1
|
Hartung J, Müller C, Calkhoven CF. The dual role of the TSC complex in cancer. Trends Mol Med 2025; 31:452-465. [PMID: 39488444 DOI: 10.1016/j.molmed.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
The tuberous sclerosis complex (TSC1/TSC2/TBC1D7) primarily functions to inhibit the mechanistic target of rapamycin complex 1 (mTORC1), a crucial regulator of cell growth. Mutations in TSC1 or TSC2 cause tuberous sclerosis complex (TSC), a rare autosomal dominant genetic disorder marked by benign tumors in multiple organs that rarely progress to malignancy. Traditionally, TSC proteins are considered tumor suppressive due to their inhibition of mTORC1 and other mechanisms. However, more recent studies have shown that TSC proteins can also promote tumorigenesis in certain cancer types. In this review, we explore the composition and function of the TSC protein complex, the roles of its individual components in cancer biology, and potential future therapeutic targeting strategies.
Collapse
Affiliation(s)
- Josephine Hartung
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Christine Müller
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Cornelis F Calkhoven
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands.
| |
Collapse
|
2
|
Nguyen AV, Berger BH, Abdullaev Z, Gearhart S, Castro-Echeverry E, Aldape K, Trumble E, Lehman NL. Frontal lobe intra-axial schwannoma harboring a CHD7::VGLL3 fusion and heterozygous TSC2 p.F1510del mutation in a young child. Mol Biol Rep 2025; 52:112. [PMID: 39792305 PMCID: PMC11723850 DOI: 10.1007/s11033-024-10201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Brain intraparenchymal schwannoma is a rare clinical entity, generally curable with adequate resection. METHODS AND RESULTS We describe a case in a male patient first presenting at 19 months of age, the youngest reported age for this lesion. It also appears to be the first case connected to a germline TSC2 p.1510del mutation in a patient with autism-like symptoms. Although tuberous sclerosis is generally not associated with increased risk of schwannoma, mTORC1 activity, which is inhibited by intact TSC1/TSC2 complex, is involved in schwannoma progression. This patient's tumor also harbored a CHD7::VGLL3 fusion consistent with its genomic DNA methylation classification of CNS Schwannoma, VGLL-fused. The Hippo pathway, mTORC1, and VGLL3 all negatively regulate the YAP1/TEAD cotranscriptional complex. We hypothesize that this schwannoma may have arisen because of increased VGLL3 functional activity from the CHD7::VGLL3 fusion and, perhaps, increased mTORC1 activity due to TSC2 mutation, and their combined effects on the balance between YAP1/TEAD- and VGLL3/TEAD-mediated transcriptional programs. CONCLUSIONS We present a frontal lobe intra-axial parenchymal schwannoma containing a CHD7::VGLL3 gene fusion presenting in a 19 month-old male, the youngest patient yet reported for this lesion.
Collapse
Affiliation(s)
- Anthony V Nguyen
- Department of Neurosurgery, Baylor Scott and White Medical Center, Baylor College of Medicine, Temple, TX, USA
| | - Blaine H Berger
- Department of Pathology and Laboratory Medicine, Baylor Scott and White Medical Center, Baylor College of Medicine, Temple, TX, USA
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Samuel Gearhart
- Department of Neurosurgery, Baylor Scott and White Medical Center, Baylor College of Medicine, Temple, TX, USA
| | - Eduardo Castro-Echeverry
- Department of Pathology and Laboratory Medicine, Baylor Scott and White Medical Center, Baylor College of Medicine, Temple, TX, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Eric Trumble
- Department of Neurosurgery, Baylor Scott and White Medical Center, Baylor College of Medicine, Temple, TX, USA
| | - Norman L Lehman
- Department of Pathology and Laboratory Medicine, Baylor Scott and White Medical Center, Baylor College of Medicine, Temple, TX, USA.
| |
Collapse
|
3
|
Abéza C, Busse P, Paiva ACF, Chagot ME, Schneider J, Robert MC, Vandermoere F, Schaeffer C, Charpentier B, Sousa PMF, Bandeiras TM, Manival X, Cianferani S, Bertrand E, Verheggen C. The HSP90/R2TP Quaternary Chaperone Scaffolds Assembly of the TSC Complex. J Mol Biol 2024; 436:168840. [PMID: 39490680 DOI: 10.1016/j.jmb.2024.168840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The R2TP chaperone is composed of the RUVBL1/RUVBL2 AAA+ ATPases and two adapter proteins, RPAP3 and PIH1D1. Together with HSP90, it functions in the assembly of macromolecular complexes that are often involved in cell proliferation. Here, proteomic experiments using the isolated PIH domain reveals additional R2TP partners, including the Tuberous Sclerosis Complex (TSC) and many transcriptional complexes. The TSC is a key regulator of mTORC1 and is composed of TSC1, TSC2 and TBC1D7. We show a direct interaction of TSC1 with the PIH phospho-binding domain of PIH1D1, which is, surprisingly, phosphorylation independent. Via the use of mutants and KO cell lines, we observe that TSC2 makes independent interactions with HSP90 and the TPR domains of RPAP3. Moreover, inactivation of PIH1D1 or the RUVBL1/2 ATPase activity inhibits the association of TSC1 with TSC2. Taken together, these data suggest a model in which the R2TP recruits TSC1 via PIH1D1 and TSC2 via RPAP3 and HSP90, and use the chaperone-like activities of RUVBL1/2 to stimulate their assembly.
Collapse
Affiliation(s)
- Claire Abéza
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Philipp Busse
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana C F Paiva
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | - Justine Schneider
- LSMBO, IPHC, Université de Strasbourg, CNRS UMR7178, Strasbourg, France
| | - Marie-Cécile Robert
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France
| | | | | | | | - Pedro M F Sousa
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal
| | - Xavier Manival
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Sarah Cianferani
- LSMBO, IPHC, Université de Strasbourg, CNRS UMR7178, Strasbourg, France
| | - Edouard Bertrand
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France.
| | - Céline Verheggen
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France.
| |
Collapse
|
4
|
Garcia ABDM, Viola GD, Corrêa BDS, Fischer TDS, Pinho MCDF, Rodrigues GM, Ashton-Prolla P, Rosset C. An overview of actionable and potentially actionable TSC1 and TSC2 germline variants in an online Database. Genet Mol Biol 2024; 46:e20230132. [PMID: 38373162 PMCID: PMC10876083 DOI: 10.1590/1678-4685-gmb-2023-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/26/2023] [Indexed: 02/21/2024] Open
Abstract
Tuberous Sclerosis Complex (TSC) is caused by loss of function germline variants in the TSC1 or TSC2 tumor suppressor genes. Genetic testing for the detection of pathogenic variants in either TSC1 or TSC2 was implemented as a diagnostic criterion for TSC. However, TSC molecular diagnosis can be challenging due to the absence of variant hotspots and the high number of variants described. This review aimed to perform an overview of TSC1/2 variants submitted in the ClinVar database. Variants of uncertain significance (VUS), missense and single nucleotide variants were the most frequent in clinical significance (37-40%), molecular consequence (37%-39%) and variation type (82%-83%) categories in ClinVar in TSC1 and TSC2 variants, respectively. Frameshift and nonsense VUS have potential for pathogenic reclassification if further functional and segregation studies were performed. Indeed, there were few functional assays deposited in the database and literature. In addition, we did not observe hotspots for variation and many variants presented conflicting submissions regarding clinical significance. This study underscored the importance of disseminating molecular diagnostic results in a public database to render the information largely accessible and promote accurate diagnosis. We encourage the performance of functional studies evaluating the pathogenicity of TSC1/2 variants.
Collapse
Affiliation(s)
- Arthur Bandeira de Mello Garcia
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Guilherme Danielski Viola
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Bruno da Silveira Corrêa
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Taís da Silveira Fischer
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Maria Clara de Freitas Pinho
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Centro Universitário CESUCA, Cachoeirinha, RS, Brazil
| | - Grazielle Motta Rodrigues
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil
| | - Patricia Ashton-Prolla
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre, RS, Brazil
| | - Clévia Rosset
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Linde-Garelli KY, Rogala KB. Structural mechanisms of the mTOR pathway. Curr Opin Struct Biol 2023; 82:102663. [PMID: 37572585 DOI: 10.1016/j.sbi.2023.102663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 08/14/2023]
Abstract
The mTOR signaling pathway is essential for regulating cell growth and mammalian metabolism. The mTOR kinase forms two complexes, mTORC1 and mTORC2, which respond to external stimuli and regulate differential downstream targets. Cellular membrane-associated translocation mediates function and assembly of the mTOR complexes, and recent structural studies have begun uncovering the molecular basis by which the mTOR pathway (1) regulates signaling inputs, (2) recruits substrates, (3) localizes to biological membranes, and (4) becomes activated. Moreover, indications of dysregulated mTOR signaling are implicated in a wide range of diseases and an increasingly comprehensive understanding of structural mechanisms is driving novel translational development.
Collapse
Affiliation(s)
- Karen Y Linde-Garelli
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kacper B Rogala
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Kümmel D, Herrmann E, Langemeyer L, Ungermann C. Molecular insights into endolysosomal microcompartment formation and maintenance. Biol Chem 2022; 404:441-454. [PMID: 36503831 DOI: 10.1515/hsz-2022-0294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Abstract
The endolysosomal system of eukaryotic cells has a key role in the homeostasis of the plasma membrane, in signaling and nutrient uptake, and is abused by viruses and pathogens for entry. Endocytosis of plasma membrane proteins results in vesicles, which fuse with the early endosome. If destined for lysosomal degradation, these proteins are packaged into intraluminal vesicles, converting an early endosome to a late endosome, which finally fuses with the lysosome. Each of these organelles has a unique membrane surface composition, which can form segmented membrane microcompartments by membrane contact sites or fission proteins. Furthermore, these organelles are in continuous exchange due to fission and fusion events. The underlying machinery, which maintains organelle identity along the pathway, is regulated by signaling processes. Here, we will focus on the Rab5 and Rab7 GTPases of early and late endosomes. As molecular switches, Rabs depend on activating guanine nucleotide exchange factors (GEFs). Over the last years, we characterized the Rab7 GEF, the Mon1-Ccz1 (MC1) complex, and key Rab7 effectors, the HOPS complex and retromer. Structural and functional analyses of these complexes lead to a molecular understanding of their function in the context of organelle biogenesis.
Collapse
Affiliation(s)
- Daniel Kümmel
- Institute of Biochemistry, University of Münster , Corrensstraße 36 , D-48149 Münster , Germany
| | - Eric Herrmann
- Institute of Biochemistry, University of Münster , Corrensstraße 36 , D-48149 Münster , Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry section , Osnabrück University , Barbarastraße 13 , D-49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs) , Osnabrück University , Barbarastraße 11 , D-49076 Osnabrück , Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry section , Osnabrück University , Barbarastraße 13 , D-49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs) , Osnabrück University , Barbarastraße 11 , D-49076 Osnabrück , Germany
| |
Collapse
|
7
|
Rebaine Y, Nasser M, Girerd B, Leroux C, Cottin V. Tuberous sclerosis complex for the pulmonologist. Eur Respir Rev 2021; 30:30/161/200348. [PMID: 34348978 PMCID: PMC9488995 DOI: 10.1183/16000617.0348-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare multisystem genetic disorder affecting almost all organs with no sex predominance. TSC has an autosomal-dominant inheritance and is caused by a heterozygous mutation in either the TSC1 or TSC2 gene leading to hyperactivation of the mammalian target of rapamycin (mTOR). TSC is associated with several pulmonary manifestations including lymphangioleiomyomatosis (LAM), multifocal micronodular pneumocyte hyperplasia (MMPH) and chylous effusions. LAM is a multisystem disorder characterised by cystic destruction of lung parenchyma, and may occur in either the setting of TSC (TSC-LAM) or sporadically (S-LAM). LAM occurs in 30–40% of adult females with TSC at childbearing age and is considered a nonmalignant metastatic neoplasm of unknown origin. TSC-LAM is generally milder and, unlike S-LAM, may occur in males. It manifests as multiple, bilateral, diffuse and thin-walled cysts with normal intervening lung parenchyma on chest computed tomography. LAM is complicated by spontaneous pneumothoraces in up to 70% of patients, with a high recurrence rate. mTOR inhibitors are the treatment of choice for LAM with moderately impaired lung function or chylous effusion. MMPH, manifesting as multiple solid and ground-glass nodules on high-resolution computed tomography, is usually harmless with no need for treatment. Tuberous sclerosis complex is associated with diverse pulmonary manifestations including LAM, multiple micronodular pneumocyte hyperplasia and chylous effusions. LAM occurs in 30–40% of adult females with tuberous sclerosis complex.https://bit.ly/3iLqZ08
Collapse
Affiliation(s)
- Yasmine Rebaine
- Dept of Respiratory Medicine, National Reference Coordinating Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France.,Division of Pulmonology, Dept of Medicine, Hôpital Charles-LeMoyne, Montréal, QC, Canada.,Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Both authors contributed equally
| | - Mouhamad Nasser
- Dept of Respiratory Medicine, National Reference Coordinating Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France.,Both authors contributed equally
| | - Barbara Girerd
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Caroline Leroux
- Université Claude Bernard Lyon 1, Université de Lyon, INRAE, UMR754, Member of ERN-LUNG, RespiFil, OrphaLung, Lyon, France
| | - Vincent Cottin
- Dept of Respiratory Medicine, National Reference Coordinating Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France .,Université Claude Bernard Lyon 1, Université de Lyon, INRAE, UMR754, Member of ERN-LUNG, RespiFil, OrphaLung, Lyon, France
| |
Collapse
|
8
|
TSC1 binding to lysosomal PIPs is required for TSC complex translocation and mTORC1 regulation. Mol Cell 2021; 81:2705-2721.e8. [PMID: 33974911 DOI: 10.1016/j.molcel.2021.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/13/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022]
Abstract
The TSC complex is a critical negative regulator of the small GTPase Rheb and mTORC1 in cellular stress signaling. The TSC2 subunit contains a catalytic GTPase activating protein domain and interacts with multiple regulators, while the precise function of TSC1 is unknown. Here we provide a structural characterization of TSC1 and define three domains: a C-terminal coiled-coil that interacts with TSC2, a central helical domain that mediates TSC1 oligomerization, and an N-terminal HEAT repeat domain that interacts with membrane phosphatidylinositol phosphates (PIPs). TSC1 architecture, oligomerization, and membrane binding are conserved in fungi and humans. We show that lysosomal recruitment of the TSC complex and subsequent inactivation of mTORC1 upon starvation depend on the marker lipid PI3,5P2, demonstrating a role for lysosomal PIPs in regulating TSC complex and mTORC1 activity via TSC1. Our study thus identifies a vital role of TSC1 in TSC complex function and mTORC1 signaling.
Collapse
|
9
|
Ramlaul K, Fu W, Li H, de Martin Garrido N, He L, Trivedi M, Cui W, Aylett CHS, Wu G. Architecture of the Tuberous Sclerosis Protein Complex. J Mol Biol 2021; 433:166743. [PMID: 33307091 PMCID: PMC7840889 DOI: 10.1016/j.jmb.2020.166743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
The Tuberous Sclerosis Complex (TSC) protein complex (TSCC), comprising TSC1, TSC2, and TBC1D7, is widely recognised as a key integration hub for cell growth and intracellular stress signals upstream of the mammalian target of rapamycin complex 1 (mTORC1). The TSCC negatively regulates mTORC1 by acting as a GTPase-activating protein (GAP) towards the small GTPase Rheb. Both human TSC1 and TSC2 are important tumour suppressors, and mutations in them underlie the disease tuberous sclerosis. We used single-particle cryo-EM to reveal the organisation and architecture of the complete human TSCC. We show that TSCC forms an elongated scorpion-like structure, consisting of a central "body", with a "pincer" and a "tail" at the respective ends. The "body" is composed of a flexible TSC2 HEAT repeat dimer, along the surface of which runs the TSC1 coiled-coil backbone, breaking the symmetry of the dimer. Each end of the body is structurally distinct, representing the N- and C-termini of TSC1; a "pincer" is formed by the highly flexible N-terminal TSC1 core domains and a barbed "tail" makes up the TSC1 coiled-coil-TBC1D7 junction. The TSC2 GAP domain is found abutting the centre of the body on each side of the dimerisation interface, poised to bind a pair of Rheb molecules at a similar separation to the pair in activated mTORC1. Our architectural dissection reveals the mode of association and topology of the complex, casts light on the recruitment of Rheb to the TSCC, and also hints at functional higher order oligomerisation, which has previously been predicted to be important for Rheb-signalling suppression.
Collapse
Affiliation(s)
- Kailash Ramlaul
- Section for Structural Biology, Department of Infectious Disease, Imperial College London, Exhibition Road, London SW7 2BB, United Kingdom
| | - Wencheng Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences MOE, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences MOE, Shanghai Jiao Tong University, Shanghai, China
| | - Natàlia de Martin Garrido
- Section for Structural Biology, Department of Infectious Disease, Imperial College London, Exhibition Road, London SW7 2BB, United Kingdom
| | - Lin He
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Manjari Trivedi
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Christopher H S Aylett
- Section for Structural Biology, Department of Infectious Disease, Imperial College London, Exhibition Road, London SW7 2BB, United Kingdom.
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences MOE, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Yang H, Yu Z, Chen X, Li J, Li N, Cheng J, Gao N, Yuan HX, Ye D, Guan KL, Xu Y. Structural insights into TSC complex assembly and GAP activity on Rheb. Nat Commun 2021; 12:339. [PMID: 33436626 PMCID: PMC7804450 DOI: 10.1038/s41467-020-20522-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) integrates upstream stimuli and regulates cell growth by controlling the activity of mTORC1. TSC complex functions as a GTPase-activating protein (GAP) towards small GTPase Rheb and inhibits Rheb-mediated activation of mTORC1. Mutations in TSC genes cause tuberous sclerosis. In this study, the near-atomic resolution structure of human TSC complex reveals an arch-shaped architecture, with a 2:2:1 stoichiometry of TSC1, TSC2, and TBC1D7. This asymmetric complex consists of two interweaved TSC1 coiled-coil and one TBC1D7 that spans over the tail-to-tail TSC2 dimer. The two TSC2 GAP domains are symmetrically cradled within the core module formed by TSC2 dimerization domain and central coiled-coil of TSC1. Structural and biochemical analyses reveal TSC2 GAP-Rheb complimentary interactions and suggest a catalytic mechanism, by which an asparagine thumb (N1643) stabilizes γ-phosphate of GTP and accelerate GTP hydrolysis of Rheb. Our study reveals mechanisms of TSC complex assembly and GAP activity.
Collapse
Affiliation(s)
- Huirong Yang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Jiabei Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Jiaxuan Cheng
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Hai-Xin Yuan
- The Molecular and Cell Biology Research Lab, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Dan Ye
- The Molecular and Cell Biology Research Lab, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
11
|
Apken LH, Oeckinghaus A. The RAL signaling network: Cancer and beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 361:21-105. [PMID: 34074494 DOI: 10.1016/bs.ircmb.2020.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The RAL proteins RALA and RALB belong to the superfamily of small RAS-like GTPases (guanosine triphosphatases). RAL GTPases function as molecular switches in cells by cycling through GDP- and GTP-bound states, a process which is regulated by several guanine exchange factors (GEFs) and two heterodimeric GTPase activating proteins (GAPs). Since their discovery in the 1980s, RALA and RALB have been established to exert isoform-specific functions in central cellular processes such as exocytosis, endocytosis, actin organization and gene expression. Consequently, it is not surprising that an increasing number of physiological functions are discovered to be controlled by RAL, including neuronal plasticity, immune response, and glucose and lipid homeostasis. The critical importance of RAL GTPases for oncogenic RAS-driven cellular transformation and tumorigenesis still attracts most research interest. Here, RAL proteins are key drivers of cell migration, metastasis, anchorage-independent proliferation, and survival. This chapter provides an overview of normal and pathological functions of RAL GTPases and summarizes the current knowledge on the involvement of RAL in human disease as well as current therapeutic targeting strategies. In particular, molecular mechanisms that specifically control RAL activity and RAL effector usage in different scenarios are outlined, putting a spotlight on the complexity of the RAL GTPase signaling network and the emerging theme of RAS-independent regulation and relevance of RAL.
Collapse
Affiliation(s)
- Lisa H Apken
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany.
| |
Collapse
|
12
|
Chen Z, Malia PC, Hatakeyama R, Nicastro R, Hu Z, Péli-Gulli MP, Gao J, Nishimura T, Eskes E, Stefan CJ, Winderickx J, Dengjel J, De Virgilio C, Ungermann C. TORC1 Determines Fab1 Lipid Kinase Function at Signaling Endosomes and Vacuoles. Curr Biol 2020; 31:297-309.e8. [PMID: 33157024 DOI: 10.1016/j.cub.2020.10.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/25/2020] [Accepted: 10/08/2020] [Indexed: 01/17/2023]
Abstract
Organelles of the endomembrane system maintain their identity and integrity during growth or stress conditions by homeostatic mechanisms that regulate membrane flux and biogenesis. At lysosomes and endosomes, the Fab1 lipid kinase complex and the nutrient-regulated target of rapamycin complex 1 (TORC1) control the integrity of the endolysosomal homeostasis and cellular metabolism. Both complexes are functionally connected as Fab1-dependent generation of PI(3,5)P2 supports TORC1 activity. Here, we identify Fab1 as a target of TORC1 on signaling endosomes, which are distinct from multivesicular bodies, and provide mechanistic insight into their crosstalk. Accordingly, TORC1 can phosphorylate Fab1 proximal to its PI3P-interacting FYVE domain, which causes Fab1 to shift to signaling endosomes, where it generates PI(3,5)P2. This, in turn, regulates (1) vacuole morphology, (2) recruitment of TORC1 and the TORC1-regulatory Rag GTPase-containing EGO complex to signaling endosomes, and (3) TORC1 activity. Thus, our study unravels a regulatory feedback loop between TORC1 and the Fab1 complex that controls signaling at endolysosomes.
Collapse
Affiliation(s)
- Zilei Chen
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany
| | - Pedro Carpio Malia
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany
| | - Riko Hatakeyama
- Department of Biology, University of Fribourg, Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Raffaele Nicastro
- Department of Biology, University of Fribourg, Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Zehan Hu
- Department of Biology, University of Fribourg, Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Marie-Pierre Péli-Gulli
- Department of Biology, University of Fribourg, Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Jieqiong Gao
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany
| | - Taki Nishimura
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elja Eskes
- Functional Biology, KU Leuven, Kasteelpark Arensberg 31, 3000 Leuven, Belgium
| | - Christopher J Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Joris Winderickx
- Functional Biology, KU Leuven, Kasteelpark Arensberg 31, 3000 Leuven, Belgium
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, Chemin du Musée, CH-1700 Fribourg, Switzerland.
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany.
| |
Collapse
|
13
|
Natarajan N, Thiruvenkatam V. An Insight of Scientific Developments in TSC for Better Therapeutic Strategy. Curr Top Med Chem 2020; 20:2080-2093. [PMID: 32842942 DOI: 10.2174/1568026620666200825170355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/15/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disease, which is characterized by noncancerous tumors in multi-organ systems in the body. Mutations in the TSC1 or TSC2 genes are known to cause the disease. The resultant mutant proteins TSC1 (hamartin) and TSC2 (tuberin) complex evade its normal tumor suppressor function, which leads to abnormal cell growth and proliferation. Both TSC1 and TSC2 are involved in several protein-protein interactions, which play a significant role in maintaining cellular homeostasis. The recent biochemical, genetic, structural biology, clinical and drug discovery advancements on TSC give a useful insight into the disease as well as the molecular aspects of TSC1 and TSC2. The complex nature of TSC disease, a wide range of manifestations, mosaicism and several other factors limits the treatment choices. This review is a compilation of the course of TSC, starting from its discovery to the current findings that would take us a step ahead in finding a cure for TSC.
Collapse
Affiliation(s)
- Nalini Natarajan
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382355, India
| | - Vijay Thiruvenkatam
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382355, India
| |
Collapse
|
14
|
Tafur L, Kefauver J, Loewith R. Structural Insights into TOR Signaling. Genes (Basel) 2020; 11:E885. [PMID: 32759652 PMCID: PMC7464330 DOI: 10.3390/genes11080885] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/31/2022] Open
Abstract
The Target of Rapamycin (TOR) is a highly conserved serine/threonine protein kinase that performs essential roles in the control of cellular growth and metabolism. TOR acts in two distinct multiprotein complexes, TORC1 and TORC2 (mTORC1 and mTORC2 in humans), which maintain different aspects of cellular homeostasis and orchestrate the cellular responses to diverse environmental challenges. Interest in understanding TOR signaling is further motivated by observations that link aberrant TOR signaling to a variety of diseases, ranging from epilepsy to cancer. In the last few years, driven in large part by recent advances in cryo-electron microscopy, there has been an explosion of available structures of (m)TORC1 and its regulators, as well as several (m)TORC2 structures, derived from both yeast and mammals. In this review, we highlight and summarize the main findings from these reports and discuss both the fascinating and unexpected molecular biology revealed and how this knowledge will potentially contribute to new therapeutic strategies to manipulate signaling through these clinically relevant pathways.
Collapse
Affiliation(s)
- Lucas Tafur
- Department of Molecular Biology, University of Geneva, 30 quai Ernest-Ansermet, CH1211 Geneva, Switzerland; (L.T.); (J.K.)
| | - Jennifer Kefauver
- Department of Molecular Biology, University of Geneva, 30 quai Ernest-Ansermet, CH1211 Geneva, Switzerland; (L.T.); (J.K.)
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, 30 quai Ernest-Ansermet, CH1211 Geneva, Switzerland; (L.T.); (J.K.)
- Swiss National Centre for Competence in Research (NCCR) in Chemical Biology, University of Geneva, Sciences II, Room 3-308, 30 Quai Ernest-Ansermet, CH1211 Geneva, Switzerland
| |
Collapse
|
15
|
Hansmann P, Brückner A, Kiontke S, Berkenfeld B, Seebohm G, Brouillard P, Vikkula M, Jansen FE, Nellist M, Oeckinghaus A, Kümmel D. Structure of the TSC2 GAP Domain: Mechanistic Insight into Catalysis and Pathogenic Mutations. Structure 2020; 28:933-942.e4. [PMID: 32502382 DOI: 10.1016/j.str.2020.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/06/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
The TSC complex is the cognate GTPase-activating protein (GAP) for the small GTPase Rheb and a crucial regulator of the mechanistic target of rapamycin complex 1 (mTORC1). Mutations in the TSC1 and TSC2 subunits of the complex cause tuberous sclerosis complex (TSC). We present the crystal structure of the catalytic asparagine-thumb GAP domain of TSC2. A model of the TSC2-Rheb complex and molecular dynamics simulations suggest that TSC2 Asn1643 and Rheb Tyr35 are key active site residues, while Rheb Arg15 and Asp65, previously proposed as catalytic residues, contribute to the TSC2-Rheb interface and indirectly aid catalysis. The TSC2 GAP domain is further stabilized by interactions with other TSC2 domains. We characterize TSC2 variants that partially affect TSC2 functionality and are associated with atypical symptoms in patients, suggesting that mutations in TSC1 and TSC2 might predispose to neurological and vascular disorders without fulfilling the clinical criteria for TSC.
Collapse
Affiliation(s)
- Patrick Hansmann
- Westfälische Wilhelms-Universität, Institute of Biochemistry, Wilhelm Klemm-Str. 2, 48149 Münster, Germany
| | - Anne Brückner
- Westfälische Wilhelms-Universität, Institute of Biochemistry, Wilhelm Klemm-Str. 2, 48149 Münster, Germany; Westfälische Wilhelms-Universität, Institute of Molecular Tumor Biology, Robert-Koch-Str. 43, 48149 Münster, Germany
| | - Stephan Kiontke
- Philipps-Universität Marburg, Faculty of Biology, Department of Plant Physiology and Photobiology, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Bianca Berkenfeld
- Westfälische Wilhelms-Universität, Institute of Biochemistry, Wilhelm Klemm-Str. 2, 48149 Münster, Germany
| | - Guiscard Seebohm
- University Hospital Münster, Institute for Genetics of Heart Diseases, Department of Cardiovascular Medicine, Robert-Koch-Str. 45, 48149 Münster, Germany
| | - Pascal Brouillard
- Université Catholique de Louvain, de Duve Institute, Human Molecular Genetics, Brussels, Belgium
| | - Miikka Vikkula
- Université Catholique de Louvain, de Duve Institute, Human Molecular Genetics, Brussels, Belgium; WELBIO (Walloon Excellence in Lifesciences and Biotechnology), de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Floor E Jansen
- Department of Child Neurology, Brain Center UMC Utrecht, Utrecht, the Netherlands
| | - Mark Nellist
- Department of Clinical Genetics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Andrea Oeckinghaus
- Westfälische Wilhelms-Universität, Institute of Molecular Tumor Biology, Robert-Koch-Str. 43, 48149 Münster, Germany
| | - Daniel Kümmel
- Westfälische Wilhelms-Universität, Institute of Biochemistry, Wilhelm Klemm-Str. 2, 48149 Münster, Germany.
| |
Collapse
|
16
|
Dufner Almeida LG, Nanhoe S, Zonta A, Hosseinzadeh M, Kom-Gortat R, Elfferich P, Schaaf G, Kenter A, Kümmel D, Migone N, Povey S, Ekong R, Nellist M. Comparison of the functional and structural characteristics of rare TSC2 variants with clinical and genetic findings. Hum Mutat 2019; 41:759-773. [PMID: 31799751 PMCID: PMC7154745 DOI: 10.1002/humu.23963] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 01/09/2023]
Abstract
The TSC1 and TSC2 gene products interact to form the tuberous sclerosis complex (TSC), an important negative regulator of the mechanistic target of rapamycin complex 1 (TORC1). Inactivating mutations in TSC1 or TSC2 cause TSC, and the identification of a pathogenic TSC1 or TSC2 variant helps establish a diagnosis of TSC. However, it is not always clear whether TSC1 and TSC2 variants are inactivating. To determine whether TSC1 and TSC2 variants of uncertain clinical significance affect TSC complex function and cause TSC, in vitro assays of TORC1 activity can be employed. Here we combine genetic, functional, and structural approaches to try and classify a series of 15 TSC2 VUS. We investigated the effects of the variants on the formation of the TSC complex, on TORC1 activity and on TSC2 pre‐mRNA splicing. In 13 cases (87%), the functional data supported the hypothesis that the identified TSC2 variant caused TSC. Our results illustrate the benefits and limitations of functional testing for TSC.
Collapse
Affiliation(s)
- Luiz G Dufner Almeida
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Santoesha Nanhoe
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andrea Zonta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Mitra Hosseinzadeh
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Regina Kom-Gortat
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Peter Elfferich
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gerben Schaaf
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annegien Kenter
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Daniel Kümmel
- Biochemistry and Structural Biology Section, Institute of Biochemistry, University of Munster, Munster, Germany
| | - Nicola Migone
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sue Povey
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Rosemary Ekong
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Mark Nellist
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Uchenunu O, Pollak M, Topisirovic I, Hulea L. Oncogenic kinases and perturbations in protein synthesis machinery and energetics in neoplasia. J Mol Endocrinol 2019; 62:R83-R103. [PMID: 30072418 PMCID: PMC6347283 DOI: 10.1530/jme-18-0058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/01/2018] [Indexed: 12/17/2022]
Abstract
Notwithstanding that metabolic perturbations and dysregulated protein synthesis are salient features of cancer, the mechanism underlying coordination of cellular energy balance with mRNA translation (which is the most energy consuming process in the cell) is poorly understood. In this review, we focus on recently emerging insights in the molecular underpinnings of the cross-talk between oncogenic kinases, translational apparatus and cellular energy metabolism. In particular, we focus on the central signaling nodes that regulate these processes (e.g. the mechanistic/mammalian target of rapamycin MTOR) and the potential implications of these findings on improving the anti-neoplastic efficacy of oncogenic kinase inhibitors.
Collapse
Affiliation(s)
- Oro Uchenunu
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada
- Department of Experimental Medicine, Montreal, Quebec, Canada
| | - Michael Pollak
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada
- Department of Experimental Medicine, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Montreal, Quebec, Canada
| | - Ivan Topisirovic
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada
- Department of Experimental Medicine, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Montreal, Quebec, Canada
- Biochemistry Department, McGill University, Montreal, Quebec, Canada
| | - Laura Hulea
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Montreal, Quebec, Canada
- Correspondence should be addressed to L Hulea:
| |
Collapse
|
18
|
Li B, Xi P, Wang Z, Han X, Xu Y, Zhang Y, Miao J. PI3K/Akt/mTOR signaling pathway participates in Streptococcus uberis-induced inflammation in mammary epithelial cells in concert with the classical TLRs/NF-ĸB pathway. Vet Microbiol 2018; 227:103-111. [PMID: 30473339 DOI: 10.1016/j.vetmic.2018.10.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022]
Abstract
Mammary epithelial cells (MECs) play an important role in debating Streptococcus uberis (S. uberis) infection. Toll like receptor (TLR) engagement leads to the recruitment of phosphatidylinositol 3 kinases (PI3K). In order to investigate the relationship of TLRs/NF-κB and PI3K/Akt/mTOR signaling pathways in S. uberis infection in MECs, we challenged MECs (EpH4-Ev) with S. uberis 0140 J and quantified the adaptor molecules in these two signaling pathways, as-well-as proinflammatory cytokines and cell damage. The results indicate that the host's responses to virulent S. uberis infection are complex. In MECs, both TLR2 and TLR4 are detecting S. uberis infection and TLR2 is the principal receptor. The role of the PI3K/Akt/mTOR pathway in inflammatory regulation is independent of the activation of TLRs/NF-κB. Cross-talk between PI3K/Akt/mTOR and TLRs/NF-κB signaling pathways promote inflammation. This study increases our understanding of the molecular defense mechanisms of MECs in S. uberis mastitis, and provides theoretical support for the prevention of this disease.
Collapse
Affiliation(s)
- Bin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Panpan Xi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanshu Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
19
|
Peron A, Au KS, Northrup H. Genetics, genomics, and genotype-phenotype correlations of TSC: Insights for clinical practice. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:281-290. [PMID: 30255984 DOI: 10.1002/ajmg.c.31651] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 01/28/2023]
Abstract
Tuberous Sclerosis Complex (TSC) is a multisystem autosomal dominant condition caused by inactivating pathogenic variants in either the TSC1 or the TSC2 gene, leading to hyperactivation of the mTOR pathway. Here, we present an update on the genetic and genomic aspects of TSC, with a focus on clinical and laboratory practice. We briefly summarize the structure of TSC1 and TSC2 as well as their protein products, and discuss current diagnostic testing, addressing mosaicism. We consider genotype-phenotype correlations as an example of precision medicine, and discuss genetic counseling in TSC, with the aim of providing geneticists and health care practitioners involved in the care of TSC individuals with useful tools for their practice.
Collapse
Affiliation(s)
- Angela Peron
- Child Neuropsychiatry Unit-Epilepsy Center (Service of Medical Genetics), San Paolo Hospital, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,Department of Pediatrics, Division of Medical Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Kit Sing Au
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Hope Northrup
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
20
|
Abstract
Background The protein kinase Target Of Rapamycin (TOR) is a nexus for the regulation of eukaryotic cell growth. TOR assembles into one of two distinct signalling complexes, TOR complex 1 (TORC1) and TORC2 (mTORC1/2 in mammals), with a set of largely non-overlapping protein partners. (m)TORC1 activation occurs in response to a series of stimuli relevant to cell growth, including nutrient availability, growth factor signals and stress, and regulates much of the cell's biosynthetic activity, from proteins to lipids, and recycling through autophagy. mTORC1 regulation is of great therapeutic significance, since in humans many of these signalling complexes, alongside subunits of mTORC1 itself, are implicated in a wide variety of pathophysiologies, including multiple types of cancer, neurological disorders, neurodegenerative diseases and metabolic disorders including diabetes. Methodology Recent years have seen numerous structures determined of (m)TOR, which have provided mechanistic insight into (m)TORC1 activation in particular, however the integration of cellular signals occurs upstream of the kinase and remains incompletely understood. Here we have collected and analysed in detail as many as possible of the molecular and structural studies which have shed light on (m)TORC1 repression, activation and signal integration. Conclusions A molecular understanding of this signal integration pathway is required to understand how (m)TORC1 activation is reconciled with the many diverse and contradictory stimuli affecting cell growth. We discuss the current level of molecular understanding of the upstream components of the (m)TORC1 signalling pathway, recent progress on this key biochemical frontier, and the future studies necessary to establish a mechanistic understanding of this master-switch for eukaryotic cell growth.
Collapse
Affiliation(s)
- Kailash Ramlaul
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| | - Christopher H S Aylett
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
21
|
Wang F, Xiong S, Wu L, Chopra M, Hu X, Wu B. A novel TSC2 missense variant associated with a variable phenotype of tuberous sclerosis complex: case report of a Chinese family. BMC MEDICAL GENETICS 2018; 19:90. [PMID: 29843636 PMCID: PMC5975528 DOI: 10.1186/s12881-018-0611-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/18/2018] [Indexed: 11/10/2022]
Abstract
Background Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder characterized by the development of hamartomas in multiple organs, including the brain, heart, skin, kidney, lung and retina. A diagnosis of TSC is established with a recently revised clinical/radiological set of criteria and/or a causative mutation in TSC1 or TSC2 gene. Case presentation We report a Chinese TSC family with two siblings presenting with multiple hypomelanotic macules, cardiac rhabdomyomas and cortical tubers associated with a small subependymal nodule. The older child had seizures. A novel heterozygous missense variant in the TSC2 gene (c.899G > T, p.G300 V) was identified and shown to be inherited from their father as well as paternal grandfather, both of whom presented with variable TSC-associated signs and symptoms. Conclusion We identified a novel heterozygous TSC2 variant c.899G > T as the causative mutation in a Chinese family with TSC, resulting in wide intrafamilial phenotypic variability. Our study illustrates the importance of clinical evaluation and genetic testing for family members of the patient affected with TSC.
Collapse
Affiliation(s)
- Feng Wang
- Department of Cardiology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, People's Republic of China
| | - Shiyi Xiong
- Fetal Medicine Unit & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lin Wu
- Department of Cardiology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, People's Republic of China.
| | - Maya Chopra
- Fetal Medicine Unit & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Department of Medical Genomics, Royal Prince Alfred Hospital, Missenden Road, Sydney, NSW, Australia
| | - Xihong Hu
- Department of Radiology, Children's Hospital of Fudan University, Shanghai, People's Republic of China
| | - Bingbing Wu
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Zhao Y, Zhang Y, Li J, Zheng N, Xu X, Yang J, Xia G, Zhang M. MAPK3/1 participates in the activation of primordial follicles through mTORC1-KITL signaling. J Cell Physiol 2017; 233:226-237. [PMID: 28218391 DOI: 10.1002/jcp.25868] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/17/2017] [Indexed: 12/13/2022]
Abstract
The majority of ovarian primordial follicles are preserved in a dormant state to maintain the female reproductive lifespan, and only a few primordial follicles are activated to enter the growing follicle pool in each wave. Recent studies have shown that primordial follicular activation depends on mammalian target of rapamycin complex 1 (mTORC1)-KIT ligand (KITL) signaling in pre-granulosa cells and its receptor (KIT)-phosphoinositol 3 kinase (PI3K) signaling in oocytes. However, the upstream regulator of mTORC1 signaling is unclear. The results of the present study showed that the phosphorylated mitogen-activated protein kinase3/1 (MAPK3/1) protein is expressed in some primordial follicles and all growing follicles. Culture of 3 days post-parturition (dpp) ovaries with the MAPK3/1 signaling inhibitor U0126 significantly reduced the number of activated follicles and was accompanied by dramatically reduced granulosa cell proliferation and increased oocyte apoptosis. Western blot and immunofluorescence analyses showed that U0126 significantly decreased the phosphorylation levels of Tsc2, S6K1, and rpS6 and the expression of KITL, indicating that U0126 inhibits mTORC1-KITL signaling. Furthermore, U0126 decreased the phosphorylation levels of Akt, resulting in a decreased number of oocytes with Foxo3 nuclear export. To further investigate MAPK3/1 signaling in primordial follicle activation, we used phosphatase and tensin homolog deleted on chromosome 10 (PTEN) inhibitor bpV(HOpic) to promote primordial follicle activation. In this model, U0126 also inhibited the activation of primordial follicles and mTORC1 signaling. Thus, these results suggest that MAPK3/1 participates in primordial follicle activation through mTORC1-KITL signaling.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Yu Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jia Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Nana Zheng
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Xiaoting Xu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jing Yang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Guoliang Xia
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Meijia Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
23
|
Somatic Mutations in TSC1 and TSC2 Cause Focal Cortical Dysplasia. Am J Hum Genet 2017; 100:454-472. [PMID: 28215400 DOI: 10.1016/j.ajhg.2017.01.030] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/23/2017] [Indexed: 12/18/2022] Open
Abstract
Focal cortical dysplasia (FCD) is a major cause of the sporadic form of intractable focal epilepsies that require surgical treatment. It has recently been reported that brain somatic mutations in MTOR account for 15%-25% of FCD type II (FCDII), characterized by cortical dyslamination and dysmorphic neurons. However, the genetic etiologies of FCDII-affected individuals who lack the MTOR mutation remain unclear. Here, we performed deep hybrid capture and amplicon sequencing (read depth of 100×-20,012×) of five important mTOR pathway genes-PIK3CA, PIK3R2, AKT3, TSC1, and TSC2-by using paired brain and saliva samples from 40 FCDII individuals negative for MTOR mutations. We found that 5 of 40 individuals (12.5%) had brain somatic mutations in TSC1 (c.64C>T [p.Arg22Trp] and c.610C>T [p.Arg204Cys]) and TSC2 (c.4639G>A [p.Val1547Ile]), and these results were reproducible on two different sequencing platforms. All identified mutations induced hyperactivation of the mTOR pathway by disrupting the formation or function of the TSC1-TSC2 complex. Furthermore, in utero CRISPR-Cas9-mediated genome editing of Tsc1 or Tsc2 induced the development of spontaneous behavioral seizures, as well as cytomegalic neurons and cortical dyslamination. These results show that brain somatic mutations in TSC1 and TSC2 cause FCD and that in utero application of the CRISPR-Cas9 system is useful for generating neurodevelopmental disease models of somatic mutations in the brain.
Collapse
|