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry; and Bone and Joint Institute; The University of Western Ontario, London, Canada
| | - Fang I Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry; and Bone and Joint Institute; The University of Western Ontario, London, Canada
| | - Alexey Pereverzev
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry; and Bone and Joint Institute; The University of Western Ontario, London, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry; and Bone and Joint Institute; The University of Western Ontario, London, Canada
| | - S Jeffrey Dixon
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry; and Bone and Joint Institute; The University of Western Ontario, London, Canada
| |
Collapse
|
13
|
Sanchez-Andres JV, Malaisse WJ, Kojima I. Electrophysiology of the pancreatic islet β-cell sweet taste receptor TIR3. Pflugers Arch 2018; 471:647-654. [PMID: 30552496 DOI: 10.1007/s00424-018-2237-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022]
Abstract
Over recent years, the presence of the sweet taste receptor TIR3 in rodent and human insulin-producing pancreatic islet β-cells was documented. The activation of this receptor by sweet-tasting sucralose mimics several biochemical and functional effects of D-glucose in the β-cells. The present study extends this analogy to the bioelectrical response of β-cells. In this respect, sucralose was inefficient in the absence of D-glucose, but induced on occasion electrical activity in mouse β-cells exposed to low non-stimulatory concentrations of the hexose and potentiated, in a concentration-related manner, the response to stimulatory concentrations of D-glucose. These data indicate that sucralose, acting as an agonist of the TIR3 receptor, exerts an excitatory effect upon pancreatic β-cell bioelectrical activity.
Collapse
Affiliation(s)
| | - Willy J Malaisse
- Department of Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Itaru Kojima
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
14
|
Rother KI, Conway EM, Sylvetsky AC. How Non-nutritive Sweeteners Influence Hormones and Health. Trends Endocrinol Metab 2018; 29:455-467. [PMID: 29859661 DOI: 10.1016/j.tem.2018.04.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/16/2023]
Abstract
Non-nutritive sweeteners (NNSs) elicit a multitude of endocrine effects in vitro, in animal models, and in humans. The best-characterized consequences of NNS exposure are metabolic changes, which may be mediated by activation of sweet taste receptors in oral and extraoral tissues (e.g., intestine, pancreatic β cells, and brain), and alterations of the gut microbiome. These mechanisms are likely synergistic and may differ across species and chemically distinct NNSs. However, the extent to which these hormonal effects are clinically relevant in the context of human consumption is unclear. Further investigation following prolonged exposure is required to better understand the role of NNSs in human health, with careful consideration of genetic, dietary, anthropometric, and other interindividual differences.
Collapse
Affiliation(s)
- Kristina I Rother
- Section on Pediatric Diabetes and Metabolism, National Institute of Diabetes, Digestive, and Kidney Diseases, 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD 20892, USA.
| | - Ellen M Conway
- Section on Pediatric Diabetes and Metabolism, National Institute of Diabetes, Digestive, and Kidney Diseases, 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD 20892, USA
| | - Allison C Sylvetsky
- Section on Pediatric Diabetes and Metabolism, National Institute of Diabetes, Digestive, and Kidney Diseases, 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD 20892, USA; Department of Exercise and Nutrition Sciences, The George Washington University, 950 New Hampshire Avenue NW, 2nd floor, Washington DC 20052, USA; Sumner M. Redstone Global Center for Prevention and Wellness, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, 3rd floor, Washington DC 20052, USA
| |
Collapse
|
15
|
Bazúa-Valenti S, Rojas-Vega L, Castañeda-Bueno M, Barrera-Chimal J, Bautista R, Cervantes-Pérez LG, Vázquez N, Plata C, Murillo-de-Ozores AR, González-Mariscal L, Ellison DH, Riccardi D, Bobadilla NA, Gamba G. The Calcium-Sensing Receptor Increases Activity of the Renal NCC through the WNK4-SPAK Pathway. J Am Soc Nephrol 2018; 29:1838-1848. [PMID: 29848507 DOI: 10.1681/asn.2017111155] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/10/2018] [Indexed: 01/07/2023] Open
Abstract
Background Hypercalciuria can result from activation of the basolateral calcium-sensing receptor (CaSR), which in the thick ascending limb of Henle's loop controls Ca2+ excretion and NaCl reabsorption in response to extracellular Ca2+ However, the function of CaSR in the regulation of NaCl reabsorption in the distal convoluted tubule (DCT) is unknown. We hypothesized that CaSR in this location is involved in activating the thiazide-sensitive NaCl cotransporter (NCC) to prevent NaCl loss.Methods We used a combination of in vitro and in vivo models to examine the effects of CaSR on NCC activity. Because the KLHL3-WNK4-SPAK pathway is involved in regulating NaCl reabsorption in the DCT, we assessed the involvement of this pathway as well.Results Thiazide-sensitive 22Na+ uptake assays in Xenopus laevis oocytes revealed that NCC activity increased in a WNK4-dependent manner upon activation of CaSR with Gd3+ In HEK293 cells, treatment with the calcimimetic R-568 stimulated SPAK phosphorylation only in the presence of WNK4. The WNK4 inhibitor WNK463 also prevented this effect. Furthermore, CaSR activation in HEK293 cells led to phosphorylation of KLHL3 and WNK4 and increased WNK4 abundance and activity. Finally, acute oral administration of R-568 in mice led to the phosphorylation of NCC.Conclusions Activation of CaSR can increase NCC activity via the WNK4-SPAK pathway. It is possible that activation of CaSR by Ca2+ in the apical membrane of the DCT increases NaCl reabsorption by NCC, with the consequent, well known decrease of Ca2+ reabsorption, further promoting hypercalciuria.
Collapse
Affiliation(s)
- Silvana Bazúa-Valenti
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Lorena Rojas-Vega
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jonatan Barrera-Chimal
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Norma Vázquez
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Consuelo Plata
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Adrián R Murillo-de-Ozores
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - David H Ellison
- Department of Medicine, Oregon Health and Science University, Portland, Oregon.,Renal Section, Veterans Administration Portland Health Care System, Portland, Oregon
| | - Daniela Riccardi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom; and
| | - Norma A Bobadilla
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; .,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| |
Collapse
|
16
|
Shibata M, Hirotsuka M, Mizutani Y, Takahashi H, Kawada T, Matsumiya K, Hayashi Y, Matsumura Y. Isolation and characterization of key contributors to the "kokumi" taste in soybean seeds. Biosci Biotechnol Biochem 2017; 81:2168-2177. [PMID: 28889784 DOI: 10.1080/09168451.2017.1372179] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/15/2017] [Indexed: 10/18/2022]
Abstract
The water extract of soybean seeds (Glycine max (L.) Merr.) is nearly tasteless, but "kokumi" taste sensation was confirmed upon addition of a basic umami solution containing glutamic acid, inosine monophosphate, and sodium chloride. To identify the key contributors to the "kokumi" taste sensation in soybean seeds, sensory-guided fractionation, taste sensory analyses, and LC-MS/MS analyses were utilized. γ-glutamyl-tyrosine and γ-glutamyl-phenylalanine were identified as contributors to "kokumi taste"; specifically, these γ-glutamyl peptides imparted the "kokumi" taste sensation at a low taste threshold in a basic umami solution. Raffinose and stachyose, which are sufficiently present in soybean seeds, exhibited a synergistic effect in regard to the enhanced "kokumi" taste sensation of γ-glutamyl peptides. This is the first report that the combined use of γ-glutamyl peptides and oligosaccharides can increase the "kokumi" intensity, which suggests that soybean extracts or soymilk can be used to enhance the "kokumi" taste sensation in food products.
Collapse
Affiliation(s)
- Masayuki Shibata
- a Research Institute for Creating the Future, Fuji Oil Holdings Inc , Izumisano, Osaka , Japan
- b Laboratory of 'Fuji Oil' Soybean Renaissance, Graduate School of Agriculture , Kyoto University , Gokasho, Uji , Kyoto , Japan
| | - Motohiko Hirotsuka
- a Research Institute for Creating the Future, Fuji Oil Holdings Inc , Izumisano, Osaka , Japan
- b Laboratory of 'Fuji Oil' Soybean Renaissance, Graduate School of Agriculture , Kyoto University , Gokasho, Uji , Kyoto , Japan
| | - Yukiko Mizutani
- b Laboratory of 'Fuji Oil' Soybean Renaissance, Graduate School of Agriculture , Kyoto University , Gokasho, Uji , Kyoto , Japan
| | - Haruya Takahashi
- c Laboratory of Molecular Function of Food, Graduate School of Agriculture , Kyoto University , Gokasho, Uji , Kyoto , Japan
| | - Teruo Kawada
- c Laboratory of Molecular Function of Food, Graduate School of Agriculture , Kyoto University , Gokasho, Uji , Kyoto , Japan
| | - Kentaro Matsumiya
- d Laboratory of Quality Analysis and Assessment, Graduate School of Agriculture , Kyoto University , Gokasho, Uji , Kyoto , Japan
| | - Yukako Hayashi
- d Laboratory of Quality Analysis and Assessment, Graduate School of Agriculture , Kyoto University , Gokasho, Uji , Kyoto , Japan
| | - Yasuki Matsumura
- d Laboratory of Quality Analysis and Assessment, Graduate School of Agriculture , Kyoto University , Gokasho, Uji , Kyoto , Japan
| |
Collapse
|
17
|
Kojima I, Medina J, Nakagawa Y. Role of the glucose-sensing receptor in insulin secretion. Diabetes Obes Metab 2017; 19 Suppl 1:54-62. [PMID: 28880472 DOI: 10.1111/dom.13013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 11/27/2022]
Abstract
Glucose is a primary stimulator of insulin secretion. It has been thought that glucose exerts its effect by a mechanism solely dependent on glucose metabolism. We show here that glucose induces rapid Ca2+ and cyclic AMP signals in β-cells. These rapid signals are independent of glucose-metabolism and are reproduced by non-metabolizable glucose analogues. These results led us to postulate that glucose activates a cell-surface receptor, namely the glucose-sensing receptor. Rapid signals induced by glucose are blocked by inhibition of a sweet taste receptor subunit T1R3 and a calcium-sensing receptor subunit CaSR. In accordance with these observations, T1R3 and CaSR form a heterodimer. In addition, a heterodimer of T1R3 and CaSR is activated by glucose. These results suggest that a heterodimer of T1R3 and CaSR is a major component of the glucose-sensing receptor. When the glucose-sensing receptor is blocked, glucose-induced insulin secretion is inhibited. Also, ATP production is significantly attenuated by the inhibition of the receptor. Conversely, stimulation of the glucose-sensing receptor by either artificial sweeteners or non-metabolizable glucose analogue increases ATP. Hence, the glucose-sensing receptor signals promote glucose metabolism. Collectively, glucose activates the cell-surface glucose-sensing receptor and promotes its own metabolism. Glucose then enters the cells and is metabolized through already activated metabolic pathways. The glucose-sensing receptor is a key molecule regulating the action of glucose in β-cells.
Collapse
MESH Headings
- Animals
- Calcium Signaling
- Cyclic AMP/metabolism
- Dimerization
- Enzyme Activation
- Gene Expression Regulation
- Glucose/metabolism
- Humans
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/enzymology
- Insulin-Secreting Cells/metabolism
- Models, Biological
- Protein Kinase C/chemistry
- Protein Kinase C/metabolism
- Protein Multimerization
- Receptors, Calcium-Sensing/agonists
- Receptors, Calcium-Sensing/chemistry
- Receptors, Calcium-Sensing/genetics
- Receptors, Calcium-Sensing/metabolism
- Receptors, Cell Surface/agonists
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Second Messenger Systems
Collapse
Affiliation(s)
- Itaru Kojima
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Johan Medina
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yuko Nakagawa
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
18
|
Babinsky VN, Hannan FM, Ramracheya RD, Zhang Q, Nesbit MA, Hugill A, Bentley L, Hough TA, Joynson E, Stewart M, Aggarwal A, Prinz-Wohlgenannt M, Gorvin CM, Kallay E, Wells S, Cox RD, Richards D, Rorsman P, Thakker RV. Mutant Mice With Calcium-Sensing Receptor Activation Have Hyperglycemia That Is Rectified by Calcilytic Therapy. Endocrinology 2017; 158:2486-2502. [PMID: 28575322 PMCID: PMC5551547 DOI: 10.1210/en.2017-00111] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/30/2017] [Indexed: 12/12/2022]
Abstract
The calcium-sensing receptor (CaSR) is a family C G-protein-coupled receptor that plays a pivotal role in extracellular calcium homeostasis. The CaSR is also highly expressed in pancreatic islet α- and β-cells that secrete glucagon and insulin, respectively. To determine whether the CaSR may influence systemic glucose homeostasis, we characterized a mouse model with a germline gain-of-function CaSR mutation, Leu723Gln, referred to as Nuclear flecks (Nuf). Heterozygous- (CasrNuf/+) and homozygous-affected (CasrNuf/Nuf) mice were shown to have hypocalcemia in association with impaired glucose tolerance and insulin secretion. Oral administration of a CaSR antagonist compound, known as a calcilytic, rectified the glucose intolerance and hypoinsulinemia of CasrNuf/+ mice and ameliorated glucose intolerance in CasrNuf/Nuf mice. Ex vivo studies showed CasrNuf/+ and CasrNuf/Nuf mice to have reduced pancreatic islet mass and β-cell proliferation. Electrophysiological analysis of isolated CasrNuf/Nuf islets showed CaSR activation to increase the basal electrical activity of β-cells independently of effects on the activity of the adenosine triphosphate (ATP)-sensitive K+ (KATP) channel. CasrNuf/Nuf mice also had impaired glucose-mediated suppression of glucagon secretion, which was associated with increased numbers of α-cells and a higher α-cell proliferation rate. Moreover, CasrNuf/Nuf islet electrophysiology demonstrated an impairment of α-cell membrane depolarization in association with attenuated α-cell basal KATP channel activity. These studies indicate that the CaSR activation impairs glucose tolerance by a combination of α- and β-cell defects and also influences pancreatic islet mass. Moreover, our findings highlight a potential application of targeted CaSR compounds for modulating glucose metabolism.
Collapse
Affiliation(s)
- Valerie N. Babinsky
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
| | - Fadil M. Hannan
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Reshma D. Ramracheya
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
| | - Quan Zhang
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
| | - M. Andrew Nesbit
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, United Kingdom
| | - Alison Hugill
- Medical Research Council Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Liz Bentley
- Medical Research Council Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Tertius A. Hough
- Medical Research Council Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Elizabeth Joynson
- Medical Research Council Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Michelle Stewart
- Medical Research Council Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Abhishek Aggarwal
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna A-1090, Austria
| | | | - Caroline M. Gorvin
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
| | - Enikö Kallay
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna A-1090, Austria
| | - Sara Wells
- Medical Research Council Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Roger D. Cox
- Medical Research Council Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Duncan Richards
- GlaxoSmithKline Clinical Unit, Cambridge CB2 0GG, United Kingdom
| | - Patrik Rorsman
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
| | - Rajesh V. Thakker
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
| |
Collapse
|
19
|
Abstract
The past decade has witnessed a consolidation and refinement of the extraordinary progress made in taste research. This Review describes recent advances in our understanding of taste receptors, taste buds, and the connections between taste buds and sensory afferent fibres. The article discusses new findings regarding the cellular mechanisms for detecting tastes, new data on the transmitters involved in taste processing and new studies that address longstanding arguments about taste coding.
Collapse
|