1
|
Song X, Pang Y, Wei Y, Yu D, Wang Y, Gao J, Zhang S, Wu Q, Wang J, Zhao S, Deng W. Filamin A suppresses the expression of ribosomal protein genes by controlling the activity of an EGR1-Sp1-GCN5/PCAF pathway in human cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119914. [PMID: 39938690 DOI: 10.1016/j.bbamcr.2025.119914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/21/2024] [Accepted: 01/26/2025] [Indexed: 02/14/2025]
Abstract
Human ribosome biogenesis requires four types of rRNA molecules and almost eighty cytoplasmic ribosomal proteins (CRPs) to be assembled together. . In the previous work, we showed that cytoskeletal filamin A (FLNA) can suppress rRNA expression in human cells. Thus, we hypothesized that FLNA can modulate the expression of CRPs because human cells have to coordinate cellular ribosome biogenesis. Here, we show that the absence of FLNA enhances the expression of most CRP genes assayed in the work, whereas the presence of FLNA dampens the expression of these CRP genes in several transformed cell types. The analysis of RNA-seq data revealed that FLNA silencing activated the expression of almost all CRPs and many mitochondrial RP genes in SaOS2 cells. These results indicate that FLNA acts as a negative regulator in CRP expression in human cells. Mechanistically, FLNA inhibits the expression of GCN5 and PCAF, which consequently impedes the occupancies of GCN5, PCAF, andH3K9ac at CRP gene loci. Both GCN5 and PCAF participates in the regulation of CRP expression either mediated by FLNA or independently. We show that FLNA silencing activates Sp1 expression and the activation of Sp1 stimulates the expression of Gcn5 and Pcaf genes. Further analysis revealed that EGR1 can bind the Sp1 gene promoter and activate Sp1 transcription. Collectively, this study revealed an EGR1-Sp1-GCN5/PCAF pathway by which FLNA modulates the expression of CRP genes. These findings shed light on how human cells coordinate the expression of CRP genes during ribosomal biogenesis.
Collapse
Affiliation(s)
- Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, China
| | - Yaoyu Pang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Yun Wei
- School of Life Science and Health, Wuhan University of Science and Technology, China
| | - Deen Yu
- School of Life Science and Health, Wuhan University of Science and Technology, China
| | - Ye Wang
- School of Life Science and Health, Wuhan University of Science and Technology, China
| | - Junwei Gao
- School of Life Science and Health, Wuhan University of Science and Technology, China
| | - Shuting Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Juan Wang
- School of Life Science and Health, Wuhan University of Science and Technology, China.
| | - Shasha Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, China.
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, China.
| |
Collapse
|
2
|
Saha S, Mukherjee B, Banerjee P, Das D. The 'Not-So-Famous Five' in tumorigenesis: tRNAs, tRNA fragments, and tRNA epitranscriptome in concert with AARSs and AIMPs. Biochimie 2024; 222:45-62. [PMID: 38401639 DOI: 10.1016/j.biochi.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
RNA profiling studies have revealed that ∼75% of the human genome is transcribed to RNA but only a meagre fraction of it is translated to proteins. Majority of transcribed RNA constitute a specialized pool of non-coding RNAs. Human genome contains approximately 506 genes encoding a set of 51 different tRNAs, constituting a unique class of non-coding RNAs that not only have essential housekeeping functions as translator molecules during protein synthesis, but have numerous uncharted regulatory functions. Intriguing findings regarding a variety of non-canonical functions of tRNAs, tRNA derived fragments (tRFs), esoteric epitranscriptomic modifications of tRNAs, along with aminoacyl-tRNA synthetases (AARSs) and ARS-interacting multifunctional proteins (AIMPs), envision a 'peripheral dogma' controlling the flow of genetic information in the backdrop of qualitative information wrung out of the long-live central dogma of molecular biology, to drive cells towards either proliferation or differentiation programs. Our review will substantiate intriguing peculiarities of tRNA gene clusters, atypical tRNA-transcription from internal promoters catalysed by another distinct RNA polymerase enzyme, dynamically diverse tRNA epitranscriptome, intricate mechanism of tRNA-charging by AARSs governing translation fidelity, epigenetic regulation of gene expression by tRNA fragments, and the role of tRNAs and tRNA derived/associated molecules as quantitative determinants of the functional proteome, covertly orchestrating the process of tumorigenesis, through a deregulated tRNA-ome mediating selective codon-biased translation of cancer related gene transcripts.
Collapse
Affiliation(s)
- Sutapa Saha
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India.
| | - Biyas Mukherjee
- Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata, 700064, India
| | - Proma Banerjee
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India
| | - Debadrita Das
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India
| |
Collapse
|
3
|
Tian K, Wang R, Huang J, Wang H, Ji X. Subcellular localization shapes the fate of RNA polymerase III. Cell Rep 2023; 42:112941. [PMID: 37556328 DOI: 10.1016/j.celrep.2023.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
RNA polymerase III (Pol III) plays a vital role in transcription and as a viral-DNA sensor, but how it is assembled and distributed within cells remains poorly understood. Here, we show that Pol III is assembled with chaperones in the cytoplasm and forms transcription-dependent protein clusters upon transport into the nucleus. The largest subunit (RPC1) depletion through an auxin-inducible degron leads to rapid degradation and disassembly of Pol III complex in the nucleus and cytoplasm, respectively. This generates a pool of partially assembled Pol III intermediates, which can be rapidly mobilized into the nucleus upon the restoration of RPC1. Our study highlights the critical role of subcellular localization in determining Pol III's fate and provides insight into the dynamic regulation of nuclear Pol III levels and the origin of cytoplasmic Pol III complexes involved in mediating viral immunity.
Collapse
Affiliation(s)
- Kai Tian
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Rui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Zhang Y, Pang Y, Zhang K, Song X, Gao J, Zhang S, Deng W. RNA polymerase I subunit RPA43 activates rRNA expression and cell proliferation but inhibits cell migration. Biochim Biophys Acta Gen Subj 2023:130411. [PMID: 37343605 DOI: 10.1016/j.bbagen.2023.130411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/21/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
The products synthesized by RNA polymerase I (Pol I) play fundamental roles in several cellular processes, including ribosomal biogenesis, protein synthesis, cell metabolism, and growth. Deregulation of Pol I products can cause various diseases such as ribosomopathies, leukaemia, and solid tumours. However, the detailed mechanism of Pol I-directed transcription remains elusive, and the roles of Pol I subunits in rRNA synthesis and cellular activities still need clarification. In this study, we found that RPA43 expression levels positively correlate with Pol I product accumulation and cell proliferation, indicating that RPA43 activates these processes. Unexpectedly, RPA43 depletion promoted HeLa cell migration, suggesting that RPA43 functions as a negative regulator in cell migration. Mechanistically, RPA43 positively modulates the recruitment of Pol I transcription machinery factors to the rDNA promoter by activating the transcription of the genes encoding Pol I transcription machinery factors. RPA43 inhibits cell migration by dampening the expression of c-JUN and Integrin. Collectively, we found that RPA43 plays opposite roles in cell proliferation and migration except for driving Pol I-dependent transcription. These findings provide novel insights into the regulatory mechanism of Pol I-mediated transcription and cell proliferation and a potential pathway to developing anti-cancer drugs using RPA43 as a target.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei province 430065, China
| | - Yaoyu Pang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7GE, UK
| | - Kewei Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei province 430065, China
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei province 430065, China
| | - Junwei Gao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei province 430065, China
| | - Shuting Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei province 430065, China
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei province 430065, China.
| |
Collapse
|
5
|
Zhang C, Wang J, Song X, Yu D, Guo B, Pang Y, Yin X, Zhao S, Deng H, Zhang S, Deng W. STAT3 potentiates RNA polymerase I-directed transcription and tumor growth by activating RPA34 expression. Br J Cancer 2023; 128:766-782. [PMID: 36526675 PMCID: PMC9977892 DOI: 10.1038/s41416-022-02098-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Deregulation of either RNA polymerase I (Pol I)-directed transcription or expression of signal transducer and activator of transcription 3 (STAT3) correlates closely with tumorigenesis. However, the connection between STAT3 and Pol I-directed transcription hasn't been investigated. METHODS The role of STAT3 in Pol I-directed transcription was determined using combined techniques. The regulation of tumor cell growth mediated by STAT3 and Pol I products was analyzed in vitro and in vivo. RNAseq, ChIP assays and rescue assays were used to uncover the mechanism of Pol I transcription mediated by STAT3. RESULTS STAT3 expression positively correlates with Pol I product levels and cancer cell growth. The inhibition of STAT3 or Pol I products suppresses cell growth. Mechanistically, STAT3 activates Pol I-directed transcription by enhancing the recruitment of the Pol I transcription machinery to the rDNA promoter. STAT3 directly activates Rpa34 gene transcription by binding to the RPA34 promoter, which enhances the occupancies of the Pol II transcription machinery factors at this promoter. Cancer patients with RPA34 high expression lead to poor survival probability and short survival time. CONCLUSION STAT3 potentiates Pol I-dependent transcription and tumor cell growth by activating RPA34 in vitro and in vivo.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Juan Wang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Deen Yu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Baoqiang Guo
- Department of Life Sciences, Manchester Metropolitan University, Manchester, M15 6BH, UK
| | - Yaoyu Pang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK
| | - Xiaomei Yin
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shasha Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Huan Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Shihua Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
6
|
Wang J, Chen Q, Peng F, Zhao S, Zhang C, Song X, Yu D, Wu Z, Du J, Ni H, Deng H, Deng W. Transcription factor AP-2α activates RNA polymerase III-directed transcription and tumor cell proliferation by controlling expression of c-MYC and p53. J Biol Chem 2023; 299:102945. [PMID: 36707053 PMCID: PMC9999235 DOI: 10.1016/j.jbc.2023.102945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Deregulation of transcription factor AP2 alpha (TFAP2A) and RNA polymerase III (Pol III) products is associated with tumorigenesis. However, the mechanism underlying this event is not fully understood and the connection between TFAP2A and Pol III-directed transcription has not been investigated. Here, we report that TFAP2A functions as a positive factor in the regulation of Pol III-directed transcription and cell proliferation. We found TFAP2A is also required for the activation of Pol III transcription induced by the silencing of filamin A, a well-known cytoskeletal protein and an inhibitor in Pol III-dependent transcription identified previously. Using a chromatin immunoprecipitation technique, we showed TFAP2A positively modulates the assembly of Pol III transcription machinery factors at Pol III-transcribed gene loci. We found TFAP2A can activate the expression of Pol III transcription-related factors, including BRF1, GTF3C2, and c-MYC. Furthermore, we demonstrate TFAP2A enhances expression of MDM2, a negative regulator of tumor suppressor p53, and also inhibits p53 expression. Finally, we found MDM2 overexpression can rescue the inhibition of Pol III-directed transcription and cell proliferation caused by TFAP2A silencing. In summary, we identified that TFAP2A can activate Pol III-directed transcription by controlling multiple pathways, including general transcription factors, c-MYC and MDM2/p53. The findings from this study provide novel insights into the regulatory mechanisms of Pol III-dependent transcription and cancer cell proliferation.
Collapse
Affiliation(s)
- Juan Wang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China; School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
| | - Qiyue Chen
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Feixia Peng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shasha Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Cheng Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Deen Yu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Zhongyu Wu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Jiannan Du
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Hongwei Ni
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, China.
| | - Huan Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Wang J, Chen Q, Wang X, Zhao S, Deng H, Guo B, Zhang C, Song X, Deng W, Zhang T, Ni H. TFIIB-related factor 1 is a nucleolar protein that promotes RNA polymerase I-directed transcription and tumour cell growth. Hum Mol Genet 2023; 32:104-121. [PMID: 35925837 DOI: 10.1093/hmg/ddac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic RNA polymerase I (Pol I) products play fundamental roles in ribosomal assembly, protein synthesis, metabolism and cell growth. Abnormal expression of both Pol I transcription-related factors and Pol I products causes a range of diseases, including ribosomopathies and cancers. However, the factors and mechanisms governing Pol I-dependent transcription remain to be elucidated. Here, we report that transcription factor IIB-related factor 1 (BRF1), a subunit of transcription factor IIIB required for RNA polymerase III (Pol III)-mediated transcription, is a nucleolar protein and modulates Pol I-mediated transcription. We showed that BRF1 can be localized to the nucleolus in several human cell types. BRF1 expression correlates positively with Pol I product levels and tumour cell growth in vitro and in vivo. Pol III transcription inhibition assays confirmed that BRF1 modulates Pol I-directed transcription in an independent manner rather than through a Pol III product-to-45S pre-rRNA feedback mode. Mechanistically, BRF1 binds to the Pol I transcription machinery components and can be recruited to the rDNA promoter along with them. Additionally, alteration of BRF1 expression affects the recruitment of Pol I transcription machinery components to the rDNA promoter and the expression of TBP and TAF1A. These findings indicate that BRF1 modulates Pol I-directed transcription by controlling the expression of selective factor 1 subunits. In summary, we identified a novel role of BRF1 in Pol I-directed transcription, suggesting that BRF1 can independently regulate both Pol I- and Pol III-mediated transcription and act as a key coordinator of Pol I and Pol III.
Collapse
Affiliation(s)
- Juan Wang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China.,School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qiyue Chen
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xin Wang
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, UK
| | - Shasha Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Baoqiang Guo
- School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Cheng Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Tongcun Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hongwei Ni
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
8
|
Early Growth Response 1 Strengthens Pol-III-Directed Transcription and Transformed Cell Proliferation by Controlling PTEN/AKT Signalling Activity. Int J Mol Sci 2022; 23:ijms23094930. [PMID: 35563324 PMCID: PMC9105817 DOI: 10.3390/ijms23094930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
RNA polymerase III (Pol III) products play essential roles in ribosome assembly, protein synthesis, and cell survival. Deregulation of Pol-III-directed transcription is closely associated with tumorigenesis. However, the regulatory pathways or factors controlling Pol-III-directed transcription remain to be investigated. In this study, we identified a novel role of EGR1 in Pol-III-directed transcription. We found that Filamin A (FLNA) silencing stimulated EGR1 expression at both RNA and protein levels. EGR1 expression positively correlated with Pol III product levels and cell proliferation activity. Mechanistically, EGR1 downregulation dampened the occupancies of Pol III transcription machinery factors at the loci of Pol III target genes. Alteration of EGR1 expression did not affect the expression of p53, c-MYC, and Pol III general transcription factors. Instead, EGR1 activated RhoA expression and inhibited PTEN expression in several transformed cell lines. We found that PTEN silencing, rather than RhoA overexpression, could reverse the inhibition of Pol-III-dependent transcription and cell proliferation caused by EGR1 downregulation. EGR1 could positively regulate AKT phosphorylation levels and is required for the inhibition of Pol-III-directed transcription mediated by FLNA. The findings from this study indicate that EGR1 can promote Pol-III-directed transcription and cell proliferation by controlling the PTEN/AKT signalling pathway.
Collapse
|
9
|
Zhang C, Zhao H, Song X, Wang J, Zhao S, Deng H, He L, Zhou X, Yin X, Zhang K, Zhang Y, Wu Z, Chen Q, Du J, Yu D, Zhang S, Deng W. Transcription factor GATA4 drives RNA polymerase III-directed transcription and transformed cell proliferation through a filamin A/GATA4/SP1 pathway. J Biol Chem 2022; 298:101581. [PMID: 35038452 PMCID: PMC8857480 DOI: 10.1016/j.jbc.2022.101581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022] Open
Abstract
RNA polymerase III (pol III) products play fundamental roles in a variety of cellular processes, including protein synthesis and cancer cell proliferation. In addition, dysregulation of pol III-directed transcription closely correlates with tumorigenesis. It is therefore of interest to identify novel pathways or factors governing pol III-directed transcription. Here, we show that transcription factor (TF) GATA binding protein 4 (GATA4) expression in SaOS2 cells was stimulated by the silencing of filamin A (FLNA), a repressor of pol III-directed transcription, suggesting that GATA4 is potentially associated with the regulation of pol III-directed transcription. Indeed, we show that GATA4 expression positively correlates with pol III-mediated transcription and tumor cell proliferation. Mechanistically, we found that GATA4 depletion inhibits the occupancies of the pol III transcription machinery factors at the loci of pol III target genes by reducing expression of both TFIIIB subunit TFIIB-related factor 1 and TFIIIC subunit general transcription factor 3C subunit 2 (GTF3C2). GATA4 has been shown to activate specificity factor 1 (Sp1) gene transcription by binding to the Sp1 gene promoter, and Sp1 has been confirmed to activate pol III gene transcription by directly binding to both Brf1 and Gtf3c2 gene promoters. Thus, the findings from this study suggest that GATA4 links FLNA and Sp1 signaling to form an FLNA/GATA4/Sp1 axis to modulate pol III-directed transcription and transformed cell proliferation. Taken together, these results provide novel insights into the regulatory mechanism of pol III-directed transcription.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Houliang Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Wang
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
| | - Shasha Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Liu He
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiangyu Zhou
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaomei Yin
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kewei Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yue Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Zhongyu Wu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Qiyue Chen
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Jiannan Du
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Deen Yu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shihua Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Novel role of CAP1 in regulation RNA polymerase II-mediated transcription elongation depends on its actin-depolymerization activity in nucleoplasm. Oncogene 2021; 40:3492-3509. [PMID: 33911205 DOI: 10.1038/s41388-021-01789-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 02/02/2023]
Abstract
Lung cancer is one of the most intractable diseases with high incidence and mortality worldwide. Adenylate cyclase-associated protein 1 (CAP1), a well-known actin depolymerization factor, is recently reported to be an oncogene accelerating cancer cell proliferation. However, the physiological significance of CAP1 in lung cancer is incompletely understood and the novel functions of CAP1 in transcriptional regulation remain unknown. Here we found that CAP1 was highly expressed in lung cancer tissues and cells, which was also negatively associated with prognosis in lung cancer patients. Moreover, CAP1 promoted A549 cells proliferation by promoting protein synthesis to accelerate cell cycle progression. Mechanistically, we revealed that CAP1 facilitated cyclin-dependent kinase 9 (CDK9)-mediated RNA polymerases (Pol) II-Ser2 phosphorylation and subsequent transcription elongation, and CAP1 performed its function in this progress depending on its actin-depolymerization activity in nucleoplasm. Furthermore, our in vivo findings confirmed that CAP1-promoted A549 xenograft tumor growth was associated with CDK9-mediated Pol II-Ser2 phosphorylation. Our study elucidates a novel role of CAP1 in modulating transcription by promoting polymerase II phosphorylation and suggests that CAP1 is a newly identified biomarker for lung cancer treatment and prognosis prediction.
Collapse
|
11
|
Zhang P, Yu C, Yu J, Li Z, Lan HY, Zhou Q. Arid2-IR promotes NF-κB-mediated renal inflammation by targeting NLRC5 transcription. Cell Mol Life Sci 2021; 78:2387-2404. [PMID: 33090288 PMCID: PMC11072509 DOI: 10.1007/s00018-020-03659-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Increasing evidence shows that long non-coding RNAs (lncRNAs) play an important role in a variety of disorders including kidney diseases. It is well recognized that inflammation is the initial step of kidney injury and is largely mediated by nuclear factor Kappa B (NF-κB) signaling. We had previously identified lncRNA-Arid2-IR is an inflammatory lncRNA associated with NF-κB-mediated renal injury. In this study, we examined the regulatory mechanism through which Arid2-IR activates NF-κB signaling. We found that Arid2-IR was differentially expressed in response to various kidney injuries and was induced by transforming growth factor beta 1(TGF-β1). Using RNA sequencing and luciferase assays, we found that Arid2-IR regulated the activity of NF-κB signal via NLRC5-dependent mechanism. Arid2-IR masked the promoter motifs of NLRC5 to inhibit its transcription. In addition, during inflammatory response, Filamin A (Flna) was increased and functioned to trap Arid2-IR in cytoplasm, thereby preventing its nuclear translocation and inhibition of NLRC5 transcription. Thus, lncRNA Arid2-IR mediates NF-κB-driven renal inflammation via a NLRC5-dependent mechanism and targeting Arid2-IR may be a novel therapeutic strategy for inflammatory diseases in general.
Collapse
Affiliation(s)
- Puhua Zhang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan Road II, Guangzhou, 510080, Guangdong, China
- National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Chaolun Yu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jianwen Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan Road II, Guangzhou, 510080, Guangdong, China
- National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Zhijian Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan Road II, Guangzhou, 510080, Guangdong, China
- National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Qin Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan Road II, Guangzhou, 510080, Guangdong, China.
- National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
- Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
12
|
Sharma A, Batra J, Stuchlik O, Reed MS, Pohl J, Chow VTK, Sambhara S, Lal SK. Influenza A Virus Nucleoprotein Activates the JNK Stress-Signaling Pathway for Viral Replication by Sequestering Host Filamin A Protein. Front Microbiol 2020; 11:581867. [PMID: 33101257 PMCID: PMC7546217 DOI: 10.3389/fmicb.2020.581867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
Influenza A virus (IAV) poses a major threat to global public health and is known to employ various strategies to usurp the host machinery for survival. Due to its fast-evolving nature, IAVs tend to escape the effect of available drugs and vaccines thus, prompting the development of novel antiviral strategies. High-throughput mass spectrometric screen of host-IAV interacting partners revealed host Filamin A (FLNA), an actin-binding protein involved in regulating multiple signaling pathways, as an interaction partner of IAV nucleoprotein (NP). In this study, we found that the IAV NP interrupts host FLNA-TRAF2 interaction by interacting with FLNA thus, resulting in increased levels of free, displaced TRAF2 molecules available for TRAF2-ASK1 mediated JNK pathway activation, a pathway critical to maintaining efficient viral replication. In addition, siRNA-mediated FLNA silencing was found to promote IAV replication (87% increase) while FLNA-overexpression impaired IAV replication (65% decrease). IAV NP was observed to be a crucial viral factor required to attain FLNA mRNA and protein attenuation post-IAV infection for efficient viral replication. Our results reveal FLNA to be a host factor with antiviral potential hitherto unknown to be involved in the IAV replication cycle thus, opening new possibilities of FLNA-NP interaction as a candidate anti-influenza drug development target.
Collapse
Affiliation(s)
- Anshika Sharma
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Jyoti Batra
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Olga Stuchlik
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Matthew S Reed
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jan Pohl
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Vincent T K Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Sunil K Lal
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
13
|
Peng F, Zhou Y, Wang J, Guo B, Wei Y, Deng H, Wu Z, Zhang C, Shi K, Li Y, Wang X, Shore P, Zhao S, Deng W. The transcription factor Sp1 modulates RNA polymerase III gene transcription by controlling BRF1 and GTF3C2 expression in human cells. J Biol Chem 2020; 295:4617-4630. [PMID: 32115405 DOI: 10.1074/jbc.ra119.011555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/16/2020] [Indexed: 01/10/2023] Open
Abstract
Specificity protein 1 (Sp1) is an important transcription factor implicated in numerous cellular processes. However, whether Sp1 is involved in the regulation of RNA polymerase III (Pol III)-directed gene transcription in human cells remains unknown. Here, we first show that filamin A (FLNA) represses Sp1 expression as well as expression of TFIIB-related factor 1 (BRF1) and general transcription factor III C subunit 2 (GTF3C2) in HeLa, 293T, and SaOS2 cell lines stably expressing FLNA-silencing shRNAs. Both BRF1 promoter 4 (BRF1P4) and GTF3C2 promoter 2 (GTF3C2P2) contain putative Sp1-binding sites, suggesting that Sp1 affects Pol III gene transcription by regulating BRF1 and GTF3C2 expression. We demonstrate that Sp1 knockdown inhibits Pol III gene transcription, BRF1 and GTF3C2 expression, and the proliferation of 293T and HeLa cells, whereas Sp1 overexpression enhances these activities. We obtained a comparable result in a cell line in which both FLNA and Sp1 were depleted. These results indicate that Sp1 is involved in the regulation of Pol III gene transcription independently of FLNA expression. Reporter gene assays showed that alteration of Sp1 expression affects BRF1P4 and GTF3C2P2 activation, suggesting that Sp1 modulates Pol III-mediated gene transcription by controlling BRF1 and GTF3C2 gene expression. Further analysis revealed that Sp1 interacts with and thereby promotes the occupancies of TATA box-binding protein, TFIIAα, and p300 at both BRF1P4 and GTF3C2P2. These findings indicate that Sp1 controls Pol III-directed transcription and shed light on how Sp1 regulates cancer cell proliferation.
Collapse
Affiliation(s)
- Feixia Peng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ying Zhou
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Juan Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Baoqiang Guo
- Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | - Yun Wei
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zihui Wu
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Cheng Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Kaituo Shi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuan Li
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xin Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Paul Shore
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
14
|
|
15
|
Santos M, Fidalgo A, Varanda AS, Oliveira C, Santos MAS. tRNA Deregulation and Its Consequences in Cancer. Trends Mol Med 2019; 25:853-865. [PMID: 31248782 DOI: 10.1016/j.molmed.2019.05.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
The expression of transfer RNAs (tRNAs) is deregulated in cancer cells but the mechanisms and functional meaning of such deregulation are poorly understood. The proteome of cancer cells is not fully encoded by their transcriptome, however, the contribution of mRNA translation to such diversity remains to be elucidated. We review data supporting the hypothesis that tRNA expression deregulation and translational error rate is an important contributor to proteome diversity and cell population heterogeneity, genome instability, and drug resistance in tumors. This hypothesis is aligned with recent data in various model organisms, showing unanticipated adaptive roles of translational errors (adaptive mistranslation), expression control of specific gene subsets by tRNAs, and proteome diversification by elevation of translational error rates in tumors.
Collapse
Affiliation(s)
- Mafalda Santos
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal; Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Fidalgo
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - A Sofia Varanda
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal; Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Carla Oliveira
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal; Department of Pathology, Medical Faculty of Porto, Porto, Portugal.
| | - Manuel A S Santos
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|