1
|
Budaitis BG, Jariwala S, Rao L, Yue Y, Sept D, Verhey KJ, Gennerich A. Pathogenic mutations in the kinesin-3 motor KIF1A diminish force generation and movement through allosteric mechanisms. J Cell Biol 2021; 220:e202004227. [PMID: 33496723 PMCID: PMC7844421 DOI: 10.1083/jcb.202004227] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/27/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
The kinesin-3 motor KIF1A functions in neurons, where its fast and superprocessive motility facilitates long-distance transport, but little is known about its force-generating properties. Using optical tweezers, we demonstrate that KIF1A stalls at an opposing load of ~3 pN but more frequently detaches at lower forces. KIF1A rapidly reattaches to the microtubule to resume motion due to its class-specific K-loop, resulting in a unique clustering of force generation events. To test the importance of neck linker docking in KIF1A force generation, we introduced mutations linked to human neurodevelopmental disorders. Molecular dynamics simulations predict that V8M and Y89D mutations impair neck linker docking. Indeed, both mutations dramatically reduce the force generation of KIF1A but not the motor's ability to rapidly reattach to the microtubule. Although both mutations relieve autoinhibition of the full-length motor, the mutant motors display decreased velocities, run lengths, and landing rates and delayed cargo transport in cells. These results advance our understanding of how mutations in KIF1A can manifest in disease.
Collapse
Affiliation(s)
- Breane G. Budaitis
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI
| | - Shashank Jariwala
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Lu Rao
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Kristen J. Verhey
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Arne Gennerich
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY
| |
Collapse
|
2
|
Varela PF, Chenon M, Velours C, Verhey KJ, Ménétrey J, Gigant B. Structural snapshots of the kinesin-2 OSM-3 along its nucleotide cycle: implications for the ATP hydrolysis mechanism. FEBS Open Bio 2021; 11:564-577. [PMID: 33513284 PMCID: PMC7931232 DOI: 10.1002/2211-5463.13101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 11/09/2022] Open
Abstract
Motile kinesins are motor proteins that translocate along microtubules as they hydrolyze ATP. They share a conserved motor domain which harbors both ATPase and microtubule-binding activities. An ATP hydrolysis mechanism involving two water molecules has been proposed based on the structure of the kinesin-5 Eg5 bound to an ATP analog. Whether this mechanism is general in the kinesin superfamily remains uncertain. Here, we present structural snapshots of the motor domain of OSM-3 along its nucleotide cycle. OSM-3 belongs to the homodimeric kinesin-2 subfamily and is the Caenorhabditis elegans homologue of human KIF17. OSM-3 bound to ADP or devoid of a nucleotide shows features of ADP-kinesins with a docked neck linker. When bound to an ATP analog, OSM-3 adopts a conformation similar to those of several ATP-like kinesins, either isolated or bound to tubulin. Moreover, the OSM-3 nucleotide-binding site is virtually identical to that of ATP-like Eg5, demonstrating a shared ATPase mechanism. Therefore, our data extend to kinesin-2 the two-water ATP hydrolysis mechanism and further suggest that it is universal within the kinesin superfamily. PROTEIN DATABASE ENTRIES: 7A3Z, 7A40, 7A5E.
Collapse
Affiliation(s)
- Paloma F Varela
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Mélanie Chenon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Christophe Velours
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Julie Ménétrey
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Benoît Gigant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
3
|
Kim CD, Kim ED, Liu L, Buckley RS, Parameswaran S, Kim S, Wojcik EJ. Small molecule allosteric uncoupling of microtubule depolymerase activity from motility in human Kinesin-5 during mitotic spindle assembly. Sci Rep 2019; 9:19900. [PMID: 31882607 PMCID: PMC6934681 DOI: 10.1038/s41598-019-56173-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/06/2019] [Indexed: 01/22/2023] Open
Abstract
Human Kinesin-5 (Eg5) has a large number of known allosteric inhibitors that disrupt its mitotic function. Small-molecule inhibitors of Eg5 are candidate anti-cancer agents and important probes for understanding the cellular function. Here we show that Eg5 is capable of more than one type of microtubule interaction, and these activities can be controlled by allosteric agents. While both monastrol and S-trityl-L-cysteine inhibit Eg5 motility, our data reveal an unexpected ability of these loop5 targeting inhibitors to differentially control a novel Eg5 microtubule depolymerizing activity. Remarkably, small molecule loop5 effectors are able to independently modulate discrete functional interactions between the motor and microtubule track. We establish that motility can be uncoupled from the microtubule depolymerase activity and argue that loop5-targeting inhibitors of Kinesin-5 should not all be considered functionally synonymous. Also, the depolymerizing activity of the motor does not contribute to the genesis of monopolar spindles during allosteric inhibition of motility, but instead reveals a new function. We propose that, in addition to its canonical role in participating in the construction of the three-dimensional mitotic spindle structure, Eg5 also plays a distinct role in regulating the dynamics of individual microtubules, and thereby impacts the density of the mitotic spindle.
Collapse
Affiliation(s)
- Catherine D Kim
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Elizabeth D Kim
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Liqiong Liu
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Rebecca S Buckley
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Sreeja Parameswaran
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Sunyoung Kim
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Edward J Wojcik
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA.
| |
Collapse
|
4
|
Horovitz A, Fleisher RC, Mondal T. Double-mutant cycles: new directions and applications. Curr Opin Struct Biol 2019; 58:10-17. [PMID: 31029859 DOI: 10.1016/j.sbi.2019.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022]
Abstract
Double-mutant cycle (DMC) analysis is a powerful approach for detecting and quantifying the energetics of both direct and long-range interactions in proteins and other chemical systems. It can also be used to unravel higher-order interactions (e.g. three-body effects) that lead to cooperativity in protein folding and function. In this review, we describe new applications of DMC analysis based on advances in native mass spectrometry and high-throughput methods such as next generation sequencing and protein complementation assays. These developments have facilitated carrying out high-throughput DMC analysis, which can be used to characterize increasingly higher-order interactions and very large interaction networks in proteins. Such studies have provided insights into the extent of cooperativity (epistasis) in protein structures. High-throughput DMC studies have also been used to validate correlated mutation analysis and can provide restraints for protein docking.
Collapse
Affiliation(s)
- Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Rachel C Fleisher
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tridib Mondal
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Mutations close to a hub residue affect the distant active site of a GH1 β-glucosidase. PLoS One 2018; 13:e0198696. [PMID: 29874288 PMCID: PMC5991390 DOI: 10.1371/journal.pone.0198696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/23/2018] [Indexed: 01/09/2023] Open
Abstract
The tertiary structure of proteins has been represented as a network, in which residues are nodes and their contacts are edges. Protein structure networks contain residues, called hubs or central, which are essential to form short connection pathways between any pair of nodes. Hence hub residues may effectively spread structural perturbations through the protein. To test whether modifications nearby to hub residues could affect the enzyme active site, mutations were introduced in the β-glycosidase Sfβgly (PDB-ID: 5CG0) directed to residues that form an α-helix (260–265) and a β-strand (335–337) close to one of its main hub residues, F251, which is approximately 14 Å from the Sfβgly active site. Replacement of residues A263 and A264, which side-chains project from the α-helix towards F251, decreased the rate of substrate hydrolysis. Mutation A263F was shown to weaken noncovalent interactions involved in transition state stabilization within the Sfβgly active site. Mutations placed on the opposite side of the same α-helix did not show these effects. Consistently, replacement of V336, which side-chain protrudes from a β-strand face towards F251, inactivated Sfβgly. Next to V336, mutation S337F also caused a decrease in noncovalent interactions involved in transition state stabilization. Therefore, we suggest that mutations A263F, A264F, V336F and S337F may directly perturb the position of the hub F251, which could propagate these perturbations into the Sfβgly active site through short connection pathways along the protein network.
Collapse
|
6
|
Kinesin 6 Regulation in Drosophila Female Meiosis by the Non-conserved N- and C- Terminal Domains. G3-GENES GENOMES GENETICS 2018. [PMID: 29514846 PMCID: PMC5940148 DOI: 10.1534/g3.117.300571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bipolar spindle assembly occurs in the absence of centrosomes in the oocytes of most organisms. In the absence of centrosomes in Drosophila oocytes, we have proposed that the kinesin 6 Subito, a MKLP-2 homolog, is required for establishing spindle bipolarity and chromosome biorientation by assembling a robust central spindle during prometaphase I. Although the functions of the conserved motor domains of kinesins is well studied, less is known about the contribution of the poorly conserved N- and C- terminal domains to motor function. In this study, we have investigated the contribution of these domains to kinesin 6 functions in meiosis and early embryonic development. We found that the N-terminal domain has antagonistic elements that regulate localization of the motor to microtubules. Other parts of the N- and C-terminal domains are not required for microtubule localization but are required for motor function. Some of these elements of Subito are more important for either mitosis or meiosis, as revealed by separation-of-function mutants. One of the functions for both the N- and C-terminals domains is to restrict the CPC to the central spindle in a ring around the chromosomes. We also provide evidence that CDK1 phosphorylation of Subito regulates its activity associated with homolog bi-orientation. These results suggest the N- and C-terminal domains of Subito, while not required for localization to the central spindle microtubules, have important roles regulating Subito, by interacting with other spindle proteins and promoting activities such as bipolar spindle formation and homologous chromosome bi-orientation during meiosis.
Collapse
|
7
|
Yue Y, Blasius TL, Zhang S, Jariwala S, Walker B, Grant BJ, Cochran JC, Verhey KJ. Altered chemomechanical coupling causes impaired motility of the kinesin-4 motors KIF27 and KIF7. J Cell Biol 2018; 217:1319-1334. [PMID: 29351996 PMCID: PMC5881503 DOI: 10.1083/jcb.201708179] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/28/2017] [Accepted: 01/02/2018] [Indexed: 01/08/2023] Open
Abstract
Kinesin-4 motors play important roles in cell division, microtubule organization, and signaling. Understanding how motors perform their functions requires an understanding of their mechanochemical and motility properties. We demonstrate that KIF27 can influence microtubule dynamics, suggesting a conserved function in microtubule organization across the kinesin-4 family. However, kinesin-4 motors display dramatically different motility characteristics: KIF4 and KIF21 motors are fast and processive, KIF7 and its Drosophila melanogaster homologue Costal2 (Cos2) are immotile, and KIF27 is slow and processive. Neither KIF7 nor KIF27 can cooperate for fast processive transport when working in teams. The mechanistic basis of immotile KIF7 behavior arises from an inability to release adenosine diphosphate in response to microtubule binding, whereas slow processive KIF27 behavior arises from a slow adenosine triphosphatase rate and a high affinity for both adenosine triphosphate and microtubules. We suggest that evolutionarily selected sequence differences enable immotile KIF7 and Cos2 motors to function not as transporters but as microtubule-based tethers of signaling complexes.
Collapse
Affiliation(s)
- Yang Yue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - T Lynne Blasius
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Stephanie Zhang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN
| | - Shashank Jariwala
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Benjamin Walker
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN
| | - Barry J Grant
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Jared C Cochran
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
8
|
Atherton J, Yu IM, Cook A, Muretta JM, Joseph A, Major J, Sourigues Y, Clause J, Topf M, Rosenfeld SS, Houdusse A, Moores CA. The divergent mitotic kinesin MKLP2 exhibits atypical structure and mechanochemistry. eLife 2017; 6:27793. [PMID: 28826477 PMCID: PMC5602324 DOI: 10.7554/elife.27793] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/07/2017] [Indexed: 01/17/2023] Open
Abstract
MKLP2, a kinesin-6, has critical roles during the metaphase-anaphase transition and cytokinesis. Its motor domain contains conserved nucleotide binding motifs, but is divergent in sequence (~35% identity) and size (~40% larger) compared to other kinesins. Using cryo-electron microscopy and biophysical assays, we have undertaken a mechanochemical dissection of the microtubule-bound MKLP2 motor domain during its ATPase cycle, and show that many facets of its mechanism are distinct from other kinesins. While the MKLP2 neck-linker is directed towards the microtubule plus-end in an ATP-like state, it does not fully dock along the motor domain. Furthermore, the footprint of the MKLP2 motor domain on the MT surface is altered compared to motile kinesins, and enhanced by kinesin-6-specific sequences. The conformation of the highly extended loop6 insertion characteristic of kinesin-6s is nucleotide-independent and does not contact the MT surface. Our results emphasize the role of family-specific insertions in modulating kinesin motor function. Cells constantly replicate to provide new cells for growing tissues, and to replace ageing or defective cells around the body. Each new cell needs a copy of the genetic material, and a cellular structure called the mitotic spindle makes sure that this material is shared correctly when a cell divides in two. The spindle is built from protein filaments called microtubules, and the protein filaments grow and shrink as the mitotic spindle carries out its role. Many of these changes in the spindle are driven by proteins called molecular motors, which break down energy-rich molecules of ATP to power them as they walk along the filaments. Kinesins, for example, are molecular motors that can move along microtubules and there are over 40 different kinesins encoded in the human genome. More than half of the human kinesins are involved in cell division including one called MKLP2. Little is known about MKLP2 but some earlier findings had suggested that it would behave very differently compared to other kinesins. Understanding how a kinesin motor works requires studying it in complex with its microtubule tracks. Atherton, Yu et al. have now used a technique called cryo-electron microscopy – which is uniquely suited to looking at large and complicated samples in three dimensions – to observe how the motor in MKLP2 changes shape as it works. This revealed that, while MKLP2 works in a fundamentally similar way to other kinesins, many aspects of its molecular mechanism are highly unusual. These include how it binds to the microtubule, how it interacts with ATP and how it generates force. These findings show that there is much greater diversity in the molecular mechanisms of the kinesins involved in cell division than was previously thought. Several anticancer drugs target kinesins to stop cells dividing and so this diversity may make it easier to target only certain kinesins with drugs, which in turn would have fewer side effects. First, though, it will be important to find out how the unusual mechanism of MKLP2 coordinates and influences other components of the spindle to reveal a fuller picture of what happens when cells replicate.
Collapse
Affiliation(s)
- Joseph Atherton
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - I-Mei Yu
- Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Paris, France
| | - Alexander Cook
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Joseph M Muretta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United Sates
| | - Agnel Joseph
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Jennifer Major
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
| | - Yannick Sourigues
- Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Paris, France
| | - Jeffrey Clause
- Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Paris, France
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Steven S Rosenfeld
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
| | - Anne Houdusse
- Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Paris, France
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| |
Collapse
|