1
|
Halverson-Kolkind K, C. Thorn D, Tovar-Ramirez M, Shakhnovich E, David L, Lampi K. The Eye Lens Protein, γS Crystallin, Undergoes Glutathionylation-Induced Disulfide Bonding Between Cysteines 22 and 26. Biomolecules 2025; 15:402. [PMID: 40149938 PMCID: PMC11940727 DOI: 10.3390/biom15030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
The oxidation of cysteines in crystallins is a major age-related modification associated with cataract formation. The purpose of this research was to determine the susceptibility of γS-crystallin to glutathionylation-induced oxidation and disulfide bond formation. Recombinantly expressed wild-type human γS-crystallin and four cysteine-to-serine mutants were reduced and incubated for up to 2 days with oxidized glutathione. Following incubation and alkylation, the overall degree of glutathionylation and disulfide bond formation were determined by whole-mass measurement. Tryptic digests were also analyzed by LC-MS/MS to identify specific sites of S-glutathionylation and disulfide linkages. We determined that C22, C24, and C26 undergo glutathione-mediated disulfide interchange with each other, with C24 being most susceptible to oxidation and mixed disulfide formation. Our data suggest C24 is S-glutathionylated sequentially with C22 and C26 participating in disulfide exchange reactions, yielding a major species with a single glutathionylation at C24 and a disulfide between C22 and C26. The results imply that as glutathione levels are depleted in aged lenses, γS-crystallin undergoes stepwise oxidation reactions and disulfide shuffling, which may contribute towards its aggregation and cataract formation.
Collapse
Affiliation(s)
- Kate Halverson-Kolkind
- Biomaterials and Biomedical Science, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA (M.T.-R.)
| | - David C. Thorn
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Martin Tovar-Ramirez
- Biomaterials and Biomedical Science, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA (M.T.-R.)
| | - Eugene Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Larry David
- Chemical Physiology & Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Kirsten Lampi
- Biomaterials and Biomedical Science, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA (M.T.-R.)
| |
Collapse
|
2
|
Volz S, Malone JR, Guseman AJ, Gronenborn AM, Marqusee S. Cataract-prone variants of γD-crystallin populate a conformation with a partially unfolded N-terminal domain under native conditions. Proc Natl Acad Sci U S A 2025; 122:e2410860122. [PMID: 39899721 PMCID: PMC11831119 DOI: 10.1073/pnas.2410860122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025] Open
Abstract
Human γD-crystallin, a monomeric protein abundant in the eye lens nucleus, must remain stably folded for an individual's entire lifetime to avoid aggregation and protein deposition-associated cataract formation. γD-crystallin contains two homologous domains, an N-terminal domain (NTD) and a C-terminal domain (CTD), which interact via a hydrophobic interface. Several familial mutations in the gamma crystallin gene are linked to congenital early-onset cataract, most of which affect the NTD. Some of these, including V75D and W42R, are known to populate intermediates under partially denaturing conditions possessing a natively folded CTD and a completely unfolded NTD. We employed hydrogen-deuterium exchange mass spectrometry to probe the structural and energetic features of variants of γD-crystallin under both native and partially denaturing conditions. For V75D and W42R, we identify a species under native conditions that retains partial structure in the NTD and is structurally and energetically distinct from the intermediate populated under partially denaturing conditions. Residues at the NTD-CTD interface play crucial roles in stabilizing this intermediate, and disruption of interface contacts either by amino acid substitution or partial denaturation permits direct observation of two intermediates simultaneously. These data suggest that the intermediate identified under native conditions is accessed from the native state and not on the folding pathway. The intermediate we have identified here exposes hydrophobic amino acids that are buried in both the folded full-length protein and in the protein's stable isolated domains. Such nonnative exposure of a hydrophobic patch may play an important role in cataract formation.
Collapse
Affiliation(s)
- Sara Volz
- Biophysics Graduate Program, University of California, Berkeley, CA94305
- California Institute for Quantitative Biosciences, Berkeley, CA94305
| | - Jadyn R. Malone
- California Institute for Quantitative Biosciences, Berkeley, CA94305
| | - Alex J. Guseman
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Angela M. Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Susan Marqusee
- California Institute for Quantitative Biosciences, Berkeley, CA94305
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94305
- Department of Chemistry, University of California, Berkeley, CA94305
| |
Collapse
|
3
|
Cvekl A, Vijg J. Aging of the eye: Lessons from cataracts and age-related macular degeneration. Ageing Res Rev 2024; 99:102407. [PMID: 38977082 DOI: 10.1016/j.arr.2024.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Aging is the greatest risk factor for chronic human diseases, including many eye diseases. Geroscience aims to understand the effects of the aging process on these diseases, including the genetic, molecular, and cellular mechanisms that underlie the increased risk of disease over the lifetime. Understanding of the aging eye increases general knowledge of the cellular physiology impacted by aging processes at various biological extremes. Two major diseases, age-related cataract and age-related macular degeneration (AMD) are caused by dysfunction of the lens and retina, respectively. Lens transparency and light refraction are mediated by lens fiber cells lacking nuclei and other organelles, which provides a unique opportunity to study a single aging hallmark, i.e., loss of proteostasis, within an environment of limited metabolism. In AMD, local dysfunction of the photoreceptors/retinal pigmented epithelium/Bruch's membrane/choriocapillaris complex in the macula leads to the loss of photoreceptors and eventually loss of central vision, and is driven by nearly all the hallmarks of aging and shares features with Alzheimer's disease, Parkinson's disease, cardiovascular disease, and diabetes. The aging eye can function as a model for studying basic mechanisms of aging and, vice versa, well-defined hallmarks of aging can be used as tools to understand age-related eye disease.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Jan Vijg
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
4
|
Nam Y, Ji YJ, Shin SJ, Park HH, Yeon SH, Kim SY, Son RH, Jang GY, Kim HD, Moon M. Platycodon grandiflorum root extract inhibits Aβ deposition by breaking the vicious circle linking oxidative stress and neuroinflammation in Alzheimer's disease. Biomed Pharmacother 2024; 177:117090. [PMID: 38968796 DOI: 10.1016/j.biopha.2024.117090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease accompanied by irreversible cognitive impairment. A deleterious feedback loop between oxidative stress and neuroinflammation in early AD exacerbates AD-related pathology. Platycodon grandiflorum root extract (PGE) has antioxidant and anti-inflammatory effects in several organs. However, the mechanisms underlying the effects of PGE in the brain remain unclear, particularly regarding its impact on oxidative/inflammatory damage and Aβ deposition. Thus, we aim to identify the mechanism through which PGE inhibits Aβ deposition and oxidative stress in the brain by conducting biochemical and histological analyses. First, to explore the antioxidant mechanism of PGE in the brain, we induced oxidative stress in mice injected with scopolamine and investigated the effect of PGE on cognitive decline and oxidative damage. We also assessed the effect of PGE on reactive oxygen species (ROS) generation and the expressions of antioxidant enzymes and neurotrophic factor in H2O2- and Aβ-treated HT22 hippocampal cells. Next, we investigated whether PGE, which showed antioxidant effects, could reduce Aβ deposition by mitigating neuroinflammation, especially microglial phagocytosis. We directly verified the effect of PGE on microglial phagocytosis, microglial activation markers, and pro-inflammatory cytokines in Aβ-treated BV2 microglial cells. Moreover, we examined the effect of PGE on neuroinflammation, inducing microglial responses in Aβ-overexpressing 5XFAD transgenic mice. PGE exerts antioxidant effects in the brain, enhances microglial phagocytosis of Aβ, and inhibits neuroinflammation and Aβ deposition, ultimately preventing neuronal cell death in AD. Taken together, our findings indicate that the therapeutic potential of PGE in AD is mediated by its targeting of multiple pathological processes.
Collapse
Affiliation(s)
- Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Yun-Jeong Ji
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Eumsung 27709, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Sung-Hum Yeon
- Healthcare Research Division, HuonsGlobal Bldg., A-dong Pangyo I-Square, 17, Changeop-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do 13449, Republic of Korea
| | - Sang-Yoon Kim
- Healthcare Research Division, HuonsGlobal Bldg., A-dong Pangyo I-Square, 17, Changeop-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do 13449, Republic of Korea
| | - Rak Ho Son
- Healthcare Research Division, HuonsGlobal Bldg., A-dong Pangyo I-Square, 17, Changeop-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do 13449, Republic of Korea
| | - Gwi Yeong Jang
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Eumsung 27709, Republic of Korea
| | - Hyung Don Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Eumsung 27709, Republic of Korea; Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea.
| |
Collapse
|
5
|
Sharma S, Deep S. Inhibition of fibril formation by polyphenols: molecular mechanisms, challenges, and prospective solutions. Chem Commun (Camb) 2024; 60:6717-6727. [PMID: 38835221 DOI: 10.1039/d4cc00822g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Fibril formation is a key feature in neurodegenerative diseases like Alzheimer's, Parkinson's, and systemic amyloidosis. Polyphenols, found in plant-based foods, show promise in inhibiting fibril formation and disrupting disease progression. The ability of polyphenols to break the amyloid fibrils of many disease-linked proteins has been tested in numerous studies. Polyphenols have their distinctive mechanism of action. They behave differently on various events in the aggregation pathway. Their action also differs for different proteins. Some polyphenols only inhibit the formation of fibrils whereas others break the preformed fibrils. Some break the fibrils into smaller species, and some change them to other morphologies. This article delves into the intricate molecular mechanisms underlying the inhibitory effects of polyphenols on fibrillogenesis, shedding light on their interactions with amyloidogenic proteins and the disruption of fibril assembly pathways. However, addressing the challenges associated with solubility, stability, and bioavailability of polyphenols is crucial. The current strategies involve nanotechnology to improve the solubility and bioavailability, thus showing the potential to enhance the efficacy of polyphenols as therapeutics. Advancements in structural biology, computational modeling, and biophysics have provided insights into polyphenol-fibril interactions, offering hope for novel therapies for neurodegenerative diseases and amyloidosis.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
6
|
Serebryany E, Martin RW, Takahashi GR. The Functional Significance of High Cysteine Content in Eye Lens γ-Crystallins. Biomolecules 2024; 14:594. [PMID: 38786000 PMCID: PMC11118217 DOI: 10.3390/biom14050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Cataract disease is strongly associated with progressively accumulating oxidative damage to the extremely long-lived crystallin proteins of the lens. Cysteine oxidation affects crystallin folding, interactions, and light-scattering aggregation especially strongly due to the formation of disulfide bridges. Minimizing crystallin aggregation is crucial for lifelong lens transparency, so one might expect the ubiquitous lens crystallin superfamilies (α and βγ) to contain little cysteine. Yet, the Cys content of γ-crystallins is well above the average for human proteins. We review literature relevant to this longstanding puzzle and take advantage of expanding genomic databases and improved machine learning tools for protein structure prediction to investigate it further. We observe remarkably low Cys conservation in the βγ-crystallin superfamily; however, in γ-crystallin, the spatial positioning of Cys residues is clearly fine-tuned by evolution. We propose that the requirements of long-term lens transparency and high lens optical power impose competing evolutionary pressures on lens βγ-crystallins, leading to distinct adaptations: high Cys content in γ-crystallins but low in βB-crystallins. Aquatic species need more powerful lenses than terrestrial ones, which explains the high methionine content of many fish γ- (and even β-) crystallins. Finally, we discuss synergies between sulfur-containing and aromatic residues in crystallins and suggest future experimental directions.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Physiology & Biophysics, Stony Brook University, SUNY, Stony Brook, NY 11794, USA
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, SUNY, Stony Brook, NY 11794, USA
| | - Rachel W. Martin
- Department of Chemistry, UCI Irvine, Irvine, CA 92697-2025, USA
- Department of Molecular Biology & Biochemistry, UCI Irvine, Irvine, CA 92697-3900, USA
| | - Gemma R. Takahashi
- Department of Molecular Biology & Biochemistry, UCI Irvine, Irvine, CA 92697-3900, USA
| |
Collapse
|
7
|
Son K, Jeong S, Eom E, Kwon D, Kang S. MARCH5 promotes STING pathway activation by suppressing polymer formation of oxidized STING. EMBO Rep 2023; 24:e57496. [PMID: 37916870 PMCID: PMC10702817 DOI: 10.15252/embr.202357496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
Stimulator of interferon genes (STING) is a core DNA sensing adaptor in innate immune signaling. STING activity is regulated by a variety of post-translational modifications (PTMs), including phosphorylation, ubiquitination, sumoylation, palmitoylation, and oxidation, as well as the balance between active and inactive polymer formation. It remains unclear, though, how different PTMs and higher order structures cooperate to regulate STING activity. Here, we report that the mitochondrial ubiquitin ligase MARCH5 (Membrane Associated Ring-CH-type Finger 5, also known as MITOL) ubiquitinates STING and enhances its activation. A long-term MARCH5 deficiency, in contrast, leads to the production of reactive oxygen species, which then facilitate the formation of inactive STING polymers by oxidizing mouse STING cysteine 205. We show that MARCH5-mediated ubiquitination of STING prevents the oxidation-induced STING polymer formation. Our findings highlight that MARCH5 balances STING ubiquitination and polymer formation and its control of STING activation is contingent on oxidative conditions.
Collapse
Affiliation(s)
- Kyungpyo Son
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Seokhwan Jeong
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Eunchong Eom
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Dohyeong Kwon
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
- Present address:
BOOSTIMMUNE, IncSeoulRepublic of Korea
| | - Suk‐Jo Kang
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| |
Collapse
|
8
|
Bitran A, Park K, Serebryany E, Shakhnovich EI. Co-translational formation of disulfides guides folding of the SARS-CoV-2 receptor binding domain. Biophys J 2023; 122:3238-3253. [PMID: 37422697 PMCID: PMC10465708 DOI: 10.1016/j.bpj.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/27/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023] Open
Abstract
Many secreted proteins, including viral proteins, contain multiple disulfide bonds. How disulfide formation is coupled to protein folding in the cell remains poorly understood at the molecular level. Here, we combine experiment and simulation to address this question as it pertains to the SARS-CoV-2 receptor binding domain (RBD). We show that the RBD can only refold reversibly if its native disulfides are present before folding. But in their absence, the RBD spontaneously misfolds into a nonnative, molten-globule-like state that is structurally incompatible with complete disulfide formation and that is highly prone to aggregation. Thus, the RBD native structure represents a metastable state on the protein's energy landscape with reduced disulfides, indicating that nonequilibrium mechanisms are needed to ensure native disulfides form before folding. Our atomistic simulations suggest that this may be achieved via co-translational folding during RBD secretion into the endoplasmic reticulum. Namely, at intermediate translation lengths, native disulfide pairs are predicted to come together with high probability, and thus, under suitable kinetic conditions, this process may lock the protein into its native state and circumvent highly aggregation-prone nonnative intermediates. This detailed molecular picture of the RBD folding landscape may shed light on SARS-CoV-2 pathology and molecular constraints governing SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Amir Bitran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts; PhD Program in Biophysics, Harvard University, Cambridge, Massachusetts.
| | - Kibum Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
9
|
Serebryany E, Zhao VY, Park K, Bitran A, Trauger SA, Budnik B, Shakhnovich EI. Systematic conformation-to-phenotype mapping via limited deep sequencing of proteins. Mol Cell 2023; 83:1936-1952.e7. [PMID: 37267908 PMCID: PMC10281453 DOI: 10.1016/j.molcel.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/29/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
Non-native conformations drive protein-misfolding diseases, complicate bioengineering efforts, and fuel molecular evolution. No current experimental technique is well suited for elucidating them and their phenotypic effects. Especially intractable are the transient conformations populated by intrinsically disordered proteins. We describe an approach to systematically discover, stabilize, and purify native and non-native conformations, generated in vitro or in vivo, and directly link conformations to molecular, organismal, or evolutionary phenotypes. This approach involves high-throughput disulfide scanning (HTDS) of the entire protein. To reveal which disulfides trap which chromatographically resolvable conformers, we devised a deep-sequencing method for double-Cys variant libraries of proteins that precisely and simultaneously locates both Cys residues within each polypeptide. HTDS of the abundant E. coli periplasmic chaperone HdeA revealed distinct classes of disordered hydrophobic conformers with variable cytotoxicity depending on where the backbone was cross-linked. HTDS can bridge conformational and phenotypic landscapes for many proteins that function in disulfide-permissive environments.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Victor Y Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kibum Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Amir Bitran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sunia A Trauger
- Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Bogdan Budnik
- Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
10
|
Serebryany E, Zhao VY, Park K, Bitran A, Trauger SA, Budnik B, Shakhnovich EI. Systematic conformation-to-phenotype mapping via limited deep-sequencing of proteins. ARXIV 2023:2204.06159. [PMID: 36776823 PMCID: PMC9915745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Non-native conformations drive protein misfolding diseases, complicate bioengineering efforts, and fuel molecular evolution. No current experimental technique is well-suited for elucidating them and their phenotypic effects. Especially intractable are the transient conformations populated by intrinsically disordered proteins. We describe an approach to systematically discover, stabilize, and purify native and non-native conformations, generated in vitro or in vivo, and directly link conformations to molecular, organismal, or evolutionary phenotypes. This approach involves high-throughput disulfide scanning (HTDS) of the entire protein. To reveal which disulfides trap which chromatographically resolvable conformers, we devised a deep-sequencing method for double-Cys variant libraries of proteins that precisely and simultaneously locates both Cys residues within each polypeptide. HTDS of the abundant E. coli periplasmic chaperone HdeA revealed distinct classes of disordered hydrophobic conformers with variable cytotoxicity depending on where the backbone was cross-linked. HTDS can bridge conformational and phenotypic landscapes for many proteins that function in disulfide-permissive environments.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | - Victor Y. Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | - Kibum Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | - Amir Bitran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | | | - Bogdan Budnik
- Center for Mass Spectrometry, Harvard University, Cambridge, MA
| | | |
Collapse
|
11
|
Shu DY, Chaudhary S, Cho KS, Lennikov A, Miller WP, Thorn DC, Yang M, McKay TB. Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites 2023; 13:187. [PMID: 36837806 PMCID: PMC9960073 DOI: 10.3390/metabo13020187] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Redox homeostasis is a delicate balancing act of maintaining appropriate levels of antioxidant defense mechanisms and reactive oxidizing oxygen and nitrogen species. Any disruption of this balance leads to oxidative stress, which is a key pathogenic factor in several ocular diseases. In this review, we present the current evidence for oxidative stress and mitochondrial dysfunction in conditions affecting both the anterior segment (e.g., dry eye disease, keratoconus, cataract) and posterior segment (age-related macular degeneration, proliferative vitreoretinopathy, diabetic retinopathy, glaucoma) of the human eye. We posit that further development of therapeutic interventions to promote pro-regenerative responses and maintenance of the redox balance may delay or prevent the progression of these major ocular pathologies. Continued efforts in this field will not only yield a better understanding of the molecular mechanisms underlying the pathogenesis of ocular diseases but also enable the identification of novel druggable redox targets and antioxidant therapies.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Suman Chaudhary
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - William P. Miller
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - David C. Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
12
|
Diessner EM, Freites JA, Tobias DJ, Butts CT. Network Hamiltonian Models for Unstructured Protein Aggregates, with Application to γD-Crystallin. J Phys Chem B 2023; 127:685-697. [PMID: 36637342 PMCID: PMC10437096 DOI: 10.1021/acs.jpcb.2c07672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Network Hamiltonian models (NHMs) are a framework for topological coarse-graining of protein-protein interactions, in which each node corresponds to a protein, and edges are drawn between nodes representing proteins that are noncovalently bound. Here, this framework is applied to aggregates of γD-crystallin, a structural protein of the eye lens implicated in cataract disease. The NHMs in this study are generated from atomistic simulations of equilibrium distributions of wild-type and the cataract-causing variant W42R in solution, performed by Wong, E. K.; Prytkova, V.; Freites, J. A.; Butts, C. T.; Tobias, D. J. Molecular Mechanism of Aggregation of the Cataract-Related γD-Crystallin W42R Variant from Multiscale Atomistic Simulations. Biochemistry2019, 58 (35), 3691-3699. Network models are shown to successfully reproduce the aggregate size and structure observed in the atomistic simulation, and provide information about the transient protein-protein interactions therein. The system size is scaled from the original 375 monomers to a system of 10000 monomers, revealing a lowering of the upper tail of the aggregate size distribution of the W42R variant. Extrapolation to higher and lower concentrations is also performed. These results provide an example of the utility of NHMs for coarse-grained simulation of protein systems, as well as their ability to scale to large system sizes and high concentrations, reducing computational costs while retaining topological information about the system.
Collapse
Affiliation(s)
- Elizabeth M Diessner
- Department of Chemistry, University of California, Irvine, California92697, United States
| | - J Alfredo Freites
- Department of Chemistry, University of California, Irvine, California92697, United States
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, California92697, United States
| | - Carter T Butts
- Departments of Sociology, Statistics, Computer Science, and EECS, University of California, Irvine, California92697, United States
| |
Collapse
|
13
|
Bitran A, Park K, Serebryany E, Shakhnovich EI. Cotranslational formation of disulfides guides folding of the SARS COV-2 receptor binding domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.10.516025. [PMID: 36380756 PMCID: PMC9665344 DOI: 10.1101/2022.11.10.516025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Many secreted proteins contain multiple disulfide bonds. How disulfide formation is coupled to protein folding in the cell remains poorly understood at the molecular level. Here, we combine experiment and simulation to address this question as it pertains to the SARS-CoV-2 receptor binding domain (RBD). We show that, whereas RBD can refold reversibly when its disulfides are intact, their disruption causes misfolding into a nonnative molten-globule state that is highly prone to aggregation and disulfide scrambling. Thus, non-equilibrium mechanisms are needed to ensure disulfides form prior to folding in vivo. Our simulations suggest that co-translational folding may accomplish this, as native disulfide pairs are predicted to form with high probability at intermediate lengths, ultimately committing the RBD to its metastable native state and circumventing nonnative intermediates. This detailed molecular picture of the RBD folding landscape may shed light on SARS-CoV-2 pathology and molecular constraints governing SARS-CoV-2 evolution.
Collapse
|
14
|
King J. Using T4 Genetics and Laemmli's Development of High Resolution SDS Gel Electrophoresis to Reveal Structural Protein Interactions Controlling Protein Folding and Phage Self-Assembly. J Biol Chem 2022; 298:102463. [PMID: 36067882 PMCID: PMC9576892 DOI: 10.1016/j.jbc.2022.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 11/03/2022] Open
Abstract
One of the most transformative experimental techniques in the rise of modern molecular biology and biochemistry was the development of high resolution Sodium Dodecyl Sulfate (SDS) poly acrylamide gel electrophoresis, which allowed separation of proteins - including structural proteins - in complex mixtures according to their molecular weights. Its development was intimately tied to investigations of the control of virus assembly within phage-infected cells. The method was developed by Ulrich K. Laemmli working in the virus structural group led by Aaron Klug at the famed Medical Research Council Laboratory for Molecular Biology (LMB) at Cambridge, UK. While Laemmli was tackling T4 head assembly, I sat at the next bench working on T4 tail assembly. To date, Laemmli's original paper has been cited almost 300,000 times. His gel procedure and our cooperation allowed us to sort out the sequential protein-protein interactions controlling the viral self-assembly pathways. It is still not fully appreciated that this control involved protein conformational change induced by interaction with an edge of the growing structure. Subsequent efforts of my students and I to understand how temperature sensitive mutations interfered with assembly were important in revealing the intracellular off-pathway aggregation processes competing with productive protein folding. These misfolding processes slowed the initial productivity of the biotechnology industry. The article below describes the scientific origin, context and sociology that supported these advances in protein biochemistry, protein expression, and virus assembly. The cooperation and collaboration that was integral to both the LMB culture and phage genetics fields were key to these endeavors.
Collapse
|
15
|
Islam S, Do M, Frank BS, Hom GL, Wheeler S, Fujioka H, Wang B, Minocha G, Sell DR, Fan X, Lampi KJ, Monnier VM. α-Crystallin chaperone mimetic drugs inhibit lens γ-crystallin aggregation: potential role for cataract prevention. J Biol Chem 2022; 298:102417. [PMID: 36037967 PMCID: PMC9525908 DOI: 10.1016/j.jbc.2022.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Γ-Crystallins play a major role in age-related lens transparency. Their destabilization by mutations and physical chemical insults are associated with cataract formation. Therefore, drugs that increase their stability should have anticataract properties. To this end, we screened 2560 Federal Drug Agency–approved drugs and natural compounds for their ability to suppress or worsen H2O2 and/or heat-mediated aggregation of bovine γ-crystallins. The top two drugs, closantel (C), an antihelminthic drug, and gambogic acid (G), a xanthonoid, attenuated thermal-induced protein unfolding and aggregation as shown by turbidimetry fluorescence spectroscopy dynamic light scattering and electron microscopy of human or mouse recombinant crystallins. Furthermore, binding studies using fluorescence inhibition and hydrophobic pocket–binding molecule bis-8-anilino-1-naphthalene sulfonic acid revealed static binding of C and G to hydrophobic sites with medium-to-low affinity. Molecular docking to HγD and other γ-crystallins revealed two binding sites, one in the “NC pocket” (residues 50–150) of HγD and one spanning the “NC tail” (residues 56–61 to 168–174 in the C-terminal domain). Multiple binding sites overlap with those of the protective mini αA-crystallin chaperone MAC peptide. Mechanistic studies using bis-8-anilino-1-naphthalene sulfonic acid as a proxy drug showed that it bound to MAC sites, improved Tm of both H2O2 oxidized and native human gamma D, and suppressed turbidity of oxidized HγD, most likely by trapping exposed hydrophobic sites. The extent to which these drugs act as α-crystallin mimetics and reduce cataract progression remains to be demonstrated. This study provides initial insights into binding properties of C and G to γ-crystallins.
Collapse
Affiliation(s)
- Sidra Islam
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Michael Do
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Brett S Frank
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Grant L Hom
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Samuel Wheeler
- Dept of Integrative Biosciences, Oregon Health & Sciences University, Portland, OR 97239
| | - Hisashi Fujioka
- Cryo-EM Core Facility, School of Medicine, Case Western Reserve University, Case Western Reserve University, Cleveland, OH 44016
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Dept of Nutrition, Case Western Reserve University, Cleveland, OH 44106
| | - Geeta Minocha
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - David R Sell
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Xingjun Fan
- Dept of Cell Biology and Anatomy, Augusta University, Georgia, GA 30912
| | - Kirsten J Lampi
- Dept of Integrative Biosciences, Oregon Health & Sciences University, Portland, OR 97239
| | - Vincent M Monnier
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106; Dept of Biochemistry, Case Western Reserve University, Cleveland OH 44106.
| |
Collapse
|
16
|
Serebryany E, Chowdhury S, Woods CN, Thorn DC, Watson NE, McClelland AA, Klevit RE, Shakhnovich EI. A native chemical chaperone in the human eye lens. eLife 2022; 11:76923. [PMID: 35723573 PMCID: PMC9246369 DOI: 10.7554/elife.76923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Cataract is one of the most prevalent protein aggregation disorders and still the most common cause of vision loss worldwide. The metabolically quiescent core region of the human lens lacks cellular or protein turnover; it has therefore evolved remarkable mechanisms to resist light-scattering protein aggregation for a lifetime. We now report that one such mechanism involves an unusually abundant lens metabolite, myo-inositol, suppressing aggregation of lens crystallins. We quantified aggregation suppression using our previously well-characterized in vitro aggregation assays of oxidation-mimicking human γD-crystallin variants and investigated myo-inositol’s molecular mechanism of action using solution NMR, negative-stain TEM, differential scanning fluorometry, thermal scanning Raman spectroscopy, turbidimetry in redox buffers, and free thiol quantitation. Unlike many known chemical chaperones, myo-inositol’s primary target was not the native, unfolded, or final aggregated states of the protein; rather, we propose that it was the rate-limiting bimolecular step on the aggregation pathway. Given recent metabolomic evidence that it is severely depleted in human cataractous lenses compared to age-matched controls, we suggest that maintaining or restoring healthy levels of myo-inositol in the lens may be a simple, safe, and globally accessible strategy to prevent or delay lens opacification due to age-onset cataract.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Sourav Chowdhury
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Christopher N Woods
- Department of Biochemistry, University of Washington, Seattle, United States
| | - David C Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Nicki E Watson
- Center for Nanoscale Systems, Harvard University, Cambridge, United States
| | | | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| |
Collapse
|
17
|
Mora M, Board S, Languin-Cattoën O, Masino L, Stirnemann G, Garcia-Manyes S. A Single-Molecule Strategy to Capture Non-native Intramolecular and Intermolecular Protein Disulfide Bridges. NANO LETTERS 2022; 22:3922-3930. [PMID: 35549281 PMCID: PMC9136921 DOI: 10.1021/acs.nanolett.2c00043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/23/2022] [Indexed: 05/04/2023]
Abstract
Non-native disulfide bonds are dynamic covalent bridges that form post-translationally between two cysteines within the same protein (intramolecular) or with a neighboring protein (intermolecular), frequently due to changes in the cellular redox potential. The reversible formation of non-native disulfides is intimately linked to alterations in protein function; while they can provide a mechanism to protect against cysteine overoxidation, they are also involved in the early stages of protein multimerization, a hallmark of several protein aggregation diseases. Yet their identification using current protein chemistry technology remains challenging, mainly because of their fleeting reactivity. Here, we use single-molecule spectroscopy AFM and molecular dynamics simulations to capture both intra- and intermolecular disulfide bonds in γD-crystallin, a cysteine-rich, structural human lens protein involved in age-related eye cataracts. Our approach showcases the power of mechanical force as a conformational probe in dynamically evolving proteins and presents a platform to detect non-native disulfide bridges with single-molecule resolution.
Collapse
Affiliation(s)
- Marc Mora
- Department
of Physics, Randall Centre for Cell and Molecular Biophysics and London
Centre for Nanotechnology, King’s
College London, Strand, WC2R 2LS London, United Kingdom
- Single
Molecule Mechanobiology Laboratory, The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, London United
Kingdom
| | - Stephanie Board
- Department
of Physics, Randall Centre for Cell and Molecular Biophysics and London
Centre for Nanotechnology, King’s
College London, Strand, WC2R 2LS London, United Kingdom
- Single
Molecule Mechanobiology Laboratory, The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, London United
Kingdom
| | - Olivier Languin-Cattoën
- CNRS
Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Diderot,
Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Laura Masino
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, 1 Midland Road London, NW1 1AT, United Kingdom
| | - Guillaume Stirnemann
- CNRS
Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Diderot,
Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sergi Garcia-Manyes
- Department
of Physics, Randall Centre for Cell and Molecular Biophysics and London
Centre for Nanotechnology, King’s
College London, Strand, WC2R 2LS London, United Kingdom
- Single
Molecule Mechanobiology Laboratory, The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, London United
Kingdom
| |
Collapse
|
18
|
Sagar V, Wistow G. Acquired disorder and asymmetry in a domain-swapped model for γ-crystallin aggregation. J Mol Biol 2022; 434:167559. [PMID: 35341744 PMCID: PMC9050881 DOI: 10.1016/j.jmb.2022.167559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/19/2022]
Abstract
Misfolding and aggregation of proteins occur in many pathological states. Because of the inherent disorder involved, these processes are difficult to study. We attempted to capture aggregation intermediates of γ S-crystallin, a highly stable, internally symmetrical monomeric protein, by crystallization under mildly acidic and oxidizing conditions. Here we describe novel oligomerization through strained domain-swapping and partial intermolecular disulfide formation. This forms an octamer built from asymmetric tetramers, each of which comprises an asymmetric pair of twisted, domain-swapped dimers. Each tetramer shows patterns of acquired disorder among subunits, ranging from local loss of secondary structure to regions of intrinsic disorder. The octamer ring is tied together by partial intermolecular disulfide bonds, which may contribute to strain and disorder in the octamer. Oligomerization in this structure is self-limited by the distorted octamer ring. In a more heterogeneous environment, the disordered regions could serve as seeds for cascading interactions with other proteins. Indeed, solubilized protein from crystals retain many features observed in the crystal and are prone to further oligomerization and precipitation. This structure illustrates modes of loss of organized structure and aggregation that are relevant for cataract and for other disorders involving deposition of formerly well-folded proteins.
Collapse
Affiliation(s)
- Vatsala Sagar
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Hsueh SS, Wang SS(S, Chen SH, Wang CL, Wu W(J, Lin TH. Insights to Human γD-Crystallin Unfolding by NMR Spectroscopy and Molecular Dynamics Simulations. Int J Mol Sci 2022; 23:ijms23031591. [PMID: 35163513 PMCID: PMC8836049 DOI: 10.3390/ijms23031591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Human γD-crystallin (HGDC) is an abundant lens protein residing in the nucleus of the human lens. Aggregation of this and other structural proteins within the lens leads to the development of cataract. Much has been explored on the stability and aggregation of HGDC and where detailed investigation at the atomic resolution was needed, the X-ray structure was used as an initial starting conformer for molecular modeling. In this study, we implemented NMR-solution HGDC structures as starting conformers for molecular dynamics simulations to provide the missing pieces of the puzzle on the very early stages of HGDC unfolding leading up to the domain swap theories proposed by past studies. The high-resolution details of the conformational dynamics also revealed additional insights to possible early intervention for cataractogenesis.
Collapse
Affiliation(s)
- Shu-Shun Hsueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-S.H.); (S.-S.W.); (S.-H.C.)
| | - S.-S. (Steven) Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-S.H.); (S.-S.W.); (S.-H.C.)
| | - Shu-Han Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-S.H.); (S.-S.W.); (S.-H.C.)
| | - Chia-Lin Wang
- Laboratory of Nuclear Magnetic Resonance, Medical Research Department, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - W. (Josephine) Wu
- Department of Optometry, Yuanpei University of Medical Technology, Hsinchu City 30015, Taiwan
- Correspondence: (J.W.W.); (T.-H.L.); Tel.: +886-3-538-1183 (ext. 8608) (W.W.); +886-2-28712121 (ext. 2703) (T.-H.L.)
| | - Ta-Hsien Lin
- Laboratory of Nuclear Magnetic Resonance, Medical Research Department, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: (J.W.W.); (T.-H.L.); Tel.: +886-3-538-1183 (ext. 8608) (W.W.); +886-2-28712121 (ext. 2703) (T.-H.L.)
| |
Collapse
|
20
|
Serebryany E, Thorn DC, Quintanar L. Redox chemistry of lens crystallins: A system of cysteines. Exp Eye Res 2021; 211:108707. [PMID: 34332989 PMCID: PMC8511183 DOI: 10.1016/j.exer.2021.108707] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 11/28/2022]
Abstract
The nuclear region of the lens is metabolically quiescent, but it is far from inert chemically. Without cellular renewal and with decades of environmental exposures, the lens proteome, lipidome, and metabolome change. The lens crystallins have evolved exquisite mechanisms for resisting, slowing, adapting to, and perhaps even harnessing the effects of these cumulative chemical modifications to minimize the amount of light-scattering aggregation in the lens over a lifetime. Redox chemistry is a major factor in these damages and mitigating adaptations, and as such, it is likely to be a key component of any successful therapeutic strategy for preserving or rescuing lens transparency, and perhaps flexibility, during aging. Protein redox chemistry is typically mediated by Cys residues. This review will therefore focus primarily on the Cys-rich γ-crystallins of the human lens, taking care to extend these findings to the β- and α-crystallins where pertinent.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - David C Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Liliana Quintanar
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City, Mexico
| |
Collapse
|
21
|
Biomolecular Modifications Linked to Oxidative Stress in Amyotrophic Lateral Sclerosis: Determining Promising Biomarkers Related to Oxidative Stress. Processes (Basel) 2021. [DOI: 10.3390/pr9091667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reduction–oxidation reactions are essential to cellular homeostasis. Oxidative stress transcends physiological antioxidative system damage to biomolecules, including nucleic acids and proteins, and modifies their structures. Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease. The cells present in the central nervous system, including motor neurons, are vulnerable to oxidative stress. Neurodegeneration has been demonstrated to be caused by oxidative biomolecular modifications. Oxidative stress has been suggested to be involved in the pathogenesis of ALS. Recent progress in research on the underlying mechanisms of oxidative stress in ALS has led to the development of disease-modifying therapies, including edaravone. However, the clinical effects of edaravone remain limited, and ALS is a heretofore incurable disease. The reason for the lack of reliable biomarkers and the precise underlying mechanisms between oxidative stress and ALS remain unclear. As extracellular proteins and RNAs present in body fluids and represent intracellular pathological neurodegenerative processes, extracellular proteins and/or RNAs are predicted to promise diagnosis, prediction of disease course, and therapeutic biomarkers for ALS. Therefore, we aimed to elucidate the underlying mechanisms between oxidative stress and ALS, and promising biomarkers indicating the mechanism to determine whether therapy targeting oxidative stress can be fundamental for ALS.
Collapse
|
22
|
Bawankar M, Thakur AK. Mechanism of human γD-crystallin protein aggregation in UV-C light. Mol Vis 2021; 27:415-428. [PMID: 34267497 PMCID: PMC8254662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose To characterize intermediate aggregate species on the aggregation pathway of γD-crystallin protein in ultraviolet (UV)-C light. Methods The kinetics of γD-crystallin protein aggregation was studied with reversed-phase high-performance liquid chromatography (RP-HPLC) sedimentation assay, ThT binding assay, and light scattering. We used analytical ultracentrifugation to recognize intermediate aggregate species and characterized them with Fourier transform infrared spectroscopy (FTIR). Quantification of free sulfhydryl groups in an ongoing aggregation reaction was achieved by using Ellman's assay. Results Negligible lag phase was found in the aggregation kinetic experiments of the γD-crystallin protein. Dimer, tetramer, octamer, and higher oligomer intermediates were formed on the aggregation pathway. The protein changes its conformation to form intermediate aggregate species. FTIR and trypsin digestion indicated structural differences between the protein monomer, intermediate aggregate species, and fibrils. Ellman's assay revealed that disulfide bonds were formed in the protein monomers and aggregates during the aggregation process. Conclusions This study showed that various intermediate and structurally different aggregate species are formed on the aggregation pathway of γD-crystallin protein in UV-C light.
Collapse
Affiliation(s)
- Mangesh Bawankar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India
| |
Collapse
|
23
|
Rocha MA, Sprague-Piercy MA, Kwok AO, Roskamp KW, Martin RW. Chemical Properties Determine Solubility and Stability in βγ-Crystallins of the Eye Lens. Chembiochem 2021; 22:1329-1346. [PMID: 33569867 PMCID: PMC8052307 DOI: 10.1002/cbic.202000739] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Indexed: 11/10/2022]
Abstract
βγ-Crystallins are the primary structural and refractive proteins found in the vertebrate eye lens. Because crystallins are not replaced after early eye development, their solubility and stability must be maintained for a lifetime, which is even more remarkable given the high protein concentration in the lens. Aggregation of crystallins caused by mutations or post-translational modifications can reduce crystallin protein stability and alter intermolecular interactions. Common post-translational modifications that can cause age-related cataracts include deamidation, oxidation, and tryptophan derivatization. Metal ion binding can also trigger reduced crystallin solubility through a variety of mechanisms. Interprotein interactions are critical to maintaining lens transparency: crystallins can undergo domain swapping, disulfide bonding, and liquid-liquid phase separation, all of which can cause opacity depending on the context. Important experimental techniques for assessing crystallin conformation in the absence of a high-resolution structure include dye-binding assays, circular dichroism, fluorescence, light scattering, and transition metal FRET.
Collapse
Affiliation(s)
- Megan A. Rocha
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Marc A. Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| | - Ashley O. Kwok
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Kyle W. Roskamp
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| |
Collapse
|
24
|
Pras A, Nollen EAA. Regulation of Age-Related Protein Toxicity. Front Cell Dev Biol 2021; 9:637084. [PMID: 33748125 PMCID: PMC7973223 DOI: 10.3389/fcell.2021.637084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/10/2021] [Indexed: 12/23/2022] Open
Abstract
Proteome damage plays a major role in aging and age-related neurodegenerative diseases. Under healthy conditions, molecular quality control mechanisms prevent toxic protein misfolding and aggregation. These mechanisms include molecular chaperones for protein folding, spatial compartmentalization for sequestration, and degradation pathways for the removal of harmful proteins. These mechanisms decline with age, resulting in the accumulation of aggregation-prone proteins that are harmful to cells. In the past decades, a variety of fast- and slow-aging model organisms have been used to investigate the biological mechanisms that accelerate or prevent such protein toxicity. In this review, we describe the most important mechanisms that are required for maintaining a healthy proteome. We describe how these mechanisms decline during aging and lead to toxic protein misassembly, aggregation, and amyloid formation. In addition, we discuss how optimized protein homeostasis mechanisms in long-living animals contribute to prolonging their lifespan. This knowledge might help us to develop interventions in the protein homeostasis network that delay aging and age-related pathologies.
Collapse
Affiliation(s)
| | - Ellen A. A. Nollen
- Laboratory of Molecular Neurobiology of Ageing, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
25
|
Mondal B, Nagesh J, Reddy G. Double Domain Swapping in Human γC and γD Crystallin Drives Early Stages of Aggregation. J Phys Chem B 2021; 125:1705-1715. [PMID: 33566611 DOI: 10.1021/acs.jpcb.0c07833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human γD (HγD) and γC (HγC) are two-domain crystallin (Crys) proteins expressed in the nucleus of the eye lens. Structural perturbations in the protein often trigger aggregation, which eventually leads to cataract. To decipher the underlying molecular mechanism, it is important to characterize the partially unfolded conformations, which are aggregation-prone. Using a coarse grained protein model and molecular dynamics simulations, we studied the role of on-pathway folding intermediates in the early stages of aggregation. The multidimensional free energy surface revealed at least three different folding pathways with the population of partially structured intermediates. The two dominant pathways confirm sequential folding of the N-terminal [Ntd] and the C-terminal domains [Ctd], while the third, least favored, pathway involves intermediates where both the domains are partially folded. A native-like intermediate (I*), featuring the folded domains and disrupted interdomain contacts, gets populated in all three pathways. I* forms domain swapped dimers by swapping the entire Ntds and Ctds with other monomers. Population of such oligomers can explain the increased resistance to unfolding resulting in hysteresis observed in the folding experiments of HγD Crys. An ensemble of double domain swapped dimers are also formed during refolding, where intermediates consisting of partially folded Ntds and Ctds swap secondary structures with other monomers. The double domain swapping model presented in our study provides structural insights into the early events of aggregation in Crys proteins and identifies the key secondary structural swapping elements, where introducing mutations will aid in regulating the overall aggregation propensity.
Collapse
Affiliation(s)
- Balaka Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| | - Jayashree Nagesh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| |
Collapse
|
26
|
Nagashima H, Sasaki N, Amano S, Nakamura S, Hayano M, Tsubota K. Oral administration of resveratrol or lactic acid bacterium improves lens elasticity. Sci Rep 2021; 11:2174. [PMID: 33500490 PMCID: PMC7838312 DOI: 10.1038/s41598-021-81748-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/08/2021] [Indexed: 02/03/2023] Open
Abstract
A decrease in the elasticity of the ocular lens during aging is associated with loss of the accommodative ability of the eye, leading to presbyopia. Although near vision impairment is a social issue affecting the length of healthy life expectancy and productivity of elderly people, an effective treatment to improve near vision has not yet become available. Here we examined the effect of Enterococcus faecium WB2000, Lactobacillus pentosus TJ515, and resveratrol on lens elasticity in rats, where the stiffness of the ocular lens increases exponentially during the aging process. A combination of WB2000 and resveratrol improved lens elasticity not only in the long term but also with just short-term treatment. In addition, TJ515 decreased stiffness in the eye lens with long-term treatment. Therefore, the oral administration of WB2000 and resveratrol or TJ515 may be a potential approach for managing the progression of near vision impairment.
Collapse
Affiliation(s)
- Hayato Nagashima
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Nobunari Sasaki
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Tsubota Laboratory, Inc., Tokyo, Japan
| | - Sachie Amano
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Motoshi Hayano
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Tsubota Laboratory, Inc., Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Tsubota Laboratory, Inc., Tokyo, Japan.
| |
Collapse
|
27
|
Bitran A, Jacobs WM, Shakhnovich E. Validation of DBFOLD: An efficient algorithm for computing folding pathways of complex proteins. PLoS Comput Biol 2020; 16:e1008323. [PMID: 33196646 PMCID: PMC7704049 DOI: 10.1371/journal.pcbi.1008323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/30/2020] [Accepted: 10/17/2020] [Indexed: 11/19/2022] Open
Abstract
Atomistic simulations can provide valuable, experimentally-verifiable insights into protein folding mechanisms, but existing ab initio simulation methods are restricted to only the smallest proteins due to severe computational speed limits. The folding of larger proteins has been studied using native-centric potential functions, but such models omit the potentially crucial role of non-native interactions. Here, we present an algorithm, entitled DBFOLD, which can predict folding pathways for a wide range of proteins while accounting for the effects of non-native contacts. In addition, DBFOLD can predict the relative rates of different transitions within a protein's folding pathway. To accomplish this, rather than directly simulating folding, our method combines equilibrium Monte-Carlo simulations, which deploy enhanced sampling, with unfolding simulations at high temperatures. We show that under certain conditions, trajectories from these two types of simulations can be jointly analyzed to compute unknown folding rates from detailed balance. This requires inferring free energies from the equilibrium simulations, and extrapolating transition rates from the unfolding simulations to lower, physiologically-reasonable temperatures at which the native state is marginally stable. As a proof of principle, we show that our method can accurately predict folding pathways and Monte-Carlo rates for the well-characterized Streptococcal protein G. We then show that our method significantly reduces the amount of computation time required to compute the folding pathways of large, misfolding-prone proteins that lie beyond the reach of existing direct simulation. Our algorithm, which is available online, can generate detailed atomistic models of protein folding mechanisms while shedding light on the role of non-native intermediates which may crucially affect organismal fitness and are frequently implicated in disease.
Collapse
Affiliation(s)
- Amir Bitran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard University Program in Biophysics, Harvard University, Cambridge, Massachusetts, United States of America
| | - William M. Jacobs
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
| | - Eugene Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
28
|
Roskamp KW, Azim S, Kassier G, Norton-Baker B, Sprague-Piercy MA, Miller RJD, Martin RW. Human γS-Crystallin-Copper Binding Helps Buffer against Aggregation Caused by Oxidative Damage. Biochemistry 2020; 59:2371-2385. [PMID: 32510933 DOI: 10.1021/acs.biochem.0c00293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Divalent metal cations can play a role in protein aggregation diseases, including cataract. Here we compare the aggregation of human γS-crystallin, a key structural protein of the eye lens, via mutagenesis, ultraviolet light damage, and the addition of metal ions. All three aggregation pathways result in globular, amorphous-looking structures that do not elongate into fibers. We also investigate the molecular mechanism underlying copper(II)-induced aggregation. This work was motivated by the observation that zinc(II)-induced aggregation of γS-crystallin is driven by intermolecular bridging of solvent-accessible cysteine residues, while in contrast, copper(II)-induced aggregation of this protein is exacerbated by the removal of solvent-accessible cysteines via mutation. Here we find that copper(II)-induced aggregation results from a complex mechanism involving multiple interactions with the protein. The initial protein-metal interactions result in the reduction of Cu(II) to Cu(I) with concomitant oxidation of γS-crystallin. In addition to the intermolecular disulfides that represent a starting point for aggregation, intramolecular disulfides also occur in the cysteine loop, a region of the N-terminal domain that was previously found to mediate the early stages of cataract formation. This previously unobserved ability of γS-crystallin to transfer disulfides intramolecularly suggests that it may serve as an oxidation sink for the lens after glutathione levels have become depleted during aging. γS-Crystallin thus serves as the last line of defense against oxidation in the eye lens, a result that underscores the chemical functionality of this protein, which is generally considered to play a purely structural role.
Collapse
Affiliation(s)
- Kyle W Roskamp
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Sana Azim
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Günther Kassier
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Brenna Norton-Baker
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States.,Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Marc A Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - R J Dwyane Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany.,Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Rachel W Martin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States.,Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
29
|
Fernández-Silva A, French-Pacheco L, Rivillas-Acevedo L, Amero C. Aggregation pathways of human γ D crystallin induced by metal ions revealed by time dependent methods. PeerJ 2020; 8:e9178. [PMID: 32566392 PMCID: PMC7295030 DOI: 10.7717/peerj.9178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Cataract formation is a slow accumulative process due to protein aggregates promoted by different factors over time. Zinc and copper ions have been reported to induce the formation of aggregates opaque to light in the human gamma D crystallin (HγD) in a concentration and temperature dependent manner. In order to gain insight into the mechanism of metal-induced aggregation of HγD under conditions that mimic more closely the slow, accumulative process of the disease, we have studied the non-equilibrium process with the minimal metal dose that triggers HγD aggregation. Using a wide variety of biophysics techniques such as turbidimetry, dynamic light scattering, fluorescence, nuclear magnetic resonance and computational methods, we obtained information on the molecular mechanisms for the formation of aggregates. Zn(II) ions bind to different regions at the protein, probably with similar affinities. This binding induces a small conformational rearrangement within and between domains and aggregates via the formation of metal bridges without any detectable unfolded intermediates. In contrast, Cu(II)-induced aggregation includes a lag time, in which the N-terminal domain partially unfolds while the C-terminal domain and parts of the N-terminal domain remain in a native-like conformation. This partially unfolded intermediate is prone to form the high-molecular weight aggregates. Our results clearly show that different external factors can promote protein aggregation following different pathways.
Collapse
Affiliation(s)
- Arline Fernández-Silva
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Leidys French-Pacheco
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.,Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Lina Rivillas-Acevedo
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Carlos Amero
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
30
|
van Dam L, Dansen TB. Cross-talk between redox signalling and protein aggregation. Biochem Soc Trans 2020; 48:379-397. [PMID: 32311028 PMCID: PMC7200635 DOI: 10.1042/bst20190054] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
It is well established that both an increase in reactive oxygen species (ROS: i.e. O2•-, H2O2 and OH•), as well as protein aggregation, accompany ageing and proteinopathies such as Parkinson's and Alzheimer's disease. However, it is far from clear whether there is a causal relation between the two. This review describes how protein aggregation can be affected both by redox signalling (downstream of H2O2), as well as by ROS-induced damage, and aims to give an overview of the current knowledge of how redox signalling affects protein aggregation and vice versa. Redox signalling has been shown to play roles in almost every step of protein aggregation and amyloid formation, from aggregation initiation to the rapid oligomerization of large amyloids, which tend to be less toxic than oligomeric prefibrillar aggregates. We explore the hypothesis that age-associated elevated ROS production could be part of a redox signalling-dependent-stress response in an attempt to curb protein aggregation and minimize toxicity.
Collapse
Affiliation(s)
- Loes van Dam
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands
| | - Tobias B. Dansen
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands
| |
Collapse
|
31
|
Roskamp KW, Paulson CN, Brubaker WD, Martin RW. Function and Aggregation in Structural Eye Lens Crystallins. Acc Chem Res 2020; 53:863-874. [PMID: 32271004 DOI: 10.1021/acs.accounts.0c00014] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Crystallins are transparent, refractive proteins that contribute to the focusing power of the vertebrate eye lens. These proteins are extremely soluble and resist aggregation for decades, even under crowded conditions. Crystallins have evolved to avoid strong interprotein interactions and have unusual hydration properties. Crystallin aggregation resulting from mutation, damage, or aging can lead to cataract, a disease state characterized by opacity of the lens.Different aggregation mechanisms can occur, following multiple pathways and leading to aggregates with varied morphologies. Studies of variant proteins found in individuals with childhood-onset cataract have provided insight into the molecular factors underlying crystallin stability and solubility. Modulation of exposed hydrophobic surface is critical, as is preventing specific intermolecular interactions that could provide nucleation sites for aggregation. Biophysical measurements and structural biology techniques are beginning to provide a detailed picture of how crystallins crowd into the lens, providing high refractivity while avoiding excessively tight binding that would lead to aggregation.Despite the central biological importance of refractivity, relatively few experimental measurements have been made for lens crystallins. Our work and that of others have shown that hydration is important to the high refractive index of crystallin proteins, as are interactions between pairs of aromatic residues and potentially other specific structural features.This Account describes our efforts to understand both the functional and disease states of vertebrate eye lens crystallins, particularly the γ-crystallins. We use a variety of biophysical techniques, notably NMR spectroscopy, to investigate crystallin stability and solubility. In the first section, we describe efforts to understand the relative stability and aggregation propensity of different γS-crystallin variants. The second section focuses on interactions of these proteins with the holdase chaperone αB-crystallin. The third, fourth, and fifth sections explore different modes of aggregation available to crystallin proteins, and the final section highlights the importance of refractive index and the sometimes conflicting demands of selection for refractivity and solubility.
Collapse
Affiliation(s)
- Kyle W. Roskamp
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Carolyn N. Paulson
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - William D. Brubaker
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
32
|
Aguayo-Ortiz R, Dominguez L. Effects of Mutating Trp42 Residue on γD-Crystallin Stability. J Chem Inf Model 2020; 60:777-785. [PMID: 31747273 DOI: 10.1021/acs.jcim.9b00747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oligomerization and aggregation of γD-crystallins (HγDC) in the eye lens is one of the main causes of cataract development. To date, several congenital mutations related to this protein are known to promote the formation of aggregates. Previous studies have demonstrated that mutations in W42 residue of HγDC lead to the generation of partially unfolded intermediates that are more prone to aggregate. To understand the role of W42 in the stability of HγDC, we performed alchemical free-energy calculations and all-atom molecular dynamics simulations of different W42 mutant models. Our results suggest that substitution of W42 by small size and/or polar residues promotes HγDC denaturation due to the entry of water molecules into the hydrophobic core of the N-terminal domain. Similar behavior was observed in the C-terminal domain of HγDC when mutating the W130 residue located in a homologous position. Moreover, the exposure of the hydrophobic core residues could lead to the formation of aggregation-prone partially unfolded species. Overall, this study takes a step toward understanding the role of HγDC in cataract development.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Facultad de Química, Departamento de Fisicoquímica , Universidad Nacional Autónoma de México , Mexico City 04510 , Mexico.,Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica , Universidad Nacional Autónoma de México , Mexico City 04510 , Mexico
| |
Collapse
|
33
|
Two Pathogenic Gene Mutations Identified Associating with Congenital Cataract and Iris Coloboma Respectively in a Chinese Family. J Ophthalmol 2020; 2020:7054315. [PMID: 32148946 PMCID: PMC7049832 DOI: 10.1155/2020/7054315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose To screen out pathogenic genes in a Chinese family with congenital cataract and iris coloboma. Material and Methods. A three-generation family with congenital cataract and iris coloboma from a Han ethnicity was recruited. DNA was extracted from peripheral blood samples collected from all individuals in the family. Whole exon sequencing was employed for screening the disease-causing gene mutations in the proband, and Sanger sequencing was used for other members of the family and a control group of 500 healthy individuals. Bioinformatics analysis and three-dimensional structure predictions were used to predict the impact of amino acid changes on protein structure and function. Results The candidate genes of cataract and iris coloboma were successfully screened out. A heterozygote mutation, CRYGD c.70C>A (p.P24T), was identified as cosegregating with congenital cataracts, while another heterozygous mutation, WFS1 c.1514G>C (p.C505S), which had not been reported previously, cosegregated with congenital iris coloboma. Bioinformatic analyses and three-dimensional structure prediction proved that the three-dimensional structures of WFS1 c.1514G>C (p.C505S), which had not been reported previously, cosegregated with congenital iris coloboma. Bioinformatic analyses and three-dimensional structure prediction proved that the three-dimensional structures of CRYGD c.70C>A (p.P24T), was identified as cosegregating with congenital cataracts, while another heterozygous mutation, Conclusions We report a novel mutation, WFS1 p.C505S, and a known mutation, CRYGD p.P24T, that cosegregate with iris coloboma and congenital cataract, respectively, in a Chinese family. This is the first time the association of WFS1 p.C505S with iris coloboma has been demonstrated, although CRYGD p.P24T has been widely reported as being associated with congenital cataract, especially in the Eastern Asian population. These findings may have future therapeutic benefit for the diagnosis of iris coloboma and congenital cataract. The results may also be relevant in further studies aiming to investigate the molecular pathogenesis of iris coloboma and congenital cataract.WFS1 c.1514G>C (p.C505S), which had not been reported previously, cosegregated with congenital iris coloboma. Bioinformatic analyses and three-dimensional structure prediction proved that the three-dimensional structures of CRYGD c.70C>A (p.P24T), was identified as cosegregating with congenital cataracts, while another heterozygous mutation, WFS1 c.1514G>C (p.C505S), which had not been reported previously, cosegregated with congenital iris coloboma. Bioinformatic analyses and three-dimensional structure prediction proved that the three-dimensional structures of CRYGD c.70C>A (p.P24T), was identified as cosegregating with congenital cataracts, while another heterozygous mutation,
Collapse
|
34
|
Figueroa JD, Zárate AM, Fuentes-Lemus E, Davies MJ, López-Alarcón C. Formation and characterization of crosslinks, including Tyr–Trp species, on one electron oxidation of free Tyr and Trp residues by carbonate radical anion. RSC Adv 2020; 10:25786-25800. [PMID: 35518626 PMCID: PMC9055361 DOI: 10.1039/d0ra04051g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/28/2020] [Indexed: 01/04/2023] Open
Abstract
Dityrosine and ditryptophan bonds have been implied in protein crosslinking. This is associated with oxidative stress conditions including those involved in neurodegenerative pathologies and age-related processes. Formation of dityrosine and ditryptophan derives from radical–radical reactions involving Tyr˙ and Trp˙ radicals. However, cross reactions of Tyr˙ and Trp˙ leading to Tyr–Trp crosslinks and their biological consequences have been less explored. In the present work we hypothesized that exposure of free Tyr and Trp to a high concentration of carbonate anion radicals (CO3˙−), under anaerobic conditions, would result in the formation of Tyr–Trp species, as well as dityrosine and ditryptophan crosslinks. Here we report a simple experimental procedure, employing CO3˙− generated photochemically by illumination of a Co(iii) complex at 254 nm, that produces micromolar concentrations of Tyr–Trp crosslinks. Analysis by mass spectrometry of solutions containing only the individual amino acids, and the Co(iii) complex, provided evidence for the formation of o,o′-dityrosine and isodityrosine from Tyr, and three ditryptophan dimers from Trp. When mixtures of Tyr and Trp were illuminated in an identical manner, Tyr–Trp crosslinks were detected together with dityrosine and ditryptophan dimers. These results indicate that there is a balance between the formation of these three classes of crosslinks, which is dependent on the Tyr and Trp concentrations. The methods reported here allow the generation of significant yields of isolated Tyr–Trp adducts and their characterization. This technology should facilitate the detection, and examination of the biological consequences of Tyr–Trp crosslink formation in complex systems in future investigations. Exposure of free Tyr and Trp to a high concentration of carbonate anion radicals (CO3˙−), under anaerobic conditions, result in the formation of Tyr–Trp species, as well as dityrosine and ditryptophan crosslinks.![]()
Collapse
Affiliation(s)
- Juan David Figueroa
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia
- Departamento de Química Física
- Santiago
- Chile
| | - Ana María Zárate
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia
- Departamento de Química Física
- Santiago
- Chile
| | - Eduardo Fuentes-Lemus
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia
- Departamento de Química Física
- Santiago
- Chile
| | - Michael J. Davies
- University of Copenhagen
- Department of Biomedical Sciences
- Copenhagen
- Denmark
| | - Camilo López-Alarcón
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia
- Departamento de Química Física
- Santiago
- Chile
| |
Collapse
|
35
|
Forsythe HM, Vetter CJ, Jara KA, Reardon PN, David LL, Barbar EJ, Lampi KJ. Altered Protein Dynamics and Increased Aggregation of Human γS-Crystallin Due to Cataract-Associated Deamidations. Biochemistry 2019; 58:4112-4124. [PMID: 31490062 PMCID: PMC10693687 DOI: 10.1021/acs.biochem.9b00593] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Deamidation is a major age-related modification in the human lens that is highly prevalent in crystallins isolated from the insoluble fraction of cataractous lenses and also causes protein aggregation in vitro. However, the mechanism by which deamidation causes proteins to become insoluble is not known because only subtle structural changes were observed in vitro. We have identified Asn14 and Asn76 of γS-crystallin as highly deamidated in insoluble proteins isolated from aged lenses. These sites are on the surface of the N-terminal domain and were mimicked by replacing the Asn with Asp residues in order to generate recombinant human γS and deamidated mutants. Both N14D and N76D had increased light scattering compared to wild-type γS (WT) and increased aggregation during thermal-induced denaturation. Aggregation was enhanced by oxidized glutathione, suggesting deamidation may increase susceptibility to form disulfide bonds. These changes were correlated to changes in protein dynamics determined by NMR spectroscopy. Heteronuclear NMR spectroscopy was used to measure amide hydrogen exchange and 15N relaxation dynamics to identify regions with increased dynamics compared to γS WT. Residue-specific changes in solvent accessibility and dynamics were both near and distant from the sites of deamidation, suggesting that deamidation had both local and global effects on the protein structure at slow (ms to s) and fast (μs to ps) time scales. Thus, a potential mechanism for γS deamidation-induced insolubilization in cataractous lenses is altered dynamics due to local regions of unfolding and increased flexibility in both the N- and C-terminal domains particularly at surface helices. This conformational flexibility increases the likelihood of aggregation, which would be enhanced in the oxidizing cytoplasm of the aged and cataractous lens. The NMR data combined with the in vivo insolubility and in vitro aggregation findings support a model that deamidation drives changes in protein dynamics that facilitate protein aggregation associated with cataracts.
Collapse
Affiliation(s)
| | - Calvin J. Vetter
- Integrative Biosciences, Oregon Health & Science University, Portland, OR
| | - Kayla Ann Jara
- Biochemistry & Biophysics, Oregon State University, Corvallis, OR
| | - Patrick N. Reardon
- Nuclear Magnetic Resonance Facility, Oregon State University, Corvallis, OR
| | - Larry L. David
- Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, OR
| | - Elisar J. Barbar
- Biochemistry & Biophysics, Oregon State University, Corvallis, OR
| | - Kirsten J. Lampi
- Integrative Biosciences, Oregon Health & Science University, Portland, OR
| |
Collapse
|
36
|
Wong EK, Prytkova V, Freites JA, Butts CT, Tobias DJ. Molecular Mechanism of Aggregation of the Cataract-Related γD-Crystallin W42R Variant from Multiscale Atomistic Simulations. Biochemistry 2019; 58:3691-3699. [PMID: 31393108 DOI: 10.1021/acs.biochem.9b00208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mechanisms leading to aggregation of the crystallin proteins of the eye lens remain largely unknown. We use atomistic multiscale molecular simulations to model the solution-state conformational dynamics of γD-crystallin and its cataract-related W42R variant at both infinite dilution and physiologically relevant concentrations. We find that the W42R variant assumes a distinct conformation in solution that leaves the Greek key domains of the native fold largely unaltered but lacks the hydrophobic interdomain interface that is key to the stability of wild-type γD-crystallin. At physiologically relevant concentrations, exposed hydrophobic regions in this alternative conformation become primary sites for enhanced interprotein interactions leading to large-scale aggregation.
Collapse
Affiliation(s)
- Eric K Wong
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| | - Vera Prytkova
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| | - J Alfredo Freites
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| | - Carter T Butts
- Departments of Sociology, Electrical Engineering and Computer Science, and Statistics , University of California , Irvine , California 92697 , United States
| | - Douglas J Tobias
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| |
Collapse
|
37
|
Lévy E, El Banna N, Baïlle D, Heneman-Masurel A, Truchet S, Rezaei H, Huang ME, Béringue V, Martin D, Vernis L. Causative Links between Protein Aggregation and Oxidative Stress: A Review. Int J Mol Sci 2019; 20:ijms20163896. [PMID: 31405050 PMCID: PMC6719959 DOI: 10.3390/ijms20163896] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/17/2023] Open
Abstract
Compelling evidence supports a tight link between oxidative stress and protein aggregation processes, which are noticeably involved in the development of proteinopathies, such as Alzheimer’s disease, Parkinson’s disease, and prion disease. The literature is tremendously rich in studies that establish a functional link between both processes, revealing that oxidative stress can be either causative, or consecutive, to protein aggregation. Because oxidative stress monitoring is highly challenging and may often lead to artefactual results, cutting-edge technical tools have been developed recently in the redox field, improving the ability to measure oxidative perturbations in biological systems. This review aims at providing an update of the previously known functional links between oxidative stress and protein aggregation, thereby revisiting the long-established relationship between both processes.
Collapse
Affiliation(s)
- Elise Lévy
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Nadine El Banna
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Dorothée Baïlle
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Amélie Heneman-Masurel
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Sandrine Truchet
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Human Rezaei
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Meng-Er Huang
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Vincent Béringue
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Davy Martin
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Laurence Vernis
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
38
|
Aguayo-Ortiz R, González-Navejas A, Palomino-Vizcaino G, Rodriguez-Meza O, Costas M, Quintanar L, Dominguez L. Thermodynamic Stability of Human γD-Crystallin Mutants Using Alchemical Free-Energy Calculations. J Phys Chem B 2019; 123:5671-5677. [PMID: 31199646 DOI: 10.1021/acs.jpcb.9b01818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
γD-Crystallin (HγDC) is a key structural protein in the human lens, whose aggregation has been associated with the development of cataracts. Single-point mutations and post-translational modifications destabilize HγDC interactions, forming partially folded intermediates, where hydrophobic residues are exposed and thus triggering its aggregation. In this work, we used alchemical free-energy calculations to predict changes in thermodynamic stability (ΔΔG) of 10 alanine-scanning variants and 12 HγDC mutations associated with the development of congenital cataract. Our results show that W42R is the most destabilizing mutation in HγDC. This has been corroborated through experimental determination of ΔΔG employing differential scanning calorimetry. Calculations of hydration free energies from the HγDC WT and the W42R mutant suggested that the mutant has a higher aggregation propensity. Our combined theoretical and experimental results contribute to understand HγDC destabilization and aggregation mechanisms in age-onset cataracts.
Collapse
Affiliation(s)
| | | | - Giovanni Palomino-Vizcaino
- Departamento de Química , Centro de Investigación y de Estudios Avanzados (Cinvestav) , Mexico City 07360 , Mexico
| | | | | | - Liliana Quintanar
- Departamento de Química , Centro de Investigación y de Estudios Avanzados (Cinvestav) , Mexico City 07360 , Mexico
| | | |
Collapse
|
39
|
Saotome T, Yamazaki T, Kuroda Y. Misfolding of a Single Disulfide Bonded Globular Protein into a Low-Solubility Species Conformationally and Biophysically Distinct from the Native One. Biomolecules 2019; 9:biom9060250. [PMID: 31242697 PMCID: PMC6627273 DOI: 10.3390/biom9060250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022] Open
Abstract
In practice and despite Anfinsen’s dogma, the refolding of recombinant multiple SS-bonded proteins is famously difficult because misfolded species with non-native SS-bonds appear upon the oxidization of their cysteine residues. On the other hand, single SS-bond proteins are thought to be simple to refold because their cysteines have only one SS-bond partner. Here, we report that dengue 4 envelope protein domain 3 (DEN4 ED3), a single SS-bonded protein can be irreversibly trapped into a misfolded species through the formation of its sole intramolecular SS-bond. The misfolded species had a much lower solubility than the native one at pHs higher than about 7, and circular dichroism measurements clearly indicated that its secondary structure content was different from the native species. Furthermore, the peaks in the Heteronuclear Single Quantum Correlation spectroscopy (HSQC) spectrum of DEN4 ED3 from the supernatant fraction were sharp and well dispersed, reflecting the beta-sheeted native structure, whereas the spectrum of the precipitated fraction showed broad signals clustered near its center suggesting no or little structure and a strong tendency to aggregate. The two species had distinct biophysical properties and could interconvert into each other only by cleaving and reforming the SS-bond, strongly suggesting that they are topologically different. This phenomenon can potentially happen with any single SS-bonded protein, and our observation emphasizes the need for assessing the conformation and biophysical properties of bacterially produced therapeutic proteins in addition to their chemical purities.
Collapse
Affiliation(s)
- Tomonori Saotome
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT), Tokyo 184-8588, Japan
| | - Toshio Yamazaki
- NMR Facility, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT), Tokyo 184-8588, Japan.
| |
Collapse
|
40
|
Mills-Henry IA, Thol SL, Kosinski-Collins MS, Serebryany E, King JA. Kinetic Stability of Long-Lived Human Lens γ-Crystallins and Their Isolated Double Greek Key Domains. Biophys J 2019; 117:269-280. [PMID: 31266635 DOI: 10.1016/j.bpj.2019.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/25/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022] Open
Abstract
The γ-crystallins of the eye lens nucleus are among the longest-lived proteins in the human body. Synthesized in utero, they must remain folded and soluble throughout adulthood to maintain lens transparency and avoid cataracts. γD- and γS-crystallin are two major monomeric crystallins of the human lens. γD-crystallin is concentrated in the oldest lens fiber cells, the lens nucleus, whereas γS-crystallin is concentrated in the younger cells of the lens cortex. The kinetic stability parameters of these two-domain proteins and their isolated domains were determined and compared. Kinetic unfolding experiments monitored by fluorescence spectroscopy in varying concentrations of guanidinium chloride were used to extrapolate unfolding rate constants and half-lives of the crystallins in the absence of the denaturant. Consistent with their long lifespans in the lens, extrapolated half-lives for the initial unfolding step were on the timescale of years. Both proteins' isolated N-terminal domains were less kinetically stable than their respective C-terminal domains at denaturant concentrations predicted to disrupt the domain interface, but at low denaturant concentrations, the relative kinetic stabilities were reversed. Cataract-associated aggregation has been shown to proceed from partially unfolded intermediates in these proteins; their extreme kinetic stability likely evolved to protect the lens from the initiation of aggregation reactions. Our findings indicate that the domain interface is the source of significant kinetic stability. The gene duplication and fusion event that produced the modern two-domain architecture of vertebrate lens crystallins may be the origin of their high kinetic as well as thermodynamic stability.
Collapse
Affiliation(s)
- Ishara A Mills-Henry
- Department of Chemistry and Food Science, Framingham State University, Framingham, Massachusetts
| | | | | | - Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
| | - Jonathan A King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
41
|
Zhang K, Zhao WJ, Yao K, Yan YB. Dissimilarity in the Contributions of the N-Terminal Domain Hydrophobic Core to the Structural Stability of Lens β/γ-Crystallins. Biochemistry 2019; 58:2499-2508. [PMID: 31037943 DOI: 10.1021/acs.biochem.8b01164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vertebrate lens β/γ-crystallins share a conserved tertiary structure consisting of four Greek-key motifs divided into two globular domains. Numerous inherited mutations in β/γ-crystallins have been linked to cataractogenesis. In this research, the folding mechanism underlying cataracts caused by the I21N mutation in βB2 was investigated by comparing the effect of mutagenesis on the structural features and stability of four β/γ-crystallins, βB1, βB2, γC, and γD. Our results showed that the four β/γ-crystallins differ greatly in solubility and stability against various stresses. The I21N mutation greatly impaired βB2 solubility and native structure as well as its stability against denaturation induced by guanidine hydrochloride, heat treatment, and ultraviolet irradiation. However, the deleterious effects were much weaker for mutations at the corresponding sites in βB1, γC, and γD. Molecular dynamics simulations indicated that the introduction of a nonnative hydrogen bond contributed to twisting Greek-key motif I outward, which might direct the misfolding of the I21N mutant of βB2. Meanwhile, partial hydration of the hydrophobic interior of the domain induced by the mutation destabilized βB1, γC, and γD. Our findings highlight the importance of nonnative hydrogen bond formation and hydrophobic core hydration in crystallin misfolding caused by inherited mutations.
Collapse
Affiliation(s)
- Kai Zhang
- Eye Center of the Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310009 , China
| | - Wei-Jie Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences , Tsinghua University , Beijing 100084 , China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310009 , China
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
42
|
Dec R, Koliński M, Dzwolak W. Beyond amino acid sequence: disulfide bonds and the origins of the extreme amyloidogenic properties of insulin's H‐fragment. FEBS J 2019; 286:3194-3205. [DOI: 10.1111/febs.14849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/08/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Robert Dec
- Faculty of Chemistry, Biological and Chemical Research Centre University of Warsaw Poland
| | - Michał Koliński
- Faculty of Chemistry, Biological and Chemical Research Centre University of Warsaw Poland
- Mossakowski Medical Research Centre Polish Academy of Sciences Bioinformatics Laboratory Warsaw Poland
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre University of Warsaw Poland
| |
Collapse
|
43
|
Amyloid found in human cataracts with two-dimensional infrared spectroscopy. Proc Natl Acad Sci U S A 2019; 116:6602-6607. [PMID: 30894486 DOI: 10.1073/pnas.1821534116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UV light and other factors damage crystallin proteins in the eye lens, resulting in cataracts that scatter light and affect vision. Little information exists about protein structures within these disease-causing aggregates. We examined postmortem lens tissue from individuals with and without cataracts using 2D infrared (2DIR) spectroscopy. Amyloid β-sheet secondary structure was detected in cataract lenses along with denatured structures. No amyloid structures were found in lenses from juveniles, but mature lenses with no cataract diagnosis also contained amyloid, indicating that amyloid structures begin forming before diagnosis. Light scatters more strongly in regions with amyloid structure, and UV light induces amyloid β-sheet structures, linking the presence of amyloid structures to disease pathology. Establishing that age-related cataracts involve amyloid structures gives molecular insight into a common human affliction and provides a possible structural target for pharmaceuticals as an alternative to surgery.
Collapse
|
44
|
Thorn DC, Grosas AB, Mabbitt PD, Ray NJ, Jackson CJ, Carver JA. The Structure and Stability of the Disulfide-Linked γS-Crystallin Dimer Provide Insight into Oxidation Products Associated with Lens Cataract Formation. J Mol Biol 2018; 431:483-497. [PMID: 30552875 DOI: 10.1016/j.jmb.2018.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/05/2018] [Indexed: 11/18/2022]
Abstract
The reducing environment in the eye lens diminishes with age, leading to significant oxidative stress. Oxidation of lens crystallin proteins is the major contributor to their destabilization and deleterious aggregation that scatters visible light, obscures vision, and ultimately leads to cataract. However, the molecular basis for oxidation-induced aggregation is unknown. Using X-ray crystallography and small-angle X-ray scattering, we describe the structure of a disulfide-linked dimer of human γS-crystallin that was obtained via oxidation of C24. The γS-crystallin dimer is stable at glutathione concentrations comparable to those in aged and cataractous lenses. Moreover, dimerization of γS-crystallin significantly increases the protein's propensity to form large insoluble aggregates owing to non-cooperative domain unfolding, as is observed in crystallin variants associated with early-onset cataract. These findings provide insight into how oxidative modification of crystallins contributes to cataract and imply that early-onset and age-related forms of the disease share comparable development pathways.
Collapse
Affiliation(s)
- David C Thorn
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Aidan B Grosas
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Peter D Mabbitt
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Nicholas J Ray
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia.
| |
Collapse
|
45
|
Serebryany E, Yu S, Trauger SA, Budnik B, Shakhnovich EI. Dynamic disulfide exchange in a crystallin protein in the human eye lens promotes cataract-associated aggregation. J Biol Chem 2018; 293:17997-18009. [PMID: 30242128 DOI: 10.1074/jbc.ra118.004551] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/14/2018] [Indexed: 12/31/2022] Open
Abstract
Increased light scattering in the eye lens due to aggregation of the long-lived lens proteins, crystallins, is the cause of cataract disease. Several mutations in the gene encoding human γD-crystallin (HγD) cause misfolding and aggregation. Cataract-associated substitutions at Trp42 cause the protein to aggregate in vitro from a partially unfolded intermediate locked by an internal disulfide bridge, and proteomic evidence suggests a similar aggregation precursor is involved in age-onset cataract. Surprisingly, WT HγD can promote aggregation of the W42Q variant while itself remaining soluble. Here, a search for a biochemical mechanism for this interaction has revealed a previously unknown oxidoreductase activity in HγD. Using in vitro oxidation, mutational analysis, cysteine labeling, and MS, we have assigned this activity to a redox-active internal disulfide bond that is dynamically exchanged among HγD molecules. The W42Q variant acts as a disulfide sink, reducing oxidized WT and forming a distinct internal disulfide that kinetically traps the aggregation-prone intermediate. Our findings suggest a redox "hot potato" competition among WT and mutant or modified polypeptides wherein variants with the lowest kinetic stability are trapped in aggregation-prone intermediate states upon accepting disulfides from more stable variants. Such reactions may occur in other long-lived proteins that function in oxidizing environments. In these cases, aggregation may be forestalled by inhibiting disulfide flow toward mutant or damaged polypeptides.
Collapse
Affiliation(s)
- Eugene Serebryany
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Shuhuai Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu, China
| | | | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Eugene I Shakhnovich
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138.
| |
Collapse
|
46
|
Domínguez-Calva JA, Pérez-Vázquez ML, Serebryany E, King JA, Quintanar L. Mercury-induced aggregation of human lens γ-crystallins reveals a potential role in cataract disease. J Biol Inorg Chem 2018; 23:1105-1118. [DOI: 10.1007/s00775-018-1607-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/22/2018] [Indexed: 01/17/2023]
|
47
|
Ramkumar S, Fan X, Wang B, Yang S, Monnier VM. Reactive cysteine residues in the oxidative dimerization and Cu 2+ induced aggregation of human γD-crystallin: Implications for age-related cataract. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3595-3604. [PMID: 30251679 DOI: 10.1016/j.bbadis.2018.08.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/14/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
Cysteine (Cys) residues are major causes of crystallin disulfide formation and aggregation in aging and cataractous human lenses. We recently found that disulfide linkages are highly and partly conserved in β- and γ-crystallins, respectively, in human age-related nuclear cataract and glutathione depleted LEGSKO mouse lenses, and could be mimicked by in vitro oxidation. Here we determined which Cys residues are involved in disulfide-mediated crosslinking of recombinant human γD-crystallin (hγD). In vitro diamide oxidation revealed dimer formation by SDS-PAGE and LC-MS analysis with Cys 111-111 and C111-C19 as intermolecular disulfides and Cys 111-109 as intramolecular sites. Mutation of Cys111 to alanine completely abolished dimerization. Addition of αB-crystallin was unable to protect Cys 111 from dimerization. However, Cu2+-induced hγD-crystallin aggregation was suppressed up to 50% and 80% by mutants C109A and C111A, respectively, as well as by total glutathionylation. In contrast to our recently published results using ICAT-labeling method, manual mining of the same database confirmed the specific involvement of Cys111 in disulfides with no free Cys111 detectable in γD-crystallin from old and cataractous human lenses. Surface accessibility studies show that Cys111 in hγD is the most exposed Cys residue (29%), explaining thereby its high propensity toward oxidation and polymerization in the aging lens.
Collapse
Affiliation(s)
| | - Xingjun Fan
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sichun Yang
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Vincent M Monnier
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
48
|
Kang H, Yang Z, Zhou R. Lanosterol Disrupts Aggregation of Human γD-Crystallin by Binding to the Hydrophobic Dimerization Interface. J Am Chem Soc 2018; 140:8479-8486. [DOI: 10.1021/jacs.8b03065] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hongsuk Kang
- Institute of Quantitative Biology, Department of Physics, Zhejiang University, Hangzhou 310027, China
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Zaixing Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Department of Physics, Zhejiang University, Hangzhou 310027, China
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| |
Collapse
|
49
|
Zhao WJ, Yan YB. Increasing susceptibility to oxidative stress by cataract-causing crystallin mutations. Int J Biol Macromol 2018; 108:665-673. [DOI: 10.1016/j.ijbiomac.2017.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 11/24/2022]
|
50
|
Zhao WJ, Xu J, Chen XJ, Liu HH, Yao K, Yan YB. Effects of cataract-causing mutations W59C and W151C on βB2-crystallin structure, stability and folding. Int J Biol Macromol 2017; 103:764-770. [DOI: 10.1016/j.ijbiomac.2017.05.109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
|