1
|
Zeng S, Wang J, Shi Z, Zhao H, Gao J, Li J. The Wnt/β-catenin signaling pathway in colorectal cancer: mechanism and intervention of traditional Chinese medicine and chemical compound. Front Pharmacol 2025; 16:1560714. [PMID: 40308773 PMCID: PMC12041774 DOI: 10.3389/fphar.2025.1560714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
Colorectal cancer (CRC) is globally recognized as the third most frequently diagnosed malignancy and the second leading cause of cancer-related mortality. The etiology of CRC is multifactorial, arising from a complex interplay of genetic alterations, environmental exposures, and age-related physiological changes. Among the numerous signaling pathways that regulate cellular homeostasis, the Wnt/β-catenin signaling pathway not only plays a critical role in embryonic development and cell proliferation but also contributes to the initiation and progression of various malignancies, including CRC. Dysregulation of the Wnt/β-catenin signaling pathway is a hallmark of CRC, playing a pivotal role in regulating chemoresistance and driving invasive and metastatic behaviors. Traditional Chinese Medicine (TCM) is characterized by its multi-target and multi-pathway mechanisms. Extensive studies have demonstrated that TCM can inhibit the activity of CRC cells by targeting the Wnt/β-catenin signaling pathway and significantly alleviate symptoms in CRC animal models, demonstrating its potential therapeutic value for the treatment of CRC. This review primarily focuses on the literature published in the past 5 years, retrieved from databases such as PubMed, Web of Science, Scopus, MEDLINE, and Springer, concerning the targeting of the Wnt/β-catenin signaling pathway for the treatment of CRC. It highlights the research progress on TCM monomers (e.g., myricetin, genistein, baicalein), TCM formulations (e.g., Pai-Nong-San (PNS), Jian-Du-Xiao-Sheng Yin (JXY), Zuo-Jin-Wan (ZJW)), and small-molecule inhibitors (e.g., PCDHGA9, Cetuximab, PTK7). Furthermore, the experimental results and conclusions from these studies are thoroughly analyzed and discussed. Through a comprehensive review of the literature, we conclude that TCM exhibits multi-level, multi-target, and multi-faceted effects in the prevention and treatment of CRC. In-depth research into the mechanisms by which TCM targets the Wnt/β-catenin signaling pathway to prevent and treat CRC may provide novel insights into exploring the pathogenesis of CRC and developing new therapeutic agents for CRC.
Collapse
Affiliation(s)
- Sha Zeng
- Chengdu Integrated TCM and Western Medicine Hospital, Department of Traditional Chinese Medicine Pharmacy, Chengdu, China
| | - Juan Wang
- Chengdu Integrated TCM and Western Medicine Hospital, Department of Traditional Chinese Medicine Pharmacy, Chengdu, China
| | - Zhengrong Shi
- Chengdu Integrated TCM and Western Medicine Hospital, Department of Traditional Chinese Medicine Pharmacy, Chengdu, China
| | - Hui Zhao
- Henan University of Traditional Chinese Medicine, Department of pharmacology, Zhengzhou, Henan, China
| | - Jingxing Gao
- Chengdu Integrated TCM and Western Medicine Hospital, Department of Traditional Chinese Medicine Pharmacy, Chengdu, China
| | - Jinxiu Li
- Chengdu Integrated TCM and Western Medicine Hospital, Department of Traditional Chinese Medicine Pharmacy, Chengdu, China
| |
Collapse
|
2
|
Zhuo G, Lin S, Yuan F, Zheng Q, Guo Y, Wang Z, Hu J, Yao M, Zhong F, Chen S, Chen Y, Chen H. Comprehensive analysis of the expression and prognostic value of ARMCs in pancreatic adenocarcinoma. BMC Cancer 2025; 25:28. [PMID: 39773340 PMCID: PMC11708071 DOI: 10.1186/s12885-024-13365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) has a very poor prognosis, and there are few treatments for PAAD. Therefore, it is important to find some biomarkers for the diagnosis and treatment of PAAD. Although some members of Armadillo repeat containing proteins (ARMCs) have been implicated in the development of certain cancers, their relationship with PAAD remains unknown. In this study, we aimed to explore the expression and prognostic value of ARMCs in PAAD. METHODS We used the The Cancer Genome Atlas (TCGA) database for survival analysis. Then, Gene Expression Profiling Interactive Analysis (GEPIA), the cBioPortal database, the Human Protein Atlas (HPA), Kaplan-Meier Plotter, LinkedOmics Database, Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG), Cytoscape and Timer were used to analyze the relationship between ARMCs and PAAD. In addition, we established a prognostic model of ARMCs for PAAD. Immunohistochemistry (IHC) was also performed. Then Image-J was used to analyze all images obtained from the experiment, and GraphPad-Prism (9.5.1) was used for statistical analysis to verify the expression of ARMCs in PAAD. RESULTS In the TCGA database, the expressions of ARMC1, 2, 3, 5, 6, 7, 8, 9 and 10 in PAAD tissues were significantly higher than those in normal tissues. And higher expressions of ARMC1 and 10 were associated with lower survival rate of PAAD patients. In addition, ARMC2, 5, 6, and 10 were positively associated with advanced stages of PAAD. ARMCs mutations occur in 11% of PAAD patients, and missense mutations and amplification of ARMCs account for most of them. In addition, ARMC5 and ARMC10 were independent prognostic factors in univariate and multivariate Cox regression analyses. Finally, through our confirmation experiment, it was found that the expression of ARMC1 and 10 in PAAD tissues was significantly increased compared with those in paracancer tissue. CONCLUSION This study suggests that ARMCs may be able to play important roles in PAAD, and they can act as biomarkers, providing valuable clues for the treatment and diagnosis of PAAD.
Collapse
Affiliation(s)
- Guanxiang Zhuo
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Department of Hepatobiliary Surgery, Fudan University Shanghai Cancer Center Xiamen Hospital, Xiamen, 350003, Fujian, China
| | - Shengzhai Lin
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350001, Fujian, China
| | - Fei Yuan
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350001, Fujian, China
| | - Qiaoling Zheng
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Yinpin Guo
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350001, Fujian, China
| | - Zuwei Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Jianfei Hu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Meihong Yao
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Fuxiu Zhong
- Department of Hepatobiliary Surgery Nursing, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, 350001, Fujian, China.
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China.
| | - Yanling Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
- Fujian Medical University Cancer Center, Fuzhou, 350001, Fujian, China.
| | - Huixing Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
- Fujian Medical University Cancer Center, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
3
|
Kelly ED, Ranek MJ, Zhang M, Kass DA, Muller GK. Phosphodiesterases: Evolving Concepts and Implications for Human Therapeutics. Annu Rev Pharmacol Toxicol 2025; 65:415-441. [PMID: 39322437 DOI: 10.1146/annurev-pharmtox-031524-025239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides. While the 11 PDE subfamilies share common features, key differences confer signaling specificity. The differences include substrate selectivity, enzymatic activity regulation, tissue expression, and subcellular localization. Selective inhibitors of each subfamily have elucidated the protean role of PDEs in normal cell function. PDEs are also linked to diseases, some of which affect the immune, cardiac, and vascular systems. Selective PDE inhibitors are clinically used to treat these specific disorders. Ongoing preclinical studies and clinical trials are likely to lead to the approval of additional PDE-targeting drugs for therapy in human disease. In this review, we discuss the structure and function of PDEs and examine current and evolving therapeutic uses of PDE inhibitors, highlighting their mechanisms and innovative applications that could further leverage this crucial family of enzymes in clinical settings.
Collapse
Affiliation(s)
- Evan D Kelly
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA;
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Manling Zhang
- Division of Cardiology, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Grace K Muller
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA;
| |
Collapse
|
4
|
He Z, Xie L, Liu J, Wei X, Zhang W, Mei Z. Novel insight into the role of A-kinase anchoring proteins (AKAPs) in ischemic stroke and therapeutic potentials. Biomed Pharmacother 2024; 175:116715. [PMID: 38739993 DOI: 10.1016/j.biopha.2024.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Ischemic stroke, a devastating disease associated with high mortality and disability worldwide, has emerged as an urgent public health issue. A-kinase anchoring proteins (AKAPs) are a group of signal-organizing molecules that compartmentalize and anchor a wide range of receptors and effector proteins and have a major role in stabilizing mitochondrial function and promoting neurodevelopmental development in the central nervous system (CNS). Growing evidence suggests that dysregulation of AKAPs expression and activity is closely associated with oxidative stress, ion disorder, mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in ischemic stroke. However, the underlying mechanisms remain inadequately understood. This review provides a comprehensive overview of the composition and structure of A-kinase anchoring protein (AKAP) family members, emphasizing their physiological functions in the CNS. We explored in depth the molecular and cellular mechanisms of AKAP complexes in the pathological progression and risk factors of ischemic stroke, including hypertension, hyperglycemia, lipid metabolism disorders, and atrial fibrillation. Herein, we highlight the potential of AKAP complexes as a pharmacological target against ischemic stroke in the hope of inspiring translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Ziyu He
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jiyong Liu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xuan Wei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
5
|
Tsai CY, Ko HJ, Chiou SJ, Lin XY, Chuang TH, Cheng JT, Su YF, Loh JK, Hong YR. GSKIP modulates cell aggregation through EMT/MET signaling rather than differentiation in SH-SY5Y human neuroblastoma cells. J Cell Commun Signal 2023; 17:1039-1054. [PMID: 37133713 PMCID: PMC10409706 DOI: 10.1007/s12079-023-00752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/18/2023] [Indexed: 05/04/2023] Open
Abstract
GSK3β interacting protein (GSKIP) is a small A-kinase anchor protein previously reported to mediate the N-cadherin/β-catenin pool for differentiation in SH-SY5Y cells through overexpression of GSKIP to present the neuron outgrowth phenotype. To further investigate how GSKIP functions in neurons, CRISPR/Cas9 technology was utilized to knock out GSKIP (GSKIP-KO) in SH-SY5Y. Several GSKIP-KO clones resulted in an aggregation phenotype and reduced cell growth without retinoic acid (RA) treatment. However, neuron outgrowth was still observed in GSKIP-KO clones treated with RA. The GSKIP-KO clones exhibited an aggregation phenotype through suppression of GSK3β/β-catenin pathways and cell cycle progression rather than cell differentiation. Gene set enrichment analysis indicated that GSKIP-KO was related to epithelial mesenchymal transition/mesenchymal epithelial transition (EMT/MET) and Wnt/β-catenin/cadherin signaling pathways, suppressing cell migration and tumorigenesis through the inhibition of Wnt/β-catenin mediated EMT/MET. Conversely, reintroduction of GSKIP into GSKIP-KO clones restored cell migration and tumorigenesis. Notably, phosphor-β-catenin (S675) and β-catenin (S552) but not phosphor-β-catenin (S33/S37/T41) translocated into the nucleus for further gene activation. Collectively, these results suggested that GSKIP may function as an oncogene to form an aggregation phenotype for cell survival in harsh environments through EMT/MET rather than differentiation in the GSKIP-KO of SH-SY5Y cells. GSKIP Implication in Signaling Pathways with Potential Impact on SHSY-5Y Cell Aggregation.
Collapse
Affiliation(s)
- Cheng-Yu Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huey-Jiun Ko
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shean-Jaw Chiou
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Xin-Yi Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Yu-Feng Su
- Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Joon-Khim Loh
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
6
|
Cheng YW, Chen YY, Lin CJ, Lieu AS, Tsai HP, Kwan AL. High expression of GSKIP is associated with poor prognosis in meningioma. Medicine (Baltimore) 2022; 101:e32209. [PMID: 36550871 PMCID: PMC9771170 DOI: 10.1097/md.0000000000032209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Meningiomas are the most common extra-axial primary central nervous system tumors. There is no effective treatment or targeted therapy for meningioma except excision and radiotherapy. glycogen synthesis kinase 3β interaction protein (GSKIP) is an A-kinase anchor protein that has cytosolic scaffolding function and binds to a protein kinase A and glycogen synthesis kinase 3β to modulate different biological processes and malignant tumorigenesis through the Wnt pathway. The purpose of this study was to investigate the relationship between GSKIP expression and the clinico-pathological parameters in meningioma using immunohistochemical staining. We collected samples from 74 patients, from 2008 to 2012, in the Kaohsiung Medical University Hospital that had data on the staging and prognosis of the meningioma pathological section. Chi-square, Kaplan-Meier method, and cox regression were used to analyze the correlation between clinical parameters and immunohistochemistry staining for GSKIP. Following our immunohistochemical score, we found that higher expression of GSKIP was associated with high World Health Organization grading, recurrence, malignant transformation, and reduced overall survival time and recurrence-free survival time in meningioma. GSKIP may be a biomarker of poor prognosis and a target protein for therapy in meningioma.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yang-Yi Chen
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ann-Shung Lieu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- * Correspondence: Hung-Pei Tsai, Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No.100, Tzyou 1st Road Kaohsiung 80756, Taiwan (e-mail: )
| | - Aij-Lie Kwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA
| |
Collapse
|
7
|
Wu NS, Lin YF, Ma IC, Ko HJ, Hong YR. Many faces and functions of GSKIP: a temporospatial regulation view. Cell Signal 2022; 97:110391. [PMID: 35728705 DOI: 10.1016/j.cellsig.2022.110391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Glycogen synthase kinase 3 (GSK3)-β (GSK3β) interaction protein (GSKIP) is one of the smallest A-kinase anchoring proteins that possesses a binding site for GSK3β. Recently, our group identified the protein kinase A (PKA)-GSKIP-GSK3β-X axis; knowledge of this axis may help us decipher the many roles of GSKIP and perhaps help explain the evolutionary reason behind the interaction between GSK3β and PKA. In this review, we highlight the critical and multifaceted role of GSKIP in facilitating PKA kinase activity and its function as a scaffolding protein in signaling pathways. We also highlight how these pivotal PKA and GSK3 kinases can control context-specific functions and interact with multiple target proteins, such as β-catenin, Drp1, Tau, and other proteins. GSKIP is a key regulator of multiple mechanisms because of not only its location at certain subcellular compartments but also its serial changes during the developmental process. Moreover, the involvement of critical upstream regulatory signaling pathways in GSKIP signaling in various cancers, such as miRNA (microRNA) and lncRNA (long noncoding RNA), may help in the identification of therapeutic targets in the era of precision medicine and personalized therapy. Finally, we emphasize on the model of the early stage of pathogenesis of Alzheimer Disease (AD). Although the model requires validation, it can serve as a basis for diagnostic biomarkers development and drug discovery for early-stage AD.
Collapse
Affiliation(s)
- Nian-Siou Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Fan Lin
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| | - I Chu Ma
- China Medical University Hospital, Taichung 404, Taiwan.
| | - Huey-Jiun Ko
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Ren Hong
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan,; Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
8
|
Tsai CY, Chiou SJ, Ko HJ, Cheng YF, Lin SY, Lai YL, Lin CY, Wang C, Cheng JT, Liu HF, Kwan AL, Loh JK, Hong YR. Deciphering the evolution of composite-type GSKIP in mitochondria and Wnt signaling pathways. PLoS One 2022; 17:e0262138. [PMID: 35051222 PMCID: PMC8775565 DOI: 10.1371/journal.pone.0262138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
We previously revealed the origin of mammalian simple-type glycogen synthase kinase interaction protein (GSKIP), which served as a scavenger and a competitor in the Wnt signaling pathway during evolution. In this study, we investigated the conserved and nonconserved regions of the composite-type GSKIP by utilizing bioinformatics tools, site-directed mutagenesis, and yeast two-hybrid methods. The regions were denoted as the pre-GSK3β binding site, which is located at the front of GSK3β-binding sites. Our data demonstrated that clustered mitochondria protein 1 (CLU1), a type of composite-type GSKIP that exists in the mitochondria of all eukaryotic organisms, possesses the protein known as domain of unknown function 727 (DUF727), with a pre-GSK3β-binding site and a mutant GSK3β-binding flanking region. Another type of composite-type GSKIP, armadillo repeat containing 4 (ARMC4), which is known for cilium movement in vertebrates, contains an unintegrated DUF727 flanking region with a pre-GSK3β-binding site (115SPxF118) only. In addition, the sequence of the GSK3β-binding site in CLU1 revealed that Q126L and V130L were not conserved, differing from the ideal GSK3β-binding sequence of simple-type GSKIP. We further illustrated two exceptions, namely 70 kilodalton heat shock proteins (Hsp70/DnaK) and Mitofilin in nematodes, that presented an unexpected ideal GSK3β-binding region with a pre-GSK3β sequence; this composite-type GSKIP could only occur in vertebrate species. Furthermore, we revealed the importance of the pre-GSK3β-binding site (118F or 118Y) and various mutant GSK3β-binding sites of composite-type GSKIP. Collectively, our data suggest that the new composite-type GSKIP starts with a DUF727 domain followed by a pre-GSK3β-binding site, with the subsequent addition of the GSK3β-binding site, which plays vital roles for CLU1, Mitofilin, and ARMC4 in mitochondria and Wnt signaling pathways during evolution.
Collapse
Affiliation(s)
- Cheng-Yu Tsai
- College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shean-Jaw Chiou
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huey-Jiun Ko
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Fan Cheng
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sin-Yi Lin
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Ling Lai
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Yen Lin
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chihuei Wang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hsin-Fu Liu
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Aij-Li Kwan
- College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Joon-Khim Loh
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (YRH); (JKL)
| | - Yi-Ren Hong
- College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- * E-mail: (YRH); (JKL)
| |
Collapse
|
9
|
Tripathi A, John AA, Kumar D, Kaushal SK, Singh DP, Husain N, Sarkar J, Singh D. MiR-539-3p impairs osteogenesis by suppressing Wnt interaction with LRP-6 co-receptor and subsequent inhibition of Akap-3 signaling pathway. Front Endocrinol (Lausanne) 2022; 13:977347. [PMID: 36267566 PMCID: PMC9577939 DOI: 10.3389/fendo.2022.977347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
X-linked hypophosphatemia (XLH), an inheritable form of rickets is caused due to mutation in Phex gene. Several factors are linked to the disease's aetiology, including non-coding RNA molecules (miRNAs), which are key post-transcriptional regulators of gene expression and play a significant role in osteoblast functions. MicroRNAs sequence analysis showed differentially regulated miRNAs in phex silenced osteoblast cells. In this article, we report miR-539-3p, an unidentified novel miRNA, in the functional regulation of osteoblast. MiR-539-3p overexpression impaired osteoblast differentiation. Target prediction algorithm and experimental confirmation by luciferase 3' UTR reporter assay identified LRP-6 as a direct target of miR-539-3p. Over expression of miR-539-3p in osteoblasts down regulated Wnt/beta catenin signaling components and deteriorated trabecular microarchitecture leading to decreased bone formation in ovariectomized (Ovx) mice. Additionally, biochemical bone resorption markers like CTx and Trap-5b were elevated in serum samples of mimic treated group, while, reverse effect was observed in anti-miR treated animals along with increased bone formation marker P1NP. Moreover, transcriptome analysis with miR-539-3p identified a novel uncharacterized Akap-3 gene in osteoblast cells, knock down of which resulted in downregulation of osteoblast differentiation markers at both transcriptional and translational level. Overall, our study for the first time reported the role of miR-539-3p in osteoblast functions and its downstream Akap-3 signalling in regulation of osteoblastogenesis.
Collapse
Affiliation(s)
- Alok Tripathi
- Division of Endocrinology, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad, Uttar Pradesh, India
| | - Aijaz A. John
- Division of Endocrinology, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Deepak Kumar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad, Uttar Pradesh, India
- Division of Cancer Biology, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Saurabh Kumar Kaushal
- Division of Endocrinology, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad, Uttar Pradesh, India
| | - Devendra Pratap Singh
- Division of Endocrinology, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad, Uttar Pradesh, India
| | - Nazim Husain
- Division of Endocrinology, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Jayanta Sarkar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad, Uttar Pradesh, India
- Division of Cancer Biology, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Divya Singh
- Division of Endocrinology, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad, Uttar Pradesh, India
- *Correspondence: Divya Singh,
| |
Collapse
|
10
|
Wu S, Shen D, Zhao L. AKAP9 Upregulation Predicts Unfavorable Prognosis in Pediatric Acute Myeloid Leukemia and Promotes Stemness Properties via the Wnt/β-Catenin Pathway. Cancer Manag Res 2022; 14:157-167. [PMID: 35046723 PMCID: PMC8760470 DOI: 10.2147/cmar.s343033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Background PRKA kinase anchor protein 9 (AKAP9) is a scaffold protein involved in various cellular processes, including cell adhesion, proliferation, differentiation, and apoptosis. Although the oncogenic role of AKAP9 in solid tumors is well elucidated, the functions and mechanisms of AKAP9 in acute myeloid leukemia (AML) are still not understood. Methods We used the gene expression omnibus (GEO) database (GSE2191) to determine the mRNA expression of AKAP9 in the bone marrow of pediatric AML and healthy patients. We further used the therapeutically available research to generate effective treatments (TARGET) database to elucidate the relationship between AKAP9 expression and clinical outcomes in pediatric patients with AML. In addition, cell proliferation, cell cycle, apoptosis, RT-PCR, and Western blotting assays were applied to reveal the functions of AKAP9 and the underlying mechanisms of AKAP9 silencing in THP1 and HL60 cell lines. Results AKAP9 is overexpressed in the bone marrow of pediatric AML patients as compared with that of healthy patients. High expression of AKAP9 was found to be a predictor of poor overall survival (OS) and event-free survival (EFS). Using univariate and multivariate survival analyses, we found that high AKAP9 expression is an independent predictor of a worse OS and EFS. Functionally, AKAP9 silencing significantly inhibited AML cell proliferation, and cell cycle progression and promoted apoptosis. Moreover, AKAP9 silencing significantly downregulated the expression of stemness markers and β-catenin. Conclusion AKAP9 upregulation is a predictor of unfavorable prognosis, promotes stemness, and activates the Wnt/β-catenin pathway in AML patients. AKAP9 may act as a prognostic biomarker of AML in pediatric patients and a future therapeutic target.
Collapse
Affiliation(s)
- Shiwen Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Departments of Clinical Laboratory, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Dongqin Shen
- Department of Medical Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Li Zhao
- Department of Central Laboratory, Gansu Key Laboratory of Genetic Study of Hematopathy, The First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Correspondence: Li Zhao Department of Central Laboratory, Gansu Key Laboratory of Genetic Study of Hematopathy, The First Hospital of Lanzhou University, Lanzhou University, No. 1 Donggang West Road, Lanzhou, Gansu, 730000, People’s Republic of ChinaTel +8613919934053Fax +8609318356353 Email
| |
Collapse
|
11
|
Walker-Gray R, Pallien T, Miller DC, Oder A, Neuenschwander M, von Kries JP, Diecke S, Klussmann E. Disruptors of AKAP-Dependent Protein-Protein Interactions. Methods Mol Biol 2022; 2483:117-139. [PMID: 35286673 DOI: 10.1007/978-1-0716-2245-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A-kinase anchoring proteins (AKAPs) are a family of multivalent scaffolding proteins. They engage in direct protein-protein interactions with protein kinases, kinase substrates and further signaling molecules. Each AKAP interacts with a specific set of protein interaction partners and such sets can vary between different cellular compartments and cells. Thus, AKAPs can coordinate signal transduction processes spatially and temporally in defined cellular environments. AKAP-dependent protein-protein interactions are involved in a plethora of physiological processes, including processes in the cardiovascular, nervous, and immune system. Dysregulation of AKAPs and their interactions is associated with or causes widespread diseases, for example, cardiac diseases such as heart failure. However, there are profound shortcomings in understanding functions of specific AKAP-dependent protein-protein interactions. In part, this is due to the lack of agents for specifically targeting defined protein-protein interactions. Peptidic and non-peptidic inhibitors are invaluable molecular tools for elucidating the functions of AKAP-dependent protein-protein interactions. In addition, such interaction disruptors may pave the way to new concepts for the treatment of diseases where AKAP-dependent protein-protein interactions constitute potential drug targets.Here we describe screening approaches for the identification of small molecule disruptors of AKAP-dependent protein-protein interactions. Examples include interactions of AKAP18 and protein kinase A (PKA) and of AKAP-Lbc and RhoA. We discuss a homogenous time-resolved fluorescence (HTRF) and an AlphaScreen® assay for small molecule library screening and human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) as a cell system for the characterization of identified hits.
Collapse
Affiliation(s)
- Ryan Walker-Gray
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Tamara Pallien
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Duncan C Miller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Andreas Oder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | | | | | - Sebastian Diecke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany.
| |
Collapse
|
12
|
Huang Y, Jiang Z, Gao X, Luo P, Jiang X. ARMC Subfamily: Structures, Functions, Evolutions, Interactions, and Diseases. Front Mol Biosci 2021; 8:791597. [PMID: 34912852 PMCID: PMC8666550 DOI: 10.3389/fmolb.2021.791597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
Armadillo repeat-containing proteins (ARMCs) are widely distributed in eukaryotes and have important influences on cell adhesion, signal transduction, mitochondrial function regulation, tumorigenesis, and other processes. These proteins share a similar domain consisting of tandem repeats approximately 42 amino acids in length, and this domain constitutes a substantial platform for the binding between ARMCs and other proteins. An ARMC subfamily, including ARMC1∼10, ARMC12, and ARMCX1∼6, has received increasing attention. These proteins may have many terminal regions and play a critical role in various diseases. On the one hand, based on their similar central domain of tandem repeats, this ARMC subfamily may function similarly to other ARMCs. On the other hand, the unique domains on their terminals may cause these proteins to have different functions. Here, we focus on the ARMC subfamily (ARMC1∼10, ARMC12, and ARMCX1∼6), which is relatively conserved in vertebrates and highly conserved in mammals, particularly primates. We review the structures, biological functions, evolutions, interactions, and related diseases of the ARMC subfamily, which involve more than 30 diseases and 40 bypasses, including interactions and relationships between more than 100 proteins and signaling molecules. We look forward to obtaining a clearer understanding of the ARMC subfamily to facilitate further in-depth research and treatment of related diseases.
Collapse
Affiliation(s)
- Yutao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Institue of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zijian Jiang
- Department of Hepato-biliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Institue of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Institue of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Loss of Atg2b and Gskip impairs the maintenance of the hematopoietic stem cell pool size. Mol Cell Biol 2021; 42:e0002421. [PMID: 34748402 PMCID: PMC8773083 DOI: 10.1128/mcb.00024-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A germ line copy number duplication of chromosome 14q32, which contains ATG2B and GSKIP, was identified in families with myeloproliferative neoplasm (MPN). Here, we show that mice lacking both Atg2b and Gskip, but not either alone, exhibited decreased hematopoiesis, resulting in death in utero accompanied by anemia. In marked contrast to MPN patients with duplication of ATG2B and GSKIP, the number of hematopoietic stem cells (HSCs), in particular long-term HSCs, in double-knockout fetal livers was significantly decreased due to increased cell death. Although the remaining HSCs still had the ability to differentiate into hematopoietic progenitor cells, the differentiation efficiency was quite low. Remarkably, mice with knockout of Atg2b or Gskip alone did not show any hematopoietic abnormality. Mechanistically, while loss of both genes had no effect on autophagy, it increased the expression of genes encoding enzymes involved in oxidative phosphorylation. Taken together, our results indicate that Atg2b and Gskip play a synergistic effect in maintaining the pool size of HSCs.
Collapse
|
14
|
Ramms DJ, Raimondi F, Arang N, Herberg FW, Taylor SS, Gutkind JS. G αs-Protein Kinase A (PKA) Pathway Signalopathies: The Emerging Genetic Landscape and Therapeutic Potential of Human Diseases Driven by Aberrant G αs-PKA Signaling. Pharmacol Rev 2021; 73:155-197. [PMID: 34663687 PMCID: PMC11060502 DOI: 10.1124/pharmrev.120.000269] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many of the fundamental concepts of signal transduction and kinase activity are attributed to the discovery and crystallization of cAMP-dependent protein kinase, or protein kinase A. PKA is one of the best-studied kinases in human biology, with emphasis in biochemistry and biophysics, all the way to metabolism, hormone action, and gene expression regulation. It is surprising, however, that our understanding of PKA's role in disease is largely underappreciated. Although genetic mutations in the PKA holoenzyme are known to cause diseases such as Carney complex, Cushing syndrome, and acrodysostosis, the story largely stops there. With the recent explosion of genomic medicine, we can finally appreciate the broader role of the Gαs-PKA pathway in disease, with contributions from aberrant functioning G proteins and G protein-coupled receptors, as well as multiple alterations in other pathway components and negative regulators. Together, these represent a broad family of diseases we term the Gαs-PKA pathway signalopathies. The Gαs-PKA pathway signalopathies encompass diseases caused by germline, postzygotic, and somatic mutations in the Gαs-PKA pathway, with largely endocrine and neoplastic phenotypes. Here, we present a signaling-centric review of Gαs-PKA-driven pathophysiology and integrate computational and structural analysis to identify mutational themes commonly exploited by the Gαs-PKA pathway signalopathies. Major mutational themes include hotspot activating mutations in Gαs, encoded by GNAS, and mutations that destabilize the PKA holoenzyme. With this review, we hope to incite further study and ultimately the development of new therapeutic strategies in the treatment of a wide range of human diseases. SIGNIFICANCE STATEMENT: Little recognition is given to the causative role of Gαs-PKA pathway dysregulation in disease, with effects ranging from infectious disease, endocrine syndromes, and many cancers, yet these disparate diseases can all be understood by common genetic themes and biochemical signaling connections. By highlighting these common pathogenic mechanisms and bridging multiple disciplines, important progress can be made toward therapeutic advances in treating Gαs-PKA pathway-driven disease.
Collapse
Affiliation(s)
- Dana J Ramms
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Francesco Raimondi
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Nadia Arang
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Friedrich W Herberg
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Susan S Taylor
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - J Silvio Gutkind
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| |
Collapse
|
15
|
Variation in the Ovine Glycogen Synthase Kinase 3 Beta-Interaction Protein Gene ( GSKIP) Affects Carcass and Growth Traits in Romney Sheep. Animals (Basel) 2021; 11:ani11092690. [PMID: 34573656 PMCID: PMC8465499 DOI: 10.3390/ani11092690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The glycogen synthase kinase 3 beta (GSK3β)-interacting protein plays a role in regulating glycogen metabolism, protein synthesis, the cell cycle, and in regulating gene expression. To date, physiological function research into the GSK3β-interacting protein has been focused on cell lines, gene ‘knockout’ models, and over-expression studies, and to our knowledge, there have been no reports on how variation in the GSK3β-interacting protein gene (GSKIP) may affect phenotypic traits. In this study, PCR-SSCP methods were used to screen for variation in exon 1 and exon 2 of GSKIP in 840 New Zealand (NZ) Romney sheep. Two variant sequences were identified in exon 1 and this variation in GSKIP was associated with variation in lamb birth weight, hot carcass weight, and fat depth at the 12th rib. Abstract The glycogen synthase kinase 3 beta (GSK3β)-interacting protein (encoded by the gene GSKIP) is a small A-kinase anchoring protein, which complexes with GSK3βand protein kinase A (PKA) and acts synergistically with cAMP/PKA signaling to inhibit GSK3β activity. The protein plays a role in regulating glycogen metabolism, protein synthesis, the cell cycle, and in regulating gene expression. In this study, PCR-single strand conformation polymorphism (PCR-SSCP) analyses were used to screen for variation in exon 1 and exon 2 of GSKIP in 840 New Zealand (NZ) Romney sheep. Two SSCP banding patterns representing two different nucleotide variants (A and B) were detected in an exon 1 region, whereas in an exon 2 region only one pattern was detected. Variants A and B of exon 1 had one non-synonymous nucleotide difference c.37A/G (p.Met13Val). The birthweight of sheep of genotype AA (5.9 ± 0.06 kg) was different (p = 0.023) to sheep of genotype AB (5.7 ± 0.06 kg) and BB (5.7 ± 0.06 kg). The hot carcass weight (HCW) of sheep of genotype AA (17.2 ± 0.22 kg) was different (p = 0.012) to sheep of genotype AB (17.6 ± 0.22 kg) and BB (18.0 ± 0.29 kg), and the fat depth at the 12th rib (V-GR) of sheep of genotype AA (7.7 ± 0.31 mm) was different (p = 0.016) to sheep of genotype AB (8.3 ± 0.30 mm) and BB (8.5 ± 0.39 mm). The results suggest that the c.37A/G substitution in ovine GSKIP may affect sheep growth and carcass traits.
Collapse
|
16
|
Yu G, Shen P, Lee YC, Pan J, Song JH, Pan T, Lin SC, Liang X, Wang G, Panaretakis T, Logothetis CJ, Gallick GE, Yu-Lee LY, Lin SH. Multiple pathways coordinating reprogramming of endothelial cells into osteoblasts by BMP4. iScience 2021; 24:102388. [PMID: 33981975 PMCID: PMC8086028 DOI: 10.1016/j.isci.2021.102388] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/28/2021] [Accepted: 03/30/2021] [Indexed: 02/03/2023] Open
Abstract
Cell type transition occurs during normal development and under pathological conditions. In prostate cancer bone metastasis, prostate cancer-secreted BMP4 induces endothelial cell-to-osteoblast (EC-to-OSB) transition. Such tumor-induced stromal reprogramming supports prostate cancer progression. We delineate signaling pathways mediating EC-to-OSB transition using EC lines 2H11 and SVR. We found that BMP4-activated pSmad1-Notch-Hey1 pathway inhibits EC migration and tube formation. BMP4-activated GSK3β-βcatenin-Slug pathway stimulates Osx expression. In addition, pSmad1-regulated Dlx2 converges with the Smad1 and β-catenin pathways to stimulate osteocalcin expression. By co-expressing Osx, Dlx2, Slug and Hey1, we were able to achieve EC-to-OSB transition, leading to bone matrix mineralization in the absence of BMP4. In human prostate cancer bone metastasis specimens and MDA-PCa-118b and C4-2b-BMP4 osteogenic xenografts, immunohistochemical analysis showed that β-catenin and pSmad1 are detected in activated osteoblasts rimming the tumor-induced bone. Our results elucidated the pathways and key molecules coordinating prostate cancer-induced stromal programming and provide potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Pengfei Shen
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Pan
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian H. Song
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Tianhong Pan
- Department of Orthopedic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Xin Liang
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Gary E. Gallick
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA,Corresponding author
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA,Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA,Corresponding author
| |
Collapse
|
17
|
Ehinger Y, Phamluong K, Darevesky D, Welman M, Moffat JJ, Sakhai SA, Whiteley EL, Berger AL, Laguesse S, Farokhnia M, Leggio L, Lordkipanidzé M, Ron D. Differential correlation of serum BDNF and microRNA content in rats with rapid or late onset of heavy alcohol use. Addict Biol 2021; 26:e12890. [PMID: 32135570 DOI: 10.1111/adb.12890] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022]
Abstract
Heavy alcohol use reduces the levels of the brain-derived neurotrophic factor (BDNF) in the prefrontal cortex of rodents through the upregulation of microRNAs (miRs) targeting BDNF mRNA. In humans, an inverse correlation exists between circulating blood levels of BDNF and the severity of psychiatric disorders including alcohol abuse. Here, we set out to determine whether a history of heavy alcohol use produces comparable alterations in the blood of rats. We used an intermittent access to 20% alcohol using the two-bottle choice paradigm (IA20%2BC) and measured circulating levels of BDNF protein and miRs targeting BDNF in the serum of Long-Evans rats before and after 8 weeks of excessive alcohol intake. We observed that the drinking profile of heavy alcohol users is not unified, whereas 70% of the rats gradually escalate their alcohol intake (late onset), and 30% of alcohol users exhibit a very rapid onset of drinking (rapid onset). We found that serum BDNF levels are negatively correlated with alcohol intake in both rapid onset and late onset rats. In contrast, increased expression of the miRs targeting BDNF, miR30a-5p, miR-195-5p, miR191-5p and miR206-3p, was detected only in the rapid onset rats. Finally, we report that the alcohol-dependent molecular changes are not due to alterations in platelet number. Together, these data suggest that rats exhibit both late and rapid onset of alcohol intake. We further show that heavy alcohol use produces comparable changes in BDNF protein levels in both groups. However, circulating microRNAs are responsive to alcohol only in the rapid onset rats.
Collapse
Affiliation(s)
- Yann Ehinger
- Department of Neurology University of California, San Francisco San Francisco California
| | - Khanhky Phamluong
- Department of Neurology University of California, San Francisco San Francisco California
| | - David Darevesky
- Department of Neurology University of California, San Francisco San Francisco California
| | - Melanie Welman
- Research Center Montreal Heart Institute Montreal Quebec Canada
| | - Jeffrey J. Moffat
- Department of Neurology University of California, San Francisco San Francisco California
| | - Samuel A. Sakhai
- Department of Neurology University of California, San Francisco San Francisco California
| | - Ellanor L. Whiteley
- Department of Neurology University of California, San Francisco San Francisco California
| | - Anthony L. Berger
- Department of Neurology University of California, San Francisco San Francisco California
| | - Sophie Laguesse
- Department of Neurology University of California, San Francisco San Francisco California
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section National Institute on Drug Abuse Intramural Research Program Baltimore Maryland
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program National Institutes of Health Baltimore Maryland
- National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research National Institutes of Health Bethesda Maryland
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section National Institute on Drug Abuse Intramural Research Program Baltimore Maryland
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program National Institutes of Health Baltimore Maryland
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences Brown University Providence Rhode Island
- National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research National Institutes of Health Bethesda Maryland
| | - Marie Lordkipanidzé
- Research Center Montreal Heart Institute Montreal Quebec Canada
- Faculty of Pharmacy University of Montreal Montreal Quebec Canada
| | - Dorit Ron
- Department of Neurology University of California, San Francisco San Francisco California
| |
Collapse
|
18
|
Omar MH, Scott JD. AKAP Signaling Islands: Venues for Precision Pharmacology. Trends Pharmacol Sci 2020; 41:933-946. [PMID: 33082006 DOI: 10.1016/j.tips.2020.09.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Regulatory enzymes often have different roles in distinct subcellular compartments. Yet, most drugs indiscriminately saturate the cell. Thus, subcellular drug-delivery holds promise as a means to reduce off-target pharmacological effects. A-kinase anchoring proteins (AKAPs) sequester combinations of signaling enzymes within subcellular microdomains. Targeting drugs to these 'signaling islands' offers an opportunity for more precise delivery of therapeutics. Here, we review mechanisms that bestow protein kinase A (PKA) versatility inside the cell, appraise recent advances in exploiting AKAPs as platforms for precision pharmacology, and explore the impact of methodological innovations on AKAP research.
Collapse
Affiliation(s)
- Mitchell H Omar
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
19
|
Yan L, Cheng G, Yang G. GSKIP protects cardiomyocytes from hypoxia/reoxygenation-induced injury by enhancing Nrf2 activation via GSK-3β inhibition. Biochem Biophys Res Commun 2020; 532:68-75. [PMID: 32828530 DOI: 10.1016/j.bbrc.2020.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 01/24/2023]
Abstract
Glycogen synthase kinase (GSK)-3β interaction protein (GSKIP), a key regulator of signaling transduction, is implicated in multiple pathological processes. However, whether GSKIP is involved in myocardial infarction is unknown. The present study was designed to determine the potential involvement of GSKIP in myocardial hypoxia/reoxygenation (H/R) injury, as an in vitro model for the study of myocardial infarction. Our data showed that H/R treatment triggered a marked decrease in GSKIP expression in cardiomyocytes. The upregulation of GSKIP significantly rescued the decreased viability of H/R-exposed cardiomyocytes and attenuated H/R-induced apoptosis and reactive oxygen species (ROS) generation. On the contrary, the depletion of GSKIP enhanced the sensitivity of cardiomyocytes to H/R-induced injury. Further data exhibited that GSKIP overexpression upregulated the nuclear expression of nuclear factor-erythroid-derived 2-related factor 2 (Nrf2) and increased Nrf2/antioxidant response element (ARE)-mediated transcription activity associated with upregulation of GSK-3β phosphorylation. Interestingly, inhibition of GSK-3β by a chemical inhibitor markedly enhanced Nrf2/ARE activation and abrogated GSKIP depletion-exacerbated sensitivity to H/R-induced injury. In addition, Nrf2 inhibition markedly reversed GSKIP overexpression-induced cardioprotective effect against H/R injury. Overall, these results demonstrate that overexpression of GSKIP alleviates H/R-induced apoptosis and oxidative stress in cardiomyocytes by enhancing Nrf2/ARE antioxidant signaling via GSK-3β inhibition. Our study indicates a potential role of GSKIP in myocardial infarction and GSKIP may serve as a promising molecular target for cardioprotection.
Collapse
Affiliation(s)
- Li Yan
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Gong Cheng
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Guang Yang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| |
Collapse
|
20
|
Kong S, Xue H, Li Y, Li P, Ma F, Liu M, Li W. The long noncoding RNA OTUD6B-AS1 enhances cell proliferation and the invasion of hepatocellular carcinoma cells through modulating GSKIP/Wnt/β-catenin signalling via the sequestration of miR-664b-3p. Exp Cell Res 2020; 395:112180. [PMID: 32682012 DOI: 10.1016/j.yexcr.2020.112180] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/09/2023]
Abstract
Ovarian tumour domain containing 6B antisense RNA1 (OTUD6B-AS1), a newly identified long noncoding RNA (lncRNA), has been reported as a key cancer-related lncRNA. However, the detailed relevance of OTUD6B-AS1 in hepatocellular carcinoma (HCC) remains undetermined. This study was designed to determine the functional significance and regulatory mechanism of OTUD6B-AS1 in HCC. We found that the expression of OTUD6B-AS1 was up-regulated in HCC tissues, and patients with high levels of OTUD6B-AS1 expression had shorter survival rates than those with low OTUD6B-AS1 expression. Elevated expression of the lncRNA was also found in multiple HCC cell lines and the silencing of OTUD6B-AS1 significantly decreased proliferation, colony formation and invasion. Correspondingly, OTUD6B-AS1 overexpression had the opposite effect on HCC cell invasion, colony formation and proliferation. Notably, OTUD6B-AS1 was identified as a molecular sponge of microRNA-664b-3p (miR-664b-3p). The down-regulation of miR-664b-3p was detected in HCC tissues and cell lines, and the up-regulation of miR-664b-3p repressed proliferation and invasion in HCC cells by targeting the glycogen synthase kinase-3β interaction protein (GSKIP). Moreover, OTUD6B-AS1 knockdown or miR-664b-3p up-regulation exerted a suppressive effect on Wnt/β-catenin signalling via the down-regulation of GSKIP. In addition, GSKIP overexpression markedly reversed OTUD6B-AS1 knockdown- or miR-664b-3p overexpression-induced antitumour effects in HCC. Further data confirmed that OTUD6B-AS1 knockdown exerted a tumour-inhibition role in HCC in vivo. Overall, these findings indicate that the lncRNA OTUD6B-AS1 accelerates the proliferation and invasion of HCC cells by enhancing GSKIP/Wnt/β-catenin signalling via the sequestration of miR-664b-3p. Our study reveals a novel molecular mechanism, mediated by lncRNA OTUD6B-AS1, which may play a key role in regulating the progression of HCC.
Collapse
Affiliation(s)
- Shuzhen Kong
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hui Xue
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yingchao Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Peijie Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fuquan Ma
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Mengying Liu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Weizhi Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
21
|
Han YH, Jin MH, Jin YH, Yu NN, Liu J, Zhang YQ, Cui YD, Wang AG, Lee DS, Kim SU, Kim JS, Kwon T, Sun HN. Deletion of Peroxiredoxin II Inhibits the Growth of Mouse Primary Mesenchymal Stem Cells Through Induction of the G 0/G 1 Cell-cycle Arrest and Activation of AKT/GSK3β/β-Catenin Signaling. In Vivo 2020; 34:133-141. [PMID: 31882472 DOI: 10.21873/invivo.11754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIM Dermal mesenchymal stem cells (DMSCs) are pluripotent stem cells found in the skin which maintain the thickness of the dermal layer and participate in skin wound healing. MATERIALS AND METHODS The MTT assay was performed to detect cell proliferation and cell-cycle progression and cell-surface markers were assessed by flow cytometry. The levels of proteins in related signaling pathways were detected by western blotting assay and the translocation of β-catenin into the nucleus were detected by immunofluorescence. Red oil O staining was performed to examine the differentiational ability of DMSCs. RESULTS Knockout of PRDX2 inhibited DMSC cell growth, and cell-cycle arrest at G0/G1 phase; p16, p21 and cyclin D1 expression levels in Prdx2 knockout DMSCs were significantly increased. Furthermore, AKT phosphorylation were significantly increased in Prdx2 knockout DMSCs, GSK3β activity were inhibited, result in β-Catenin accumulated in the nucleus. CONCLUSION In conclusion, these results demonstrated that PRDX2 plays a pivotal role in regulating the proliferation of DMSCs, and this is closely related to the AKT/glycogen synthase kinase 3 beta/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Mei-Hua Jin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Ying-Hua Jin
- Library and Information Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Nan-Nan Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Jun Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Yong-Qing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Yu-Dong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| | - Ai-Guo Wang
- Laboratory Animal center, Dalian Medical University, Dalian, P.R. China
| | - Dong-Seok Lee
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus project), Kyungpook National University, Daegu, Republic of Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, P.R. China
| |
Collapse
|
22
|
Li N, Cheng C, Wang T. MiR-181c-5p Mitigates Tumorigenesis in Cervical Squamous Cell Carcinoma via Targeting Glycogen Synthase Kinase 3β Interaction Protein (GSKIP). Onco Targets Ther 2020; 13:4495-4505. [PMID: 32547080 PMCID: PMC7247609 DOI: 10.2147/ott.s245254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cervical cancer (CC) is a highly prevalent cancer and one of the main causes of death among women worldwide. The miR-181 family has turned out to be associated with tumorigenesis in a variety of tumors by regulating the expression of tumor-related genes. However, the mechanisms and biological function of miR-181c-5p in cervical squamous cell carcinoma (SCC) have not been well elucidated. MATERIALS AND METHODS SiHa cell lines with specific gene overexpression vectors were constructed. Targetscan was used to predict the binding site of miR-181c-5p and GSKIP. MTT assay was used to detect the clone formation rate. Flow cytometry was used to detect the apoptosis rate and to separate the cell markers. The Transwell test was used to detect cell invasion. Immunohistochemistry was used to detect protein expression in tumor tissues. Western Blotting was used to detect the expression levels of related proteins. RESULTS GSKIP was predicted to be the target gene of miR-181c-5p in cervical SCC. MiR-181c-5p overexpression suppressed SiHa cells proliferation and promoted apoptosis; the protein expressions of Ki67 and PCNA were decreased, but the expressions of Caspase-3 and Bax/Bcl-2 were increased. The overexpression of miR-181c-5p inhibited the stem-like properties of SiHa cells; the expressions of SOX2, OCT4 and CD44 were decreased. Furthermore, miR-181c-5p upregulation limited the invasion of SiHa cells; the expression of E-cadherin was higher, but the expressions of N-cadherin and Vimentin were lower. MiR-181c-5p overexpression inhibited tumorigenesis in cervical SCC tissues; the expressions of Ki67, Caspase-3, CD44 and Vimentin in vivo were consistent with those in vitro. CONCLUSION Taken together, miR-181c-5p was able to mitigate the cancer cell characteristic and invasive properties of cervical SCC through targeting GSKIP gene.
Collapse
Affiliation(s)
- Niuniu Li
- Department of Gynecology and Obstetrics of Shiyan, Taihe Hospital of Hubei Province, Shiyan, Hubei442000, People’s Republic of China
| | - Chun Cheng
- Department of Pediatrics, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei435000, People’s Republic of China
| | - Tieyan Wang
- Clinical Pathology Department of Shiyan, Taihe Hospital of Hubei Province, Shiyan, Hubei442000, People’s Republic of China
| |
Collapse
|
23
|
Jiang W, Xia J, Xie S, Zou R, Pan S, Wang ZW, Assaraf YG, Zhu X. Long non-coding RNAs as a determinant of cancer drug resistance: Towards the overcoming of chemoresistance via modulation of lncRNAs. Drug Resist Updat 2020; 50:100683. [DOI: 10.1016/j.drup.2020.100683] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
|
24
|
Cyclin-Dependent Kinase 18 Controls Trafficking of Aquaporin-2 and Its Abundance through Ubiquitin Ligase STUB1, Which Functions as an AKAP. Cells 2020; 9:cells9030673. [PMID: 32164329 PMCID: PMC7140648 DOI: 10.3390/cells9030673] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
Arginine-vasopressin (AVP) facilitates water reabsorption in renal collecting duct principal cells through regulation of the water channel aquaporin-2 (AQP2). The hormone binds to vasopressin V2 receptors (V2R) on the surface of the cells and stimulates cAMP synthesis. The cAMP activates protein kinase A (PKA), which initiates signaling that causes an accumulation of AQP2 in the plasma membrane of the cells facilitating water reabsorption from primary urine and fine-tuning of body water homeostasis. AVP-mediated PKA activation also causes an increase in the AQP2 protein abundance through a mechanism that involves dephosphorylation of AQP2 at serine 261 and a decrease in its poly-ubiquitination. However, the signaling downstream of PKA that controls the localization and abundance of AQP2 is incompletely understood. We carried out an siRNA screen targeting 719 kinase-related genes, representing the majority of the kinases of the human genome and analyzed the effect of the knockdown on AQP2 by high-content imaging and biochemical approaches. The screening identified 13 hits whose knockdown inhibited the AQP2 accumulation in the plasma membrane. Amongst the candidates was the so far hardly characterized cyclin-dependent kinase 18 (CDK18). Our further analysis revealed a hitherto unrecognized signalosome comprising CDK18, an E3 ubiquitin ligase, STUB1 (CHIP), PKA and AQP2 that controls the localization and abundance of AQP2. CDK18 controls AQP2 through phosphorylation at serine 261 and STUB1-mediated ubiquitination. STUB1 functions as an A-kinase anchoring protein (AKAP) tethering PKA to the protein complex and bridging AQP2 and CDK18. The modulation of the protein complex may lead to novel concepts for the treatment of disorders which are caused or are associated with dysregulated AQP2 and for which a satisfactory treatment is not available, e.g., hyponatremia, liver cirrhosis, diabetes insipidus, ADPKD or heart failure.
Collapse
|
25
|
Ko HJ, Chiou SJ, Wong YH, Wang YH, Lai Y, Chou CH, Wang C, Loh JK, Lieu AS, Cheng JT, Lin YT, Lu PJ, Fann MJ, Huang CYF, Hong YR. GSKIP-Mediated Anchoring Increases Phosphorylation of Tau by PKA but Not by GSK3beta via cAMP/PKA/GSKIP/GSK3/Tau Axis Signaling in Cerebrospinal Fluid and iPS Cells in Alzheimer Disease. J Clin Med 2019; 8:1751. [PMID: 31640277 PMCID: PMC6832502 DOI: 10.3390/jcm8101751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/17/2022] Open
Abstract
Based on the protein kinase A (PKA)/GSK3β interaction protein (GSKIP)/glycogen synthase kinase 3β (GSK3β) axis, we hypothesized that these might play a role in Tau phosphorylation. Here, we report that the phosphorylation of Tau Ser409 in SHSY5Y cells was increased by overexpression of GSKIP WT more than by PKA- and GSK3β-binding defective mutants (V41/L45 and L130, respectively). We conducted in vitro assays of various kinase combinations to show that a combination of GSK3β with PKA but not Ca2+/calmodulin-dependent protein kinase II (CaMK II) might provide a conformational shelter to harbor Tau Ser409. Cerebrospinal fluid (CSF) was evaluated to extend the clinical significance of Tau phosphorylation status in Alzheimer's disease (AD), neurological disorders (NAD), and mild cognitive impairment (MCI). We found higher levels of different PKA-Tau phosphorylation sites (Ser214, Ser262, and Ser409) in AD than in NAD, MCI, and normal groups. Moreover, we used the CRISPR/Cas9 system to produce amyloid precursor protein (APPWT/D678H) isogenic mutants. These results demonstrated an enhanced level of phosphorylation by PKA but not by the control. This study is the first to demonstrate a transient increase in phosphor-Tau caused by PKA, but not GSK3β, in the CSF and induced pluripotent stem cells (iPSCs) of AD, implying that both GSKIP and GSK3β function as anchoring proteins to strengthen the cAMP/PKA/Tau axis signaling during AD pathogenesis.
Collapse
Affiliation(s)
- Huey-Jiun Ko
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Shean-Jaw Chiou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Yu-Hui Wong
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Yin-Hsuan Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - YunLing Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chia-Hua Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chihuei Wang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Joon-Khim Loh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Ann-Shung Lieu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Yu-Te Lin
- Section of Neurology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Pei-Jung Lu
- Institute of Clinical Medicine, School of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Ming-Ji Fann
- Department of Life Sciences and Institute of Genome Sciences and Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Chi-Ying F Huang
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan.
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
26
|
Zeng F, Wang Q, Wang S, Liang S, Huang W, Guo Y, Peng J, Li M, Zhu W, Guo L. Linc00173 promotes chemoresistance and progression of small cell lung cancer by sponging miR-218 to regulate Etk expression. Oncogene 2019; 39:293-307. [PMID: 31477834 DOI: 10.1038/s41388-019-0984-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/03/2019] [Accepted: 04/04/2019] [Indexed: 12/31/2022]
Abstract
The functional effects of long noncoding RNAs (lncRNAs) in cancer have been widely recognized. However, there is little research on SCLC-related lncRNAs. Here, long intergenic nonprotein coding RNA 173 (Linc00173) was first shown to be involved in chemoresistance and progression of small-cell lung cancer (SCLC). We found that Linc00173 was highly expressed in SCLC chemoresistant cell lines, and promoted SCLC cells chemoresistance, proliferation, and migration-invasion. Animal studies validated that Linc00173 induced tumor chemoresistance and growth of SCLC in vivo. Moreover, Linc00173 upregulated Etk through functioning as a competitive endogenous RNA (ceRNA) by "sponging" miRNA-218 and led to the upregulation of GSKIP and NDRG1, resulting in the translocation of β-catenin. Importantly, expression analysis revealed that both Linc00173 and Etk were upregulated in SCLC patient samples and exhibiting positive Linc00173/Etk correlation. High expression of Linc00173 closely correlated with chemoresistance, extensive stage, and shorter survival in SCLC patients. Collectively, our study illustrated a Linc00173-mediated process that facilitated chemoresistance and progression in SCLC, which might provide treatment strategy against SCLC.
Collapse
Affiliation(s)
- Fanrui Zeng
- Department of Pathology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, 510282, Guangzhou, People's Republic of China.,Department of Radiation Oncology, The First Affiliated Hospital of Guangzhou Medical University, 510080, Guangzhou, People's Republic of China
| | - Qiongyao Wang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, 510282, Guangzhou, People's Republic of China
| | - Shuyu Wang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, 510282, Guangzhou, People's Republic of China
| | - Shumei Liang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, 510282, Guangzhou, People's Republic of China
| | - Weimei Huang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, 510282, Guangzhou, People's Republic of China
| | - Ying Guo
- Department of Organ transplantation, Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, China
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 510150, Guangzhou, People's Republic of China
| | - Man Li
- Department of Pathology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, 510282, Guangzhou, People's Republic of China
| | - Weiliang Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, 510282, Guangzhou, People's Republic of China.
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, 510282, Guangzhou, People's Republic of China.
| |
Collapse
|
27
|
Dai FQ, Li CR, Fan XQ, Tan L, Wang RT, Jin H. miR-150-5p Inhibits Non-Small-Cell Lung Cancer Metastasis and Recurrence by Targeting HMGA2 and β-Catenin Signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:675-685. [PMID: 31121479 PMCID: PMC6529773 DOI: 10.1016/j.omtn.2019.04.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 01/23/2023]
Abstract
Dysregulated microRNAs (miRNAs) play crucial roles in the regulation of cancer stem cells (CSCs), and CSCs are closely associated with tumor initiation, metastasis, and recurrence. Here we found that miR-150-5p was significantly downregulated in CSCs of non-small-cell lung cancer (NSCLC) and its expression level was negatively correlated with disease progression and poor survival in patients with NSCLC. Inhibition of miR-150-5p increased the CSC population and sphere formation of NSCLC cells in vitro and stimulated NSCLC cell tumorigenicity and metastatic colonization in vivo. In contrast, miR-150-5p overexpression potently inhibited sphere-formed NSCLC cell tumor formation, metastatic colonization, and recurrence in xenograft models. Furthermore, we identified that miR-150-5p significantly inhibited wingless (Wnt)-β-catenin signaling by simultaneously targeting glycogen synthase kinase 3 beta interacting protein (GSKIP) and β-catenin in NSCLC cells. miR-150-5p also targeted high mobility group AT-hook 2 (HMGA2), another regulator of CSCs, and Wnt-β-catenin signaling. The restoration of HMGA2 and β-catenin blocked miR-150-5p overexpression-induced inhibition of CSC traits in NSCLC cells. These findings suggest that miR-150-5p functions as a CSC suppressor and that overexpression of miR-150-5p may be a novel strategy to inhibit CSC-induced metastasis and recurrence in NSCLC.
Collapse
Affiliation(s)
- Fu-Qiang Dai
- Department of Thoracic Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Cheng-Run Li
- Department of Thoracic Surgery, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Xiao-Qing Fan
- Department of Thoracic Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Long Tan
- Department of Thoracic Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Ren-Tao Wang
- Department of Respiratory, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China.
| | - Hua Jin
- Department of Thoracic Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
28
|
Liu Z, Liu Y, Gu Y, Gao L, Li A, Liu D, Kang C, Pang Q, Wang X, Han Q, Yu H. Met-enkephalin inhibits ROS production through Wnt/β-catenin signaling in the ZF4 cells of zebrafish. FISH & SHELLFISH IMMUNOLOGY 2019; 88:432-440. [PMID: 30862518 DOI: 10.1016/j.fsi.2019.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Opioid neuropeptides are developed early in the course of a long evolutionary process. As the endogenous messengers of immune system, opioid neuropeptides participate in regulating immune response. In this study, the mechanism that Met-enkephalin (M-ENK) inhibits ROS production through Wnt/β-catenin signaling was investigated in the ZF4 cells of zebrafish. ZF4 cells were exposed to 0, 10, 20, 40, 80, and 160 μM Met-enkephalin (M-ENK) for 24 h, and the cell viability was detected with 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. The cell viability was significantly increased by 10, 20, 40, 80, and 160 μM M-ENK. After ZF4 cells were exposed to 0, 20, 40, and 80 μM M-ENK for 24 h, the mRNA expression of Wnt10b, β-catenin, and CCAAT/enhancer binding protein α (C/EBPα) was significantly increased by 40 and 80 μM M-ENK. However, the mRNA and protein expression of GSK-3β was significantly decreased by 40 and 80 μM M-ENK. The protein expression of β-catenin was significantly induced by 40 and 80 μM M-ENK, while the protein expression of p-β-catenin was significantly decreased by 20, 40, and 80 μM M-ENK. In addition, the mRNA expression of CAT, SOD, and GSH-PX was significantly increased by 40 and 80 μM M-ENK. The levels of H2O2, ·OH, and O2·- were significantly decreased, but the activity of CAT, SOD, and GSH-PX was significantly increased by 40 and 80 μM M-ENK. The fluorescence intensity of reactive oxygen species (ROS) was decreased, and that of mitochondrial membrane potential (MMP) was increased with the increase of M-ENK concentration in ZF4 cells. The results showed that M-ENK could induce Wnt/β-catenin signaling, which further inhibited ROS production through the induction of C/EBPα, MMP, and the activities of antioxidant enzymes.
Collapse
Affiliation(s)
- Ziqiang Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Yao Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Yaqi Gu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Lili Gao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Ao Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Dongwu Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China; School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, China.
| | - Cuijie Kang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| | - Qiuxiang Pang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China.
| | - Xiaoqian Wang
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiang Han
- Sunwei Biotech Shandong Co., Ltd., Weifang, 261205, China
| | - Hairui Yu
- College of Biological and Agricultural Engineering, Weifang Bioengineering Technology Research Center, Weifang University, Weifang, 261061, China
| |
Collapse
|
29
|
AKIP1 promotes early recurrence of hepatocellular carcinoma through activating the Wnt/β-catenin/CBP signaling pathway. Oncogene 2019; 38:5516-5529. [PMID: 30936461 DOI: 10.1038/s41388-019-0807-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 01/07/2023]
Abstract
The early recurrence of hepatocellular carcinoma (HCC) is the main obstacle for long-term survival of patients. Wnt/β-catenin signaling has been involved in the development and progression of HCC. However, the molecular changes that link Wnt/β-catenin activation and HCC early recurrence remain poorly understood. Here we identified AKIP1 as a binding partner of β-catenin. AKIP1 interacted with and sustained β-catenin in the nuclear by blocking its interaction with adenomatous polyposis coli protein (APC). Moreover, AKIP1 enhanced the protein kinase A catalytic subunit (PKAc)-mediated phosphorylation of β-catenin, leading to recruitment of cyclic AMP response element-binding protein (CBP) and activation of β-catenin downstream transcription. Increased AKIP1 expression was observed in HCC clinical samples and correlated with early recurrence and poor prognosis of HCC. AKIP1 promoted invasion and colony outgrowth in vitro and increased intrahepatic and lung metastasis in vivo. Treatment with a CBP inhibitor ICG-001 effectively inhibited the metastatic progression of HCC tumors that had elevated AKIP1 in both cell line and patient-derived xenograft mouse models. Our findings not only establish AKIP1 as a novel regulator of Wnt/β-catenin signaling as well as HCC early recurrence but also highlight targeting the AKIP1/β-catenin/CBP axis as attractive therapies for combating HCC metastatic relapse.
Collapse
|
30
|
Liu D, Yu H, Pang Q, Zhang X. Investigation of the Lipid-Lowering Effect of Vitamin C Through GSK-3β/β-Catenin Signaling in Zebrafish. Front Physiol 2018; 9:1023. [PMID: 30154726 PMCID: PMC6103266 DOI: 10.3389/fphys.2018.01023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/10/2018] [Indexed: 12/18/2022] Open
Abstract
Vitamin C (VC) is an essential nutrient for most fish species because of the absence of L-gulonolactone oxidase in the bodies of fish. VC plays a significant role in maintaining the physiological functions and in improving the growth performance, immunity, and survival of fish. In this study, zebrafish (Danio rerio) were treated with 8.2, 509.6, and 1007.5 mg/kg VC diets for 2 weeks, and the muscle samples were collected for gene expression analysis and biochemical index analysis. The results indicated that 509.6 and 1007.5 mg/kg VC diets inhibited glycogen synthase kinase-3β (GSK-3β) expression and induced the expression of β-catenin in the muscle of zebrafish. The mRNA expression of CCAAT/enhancer-binding protein α (C/EBPα) and fatty acid synthase (FAS), FAS activity, and the content of glycerol and triglyceride (TG) were decreased in the muscle by 509.6 and 1007.5 mg/kg VC diets. In addition, GSK-3β RNA interference was observed in zebrafish fed with 8.2 and 1007.5 mg/kg VC diets. It was found that GSK-3β RNA interference induced the mRNA expression of β-catenin but decreased the mRNA expression of C/EBPα and FAS, FAS activity, as well as the content of glycerol and TG in the muscle of zebrafish. In ZF4 cells, the mRNA expression of GSK-3β, C/EBPα, and FAS was decreased, but β-catenin expression was increased by 0.1 and 0.5 mmol/L VC treatments in vitro. The glycerol and TG content, and FAS activity in ZF4 cells were decreased by 0.1 and 0.5 mmol/L VC treatments. Moreover, the result of western blot indicated that the protein expression level of GSK-3β was significantly decreased and that of β-catenin was significantly increased in ZF4 cells treated with 0.1 and 0.5 mmol/L VC. The results from in vivo and in vitro studies corroborated that VC exerted the lipid-lowering effect through GSK-3β/β-catenin signaling in zebrafish.
Collapse
Affiliation(s)
- Dongwu Liu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Hairui Yu
- College of Biological and Agricultural Engineering, Weifang Bioengineering Technology Research Center, Weifang University, Weifang, China
| | - Qiuxiang Pang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Xiuzhen Zhang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, China
| |
Collapse
|
31
|
The origin of GSKIP, a multifaceted regulatory factor in the mammalian Wnt pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1046-1059. [DOI: 10.1016/j.bbamcr.2018.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 11/17/2022]
|
32
|
Markussen LK, Winther S, Wicksteed B, Hansen JB. GSK3 is a negative regulator of the thermogenic program in brown adipocytes. Sci Rep 2018; 8:3469. [PMID: 29472592 PMCID: PMC5823915 DOI: 10.1038/s41598-018-21795-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/09/2018] [Indexed: 01/23/2023] Open
Abstract
Brown adipose tissue is a promising therapeutic target in metabolic disorders due to its ability to dissipate energy and improve systemic insulin sensitivity and glucose homeostasis. β-Adrenergic stimulation of brown adipocytes leads to an increase in oxygen consumption and induction of a thermogenic gene program that includes uncoupling protein 1 (Ucp1) and fibroblast growth factor 21 (Fgf21). In kinase inhibitor screens, we have identified glycogen synthase kinase 3 (GSK3) as a negative regulator of basal and β-adrenergically stimulated Fgf21 expression in cultured brown adipocytes. In addition, inhibition of GSK3 also caused increased Ucp1 expression and oxygen consumption. β-Adrenergic stimulation triggered an inhibitory phosphorylation of GSK3 in a protein kinase A (PKA)-dependent manner. Mechanistically, inhibition of GSK3 activated the mitogen activated protein kinase (MAPK) kinase 3/6-p38 MAPK-activating transcription factor 2 signaling module. In summary, our data describe GSK3 as a novel negative regulator of β-adrenergic signaling in brown adipocytes.
Collapse
Affiliation(s)
- Lasse K Markussen
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Sally Winther
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Barton Wicksteed
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
33
|
Ercu M, Klussmann E. Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System. J Cardiovasc Dev Dis 2018; 5:jcdd5010014. [PMID: 29461511 PMCID: PMC5872362 DOI: 10.3390/jcdd5010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 12/13/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3′-5′ monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Maria Ercu
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin 13347, Germany.
| |
Collapse
|