1
|
Bozzi M, Sciandra F, Bigotti MG, Brancaccio A. Misregulation of the Ubiquitin-Proteasome System and Autophagy in Muscular Dystrophies Associated with the Dystrophin-Glycoprotein Complex. Cells 2025; 14:721. [PMID: 40422224 DOI: 10.3390/cells14100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
The stability of the sarcolemma is severely impaired in a series of genetic neuromuscular diseases defined as muscular dystrophies. These are characterized by the centralization of skeletal muscle syncytial nuclei, the replacement of muscle fibers with fibrotic tissue, the release of inflammatory cytokines, and the disruption of muscle protein homeostasis, ultimately leading to necrosis and loss of muscle functionality. A specific subgroup of muscular dystrophies is associated with genetic defects in components of the dystrophin-glycoprotein complex (DGC), which plays a crucial role in linking the cytosol to the skeletal muscle basement membrane. In these cases, dystrophin-associated proteins fail to correctly localize to the sarcolemma, resulting in dystrophy characterized by an uncontrolled increase in protein degradation, which can ultimately lead to cell death. In this review, we explore the role of intracellular degradative pathways-primarily the ubiquitin-proteasome and autophagy-lysosome systems-in the progression of DGC-linked muscular dystrophies. The DGC acts as a hub for numerous signaling pathways that regulate various cellular functions, including protein homeostasis. We examine whether the loss of structural stability within the DGC affects key signaling pathways that modulate protein recycling, with a particular emphasis on autophagy.
Collapse
Affiliation(s)
- Manuela Bozzi
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Sezione di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Roma, Italy
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"-SCITEC (CNR), Largo F. Vito, 00168 Roma, Italy
| | - Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"-SCITEC (CNR), Largo F. Vito, 00168 Roma, Italy
| | - Maria Giulia Bigotti
- Bristol Heart Institute, Bristol Royal Infirmary, Research Floor Level 7, Bristol BS2 8HW, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Andrea Brancaccio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"-SCITEC (CNR), Largo F. Vito, 00168 Roma, Italy
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
2
|
Reelfs AM, Stephan CM, Czech TM, Cox MO, Joseph S, Darbro BW, Moore SA, Campbell KP, Mathews KD. UDP-glucose dehydrogenase variants cause dystroglycanopathy. Ann Clin Transl Neurol 2025. [PMID: 40245099 DOI: 10.1002/acn3.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 04/19/2025] Open
Abstract
UDP-glucose dehydrogenase (UGDH) variants have been associated with hypotonia, developmental delay, and epilepsy. We report the first pathologic evidence of dystroglycanopathy in siblings with UGDH variants. Both presented around 6 months with developmental delay and elevated creatinine kinase. Sibling A developed epilepsy at age 9 years. Muscle biopsy from sibling A showed necrotizing myopathy with reduced matriglycan immunostaining. Western blot revealed α-dystroglycan with abnormally low molecular weight. The siblings shared pathogenic UGDH variants in trans: c.305G>A p.(R102Q) is predicted to disrupt protein structure and function; c.265-6C>G is deleterious to splicing. We propose that UGDH is an additional dystroglycanopathy gene.
Collapse
Affiliation(s)
- Anna M Reelfs
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Carrie M Stephan
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Theresa M Czech
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mary O Cox
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Benjamin W Darbro
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Steven A Moore
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Kevin P Campbell
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Katherine D Mathews
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Cataldi MP, Lu QL. Ribitol and ribose treatments differentially affect metabolism of muscle tissue in FKRP mutant mice. Sci Rep 2025; 15:1329. [PMID: 39779805 PMCID: PMC11711661 DOI: 10.1038/s41598-024-83661-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Dystroglycanopathy is characterized by reduced or lack of matriglycan, a cellular receptor for laminin as well as other extracellular matrix proteins. Recent studies have delineated the glycan chain structure of the matriglycan and the pathway with key components identified. FKRP functions as ribitol-5-phosphate transferase with CDP-ribitol as the substrate for the extension of the glycan chain. Supplement of ribitol and ribose have been reported to increase the levels of CDP-ribitol in both cells and in muscles in vivo. Clinical trials with both ribitol and ribose have been reported for treating LGMD2I caused by mutations in the FKRP gene. Here we compared the comprehensive metabolite profiles of the skeletal muscle between ribitol-treated and ribose-treated FKRP mutant mice. The closely related pentose and pentitol show clearly differential impacts on metabolisms despite their similarity in enhancing the levels of CDP-ribitol and matriglycan synthesis. Supplement of ribitol changes lysophospholipid sub-pathway metabolite profiling with a trend towards normalization as reported in the muscle after AAV9-FKRP gene therapy. Ribose treatment significantly increases level of ribonate and elevates levels of advanced glycation end products. Further analysis is required to determine which metabolite is prudent to use for long-term daily treatment of dystroglycanopathies.
Collapse
Affiliation(s)
- Marcela P Cataldi
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Atrium Health Musculoskeletal Institute, 1000 Blythe Blvd. , Charlotte, NC, 28231, USA.
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Atrium Health Musculoskeletal Institute, 1000 Blythe Blvd., Charlotte, NC, 28203, USA.
| | - Qi L Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Atrium Health Musculoskeletal Institute, 1000 Blythe Blvd. , Charlotte, NC, 28231, USA.
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Atrium Health Musculoskeletal Institute, 1000 Blythe Blvd., Charlotte, NC, 28203, USA.
| |
Collapse
|
4
|
Kotera K, Miyamoto R, Mochizuki G, Tamura T, Manabe N, Yamaguchi Y, Tamura JI. Chemical extension and glycodendrimer formation of the matriglycan decasaccharide, -(3Xylα1-3GlcAβ1) 5- and its affinity for laminin. Carbohydr Res 2025; 547:109328. [PMID: 39603177 DOI: 10.1016/j.carres.2024.109328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Muscle tissue is stabilized by the strong interaction between laminin and matriglycan. Matriglycan is a polysaccharide composed of the repeating disaccharide, -3Xylα1-3GlcAβ1-, and is a pivotal part of the core M3 O-mannosyl glycan. Patients with muscular dystrophy cannot synthesize matriglycan or the core M3 O-mannosyl glycan due to a defect in or the lack of glycosyltransferases owing to glycan synthesis. Therefore, a supply of matriglycan may be a powerful tool for reconstructing muscle tissue in these patients. We herein report the synthesis of a matriglycan-repeating decasaccharide and a dendrimer comprising three branches of the decasaccharide. The glycan was regio- and stereoselectively synthesized by the stepwise addition of the corresponding disaccharide unit. The immobilized decasaccharide and glycodendrimer bound to laminin-G-like domains 4 and 5 of laminin-α2. The dissociation constants of the decasaccharide and dendrimer obtained from bio-layer interferometry were estimated to be 4.4 × 10-8 M and 6.8 × 10-8 M, respectively, showing higher affinity than those of a matriglycan-repeating hexasaccharide (1.6 × 10-7 M) and the dendrimer (1.8 × 10-7 M).
Collapse
Affiliation(s)
- Kota Kotera
- Graduate School of Sustainability Science, Department of Agricultural Science, Tottori University, Tottori, 680-8553, Japan
| | - Ren Miyamoto
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan
| | - Gakuto Mochizuki
- Department of Agricultural, life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan
| | - Takahiro Tamura
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8553, Japan
| | - Noriyoshi Manabe
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan.
| | - Jun-Ichi Tamura
- Graduate School of Sustainability Science, Department of Agricultural Science, Tottori University, Tottori, 680-8553, Japan; Department of Agricultural, life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan; The United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8553, Japan.
| |
Collapse
|
5
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O'Connor CL, Brindley MA, Campbell KP, Lek M. Saturation mutagenesis-reinforced functional assays for disease-related genes. Cell 2024; 187:6707-6724.e22. [PMID: 39326416 PMCID: PMC11568926 DOI: 10.1016/j.cell.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods are obstacles for achieving genome-wide resolution of variants in disease-related genes. Our framework, saturation mutagenesis-reinforced functional assays (SMuRF), offers simple and cost-effective saturation mutagenesis paired with streamlined functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single-nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Overall, our approach enables variant-to-function insights for disease genes in a cost-effective manner that can be broadly implemented by standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth K Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Keryn G Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Melrose J. Dystroglycan-HSPG interactions provide synaptic plasticity and specificity. Glycobiology 2024; 34:cwae051. [PMID: 39223703 PMCID: PMC11368572 DOI: 10.1093/glycob/cwae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
AIM This study examined the roles of the laminin and proteoglycan receptor dystroglycan (DG) in extracellular matrix stabilization and cellular mechanosensory processes conveyed through communication between the extracellular matrix (ECM) and cytoskeleton facilitated by DG. Specific functional attributes of HS-proteoglycans (HSPGs) are conveyed through interactions with DG and provide synaptic specificity through diverse interactions with an extensive range of cell attachment and adaptor proteins which convey synaptic plasticity. HSPG-DG interactions are important in phototransduction and neurotransduction and facilitate retinal bipolar-photoreceptor neuronal signaling in vision. Besides synaptic stabilization, HSPG-DG interactions also stabilize basement membranes and the ECM and have specific roles in the assembly and function of the neuromuscular junction. This provides neuromuscular control of muscle systems that control conscious body movement as well as essential autonomic control of diaphragm, intercostal and abdominal muscles and muscle systems in the face, mouth and pharynx which assist in breathing processes. DG is thus a multifunctional cell regulatory glycoprotein receptor and regulates a diverse range of biological and physiological processes throughout the human body. The unique glycosylation of the αDG domain is responsible for its diverse interactions with ECM components in cell-ECM signaling. Cytoskeletal cell regulatory switches assembled by the βDG domain in its role as a nuclear scaffolding protein respond to such ECM cues to regulate cellular behavior and tissue homeostasis thus DG has fascinating and diverse roles in health and disease.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, St. Leonards, NSW 2065, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O’Connor CL, Brindley MA, Campbell KP, Lek M. Deep Mutational Scanning in Disease-related Genes with Saturation Mutagenesis-Reinforced Functional Assays (SMuRF). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.12.548370. [PMID: 37873263 PMCID: PMC10592615 DOI: 10.1101/2023.07.12.548370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods hamper crowd-sourcing approaches toward genome-wide resolution of variants in disease-related genes. Our framework, Saturation Mutagenesis-Reinforced Functional assays (SMuRF), addresses these issues by offering simple and cost-effective saturation mutagenesis, as well as streamlining functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Our approach opens new directions for enabling variant-to-function insights for disease genes in a manner that is broadly useful for crowd-sourcing implementation across standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Kenneth K. Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Nicole J. Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Keryn G. Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A. Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
- Senior Authors
| | - Kevin P. Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
- Senior Authors
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Senior Authors
- Lead Contact
| |
Collapse
|
8
|
Katz M, Diskin R. The underlying mechanisms of arenaviral entry through matriglycan. Front Mol Biosci 2024; 11:1371551. [PMID: 38516183 PMCID: PMC10955480 DOI: 10.3389/fmolb.2024.1371551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Matriglycan, a recently characterized linear polysaccharide, is composed of alternating xylose and glucuronic acid subunits bound to the ubiquitously expressed protein α-dystroglycan (α-DG). Pathogenic arenaviruses, like the Lassa virus (LASV), hijack this long linear polysaccharide to gain cellular entry. Until recently, it was unclear through what mechanisms LASV engages its matriglycan receptor to initiate infection. Additionally, how matriglycan is synthesized onto α-DG by the Golgi-resident glycosyltransferase LARGE1 remained enigmatic. Recent structural data for LARGE1 and for the LASV spike complex informs us about the synthesis of matriglycan as well as its usage as an entry receptor by arenaviruses. In this review, we discuss structural insights into the system of matriglycan generation and eventual recognition by pathogenic viruses. We also highlight the unique usage of matriglycan as a high-affinity host receptor compared with other polysaccharides that decorate cells.
Collapse
Affiliation(s)
| | - Ron Diskin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Lu QL, Holbrook MC, Cataldi MP, Blaeser A. Break Down of the Complexity and Inconsistency Between Levels of Matriglycan and Disease Phenotype in FKRP-Related Dystroglycanopathies: A Review and Model of Interpretation. J Neuromuscul Dis 2024; 11:275-284. [PMID: 38277301 DOI: 10.3233/jnd-230205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Dystroglycanopathies are a group of muscle degenerative diseases characterized with significant reduction in matriglycan expression critical in disease pathogenesis. Missense point mutations in the Fukutin-related protein (FKRP) gene cause variable reduction in the synthesis of matriglycan on alpha-dystroglycan (α-DG) and a wide range of disease severity. Data analyses of muscle biopsies from patients fail to show consistent correlation between the levels of matriglycan and clinical phenotypes. By reviewing clinical reports in conjunction with analysis of clinically relevant mouse models, we identify likely causes for the confusion. Nearly all missense FKRP mutations retain variable, but sufficient function for the synthesis of matriglycan during the later stage of muscle development and periods of muscle regeneration. These factors lead to a highly heterogenous pattern of matriglycan expression in diseased muscles, depending on age and stages of muscle regeneration. The limited size in clinical biopsy samples from different parts of even a single muscle tissue at different time points of disease progression may well mis-represent the residual function (base-levels) of the mutated FKRPs and phenotypes. We propose to use a simple Multi Point tool from ImageJ to more accurately measure the signal intensity of matriglycan expression on fiber membrane for assessing mutant FKRP function and therapeutic efficacy. A robust and sensitive immunohistochemical protocol would further improve reliability and comparability for the detection of matriglycan.
Collapse
Affiliation(s)
- Qi L Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Molly C Holbrook
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Marcela P Cataldi
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Anthony Blaeser
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
10
|
Yang T, Chandel I, Gonzales M, Okuma H, Prouty SJ, Zarei S, Joseph S, Garringer KW, Landa SO, Yonekawa T, Walimbe AS, Venzke DP, Anderson ME, Hord JM, Campbell KP. Identification of a short, single site matriglycan that maintains neuromuscular function in the mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572361. [PMID: 38187633 PMCID: PMC10769215 DOI: 10.1101/2023.12.20.572361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Matriglycan (-1,3-β-glucuronic acid-1,3-α-xylose-) is a polysaccharide that is synthesized on α-dystroglycan, where it functions as a high-affinity glycan receptor for extracellular proteins, such as laminin, perlecan and agrin, thus anchoring the plasma membrane to the extracellular matrix. This biological activity is closely associated with the size of matriglycan. Using high-resolution mass spectrometry and site-specific mutant mice, we show for the first time that matriglycan on the T317/T319 and T379 sites of α-dystroglycan are not identical. T379-linked matriglycan is shorter than the previously characterized T317/T319-linked matriglycan, although it maintains its laminin binding capacity. Transgenic mice with only the shorter T379-linked matriglycan exhibited mild embryonic lethality, but those that survived were healthy. The shorter T379-linked matriglycan exists in multiple tissues and maintains neuromuscular function in adult mice. In addition, the genetic transfer of α-dystroglycan carrying just the short matriglycan restored grip strength and protected skeletal muscle from eccentric contraction-induced damage in muscle-specific dystroglycan knock-out mice. Due to the effects that matriglycan imparts on the extracellular proteome and its ability to modulate cell-matrix interactions, our work suggests that differential regulation of matriglycan length in various tissues optimizes the extracellular environment for unique cell types.
Collapse
Affiliation(s)
- Tiandi Yang
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ishita Chandel
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Miguel Gonzales
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Hidehiko Okuma
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Sally J Prouty
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Sanam Zarei
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Keith W Garringer
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Saul Ocampo Landa
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Takahiro Yonekawa
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Ameya S Walimbe
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - David P Venzke
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Mary E Anderson
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Jeffery M Hord
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| |
Collapse
|
11
|
Schaeffer RD, Zhang J, Kinch LN, Pei J, Cong Q, Grishin NV. Classification of domains in predicted structures of the human proteome. Proc Natl Acad Sci U S A 2023; 120:e2214069120. [PMID: 36917664 PMCID: PMC10041065 DOI: 10.1073/pnas.2214069120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/06/2023] [Indexed: 03/16/2023] Open
Abstract
Recent advances in protein structure prediction have generated accurate structures of previously uncharacterized human proteins. Identifying domains in these predicted structures and classifying them into an evolutionary hierarchy can reveal biological insights. Here, we describe the detection and classification of domains from the human proteome. Our classification indicates that only 62% of residues are located in globular domains. We further classify these globular domains and observe that the majority (65%) can be classified among known folds by sequence, with a smaller fraction (33%) requiring structural data to refine the domain boundaries and/or to support their homology. A relatively small number (966 domains) cannot be confidently assigned using our automatic pipelines, thus demanding manual inspection. We classify 47,576 domains, of which only 23% have been included in experimental structures. A portion (6.3%) of these classified globular domains lack sequence-based annotation in InterPro. A quarter (23%) have not been structurally modeled by homology, and they contain 2,540 known disease-causing single amino acid variations whose pathogenesis can now be inferred using AF models. A comparison of classified domains from a series of model organisms revealed expansions of several immune response-related domains in humans and a depletion of olfactory receptors. Finally, we use this classification to expand well-known protein families of biological significance. These classifications are presented on the ECOD website (http://prodata.swmed.edu/ecod/index_human.php).
Collapse
Affiliation(s)
- R. Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jing Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Lisa N. Kinch
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jimin Pei
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Qian Cong
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Nick V. Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
12
|
HS, an Ancient Molecular Recognition and Information Storage Glycosaminoglycan, Equips HS-Proteoglycans with Diverse Matrix and Cell-Interactive Properties Operative in Tissue Development and Tissue Function in Health and Disease. Int J Mol Sci 2023; 24:ijms24021148. [PMID: 36674659 PMCID: PMC9867265 DOI: 10.3390/ijms24021148] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Heparan sulfate is a ubiquitous, variably sulfated interactive glycosaminoglycan that consists of repeating disaccharides of glucuronic acid and glucosamine that are subject to a number of modifications (acetylation, de-acetylation, epimerization, sulfation). Variable heparan sulfate chain lengths and sequences within the heparan sulfate chains provide structural diversity generating interactive oligosaccharide binding motifs with a diverse range of extracellular ligands and cellular receptors providing instructional cues over cellular behaviour and tissue homeostasis through the regulation of essential physiological processes in development, health, and disease. heparan sulfate and heparan sulfate-PGs are integral components of the specialized glycocalyx surrounding cells. Heparan sulfate is the most heterogeneous glycosaminoglycan, in terms of its sequence and biosynthetic modifications making it a difficult molecule to fully characterize, multiple ligands also make an elucidation of heparan sulfate functional properties complicated. Spatio-temporal presentation of heparan sulfate sulfate groups is an important functional determinant in tissue development and in cellular control of wound healing and extracellular remodelling in pathological tissues. The regulatory properties of heparan sulfate are mediated via interactions with chemokines, chemokine receptors, growth factors and morphogens in cell proliferation, differentiation, development, tissue remodelling, wound healing, immune regulation, inflammation, and tumour development. A greater understanding of these HS interactive processes will improve therapeutic procedures and prognoses. Advances in glycosaminoglycan synthesis and sequencing, computational analytical carbohydrate algorithms and advanced software for the evaluation of molecular docking of heparan sulfate with its molecular partners are now available. These advanced analytic techniques and artificial intelligence offer predictive capability in the elucidation of heparan sulfate conformational effects on heparan sulfate-ligand interactions significantly aiding heparan sulfate therapeutics development.
Collapse
|
13
|
Yamaguchi Y. NMR Analysis of Mammalian Glycolipids. Methods Mol Biol 2023; 2613:181-188. [PMID: 36587079 DOI: 10.1007/978-1-0716-2910-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mammalian glycolipids play a variety of roles, often coupled with interactions with endogenous and exogenous molecules. The interactions can induce intracellular signaling and are the means by which glycolipids express biological phenotypes. Insights into the structure-function relationships of glycolipids (both glycan and lipid moieties) provide the basis for gaining an understanding of the mechanisms at play, an important area for further study. Solution nuclear magnetic resonance (NMR) spectroscopy is a unique and powerful method employed to provide, at the atomic level, structural information on glycolipids and other biomolecules in solutions. This chapter briefly describes how we measure NMR spectra of glycolipids and the information gained from NMR spectral analysis.
Collapse
Affiliation(s)
- Yoshiki Yamaguchi
- Division of Structural Biology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| |
Collapse
|
14
|
Tanboon J, Nishino I. Autosomal Recessive Limb-Girdle Muscular Dystrophies. CURRENT CLINICAL NEUROLOGY 2023:93-121. [DOI: 10.1007/978-3-031-44009-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Structural basis for matriglycan synthesis by the LARGE1 dual glycosyltransferase. PLoS One 2022; 17:e0278713. [PMID: 36512577 PMCID: PMC9746966 DOI: 10.1371/journal.pone.0278713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
LARGE1 is a bifunctional glycosyltransferase responsible for generating a long linear polysaccharide termed matriglycan that links the cytoskeleton and the extracellular matrix and is required for proper muscle function. This matriglycan polymer is made with an alternating pattern of xylose and glucuronic acid monomers. Mutations in the LARGE1 gene have been shown to cause life-threatening dystroglycanopathies through the inhibition of matriglycan synthesis. Despite its major role in muscle maintenance, the structure of the LARGE1 enzyme and how it assembles in the Golgi are unknown. Here we present the structure of LARGE1, obtained by a combination of X-ray crystallography and single-particle cryo-EM. We found that LARGE1 homo-dimerizes in a configuration that is dictated by its coiled-coil stem domain. The structure shows that this enzyme has two canonical GT-A folds within each of its catalytic domains. In the context of its dimeric structure, the two types of catalytic domains are brought into close proximity from opposing monomers to allow efficient shuttling of the substrates between the two domains. Together, with putative retention of matriglycan by electrostatic interactions, this dimeric organization offers a possible mechanism for the ability of LARGE1 to synthesize long matriglycan chains. The structural information further reveals the mechanisms in which disease-causing mutations disrupt the activity of LARGE1. Collectively, these data shed light on how matriglycan is synthesized alongside the functional significance of glycosyltransferase oligomerization.
Collapse
|
16
|
Sheikh MO, Capicciotti CJ, Liu L, Praissman J, Ding D, Mead DG, Brindley MA, Willer T, Campbell KP, Moremen KW, Wells L, Boons GJ. Cell surface glycan engineering reveals that matriglycan alone can recapitulate dystroglycan binding and function. Nat Commun 2022; 13:3617. [PMID: 35750689 PMCID: PMC9232514 DOI: 10.1038/s41467-022-31205-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/07/2022] [Indexed: 12/29/2022] Open
Abstract
α-Dystroglycan (α-DG) is uniquely modified on O-mannose sites by a repeating disaccharide (-Xylα1,3-GlcAβ1,3-)n termed matriglycan, which is a receptor for laminin-G domain-containing proteins and employed by old-world arenaviruses for infection. Using chemoenzymatically synthesized matriglycans printed as a microarray, we demonstrate length-dependent binding to Laminin, Lassa virus GP1, and the clinically-important antibody IIH6. Utilizing an enzymatic engineering approach, an N-linked glycoprotein was converted into a IIH6-positive Laminin-binding glycoprotein. Engineering of the surface of cells deficient for either α-DG or O-mannosylation with matriglycans of sufficient length recovers infection with a Lassa-pseudovirus. Finally, free matriglycan in a dose and length dependent manner inhibits viral infection of wildtype cells. These results indicate that matriglycan alone is necessary and sufficient for IIH6 staining, Laminin and LASV GP1 binding, and Lassa-pseudovirus infection and support a model in which it is a tunable receptor for which increasing chain length enhances ligand-binding capacity.
Collapse
Affiliation(s)
- M Osman Sheikh
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Chantelle J Capicciotti
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Departments of Chemistry, Biomedical and Molecular Sciences, and Surgery, Queen's University, Kingston, ON, Canada
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Jeremy Praissman
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Dahai Ding
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Daniel G Mead
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Tobias Willer
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA.
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
- Department of Chemistry, University of Georgia, Athens, GA, USA.
- Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Cancer Malignancy Is Correlated with Upregulation of PCYT2-Mediated Glycerol Phosphate Modification of α-Dystroglycan. Int J Mol Sci 2022; 23:ijms23126662. [PMID: 35743105 PMCID: PMC9223686 DOI: 10.3390/ijms23126662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 12/10/2022] Open
Abstract
The dystrophin–glycoprotein complex connects the cytoskeleton with base membrane components such as laminin through unique O-glycans displayed on α-dystroglycan (α-DG). Genetic impairment of elongation of these glycans causes congenital muscular dystrophies. We previously identified that glycerol phosphate (GroP) can cap the core part of the α-DG O-glycans and terminate their further elongation. This study examined the possible roles of the GroP modification in cancer malignancy, focusing on colorectal cancer. We found that the GroP modification critically depends on PCYT2, which serves as cytidine 5′-diphosphate-glycerol (CDP-Gro) synthase. Furthermore, we identified a significant positive correlation between cancer progression and GroP modification, which also correlated positively with PCYT2 expression. Moreover, we demonstrate that GroP modification promotes the migration of cancer cells. Based on these findings, we propose that the GroP modification by PCYT2 disrupts the glycan-mediated cell adhesion to the extracellular matrix and thereby enhances cancer metastasis. Thus, the present study suggests the possibility of novel approaches for cancer treatment by targeting the PCYT2-mediated GroP modification.
Collapse
|
18
|
Tamura JI, Tamura T, Hoshino S, Imae R, Kato R, Yokono M, Nagase M, Ohno S, Manabe N, Yamaguchi Y, Manya H, Endo T. Chemical and Chemo-Enzymatic Syntheses of Glycans Containing Ribitol Phosphate Scaffolding of Matriglycan. ACS Chem Biol 2022; 17:1513-1523. [PMID: 35670527 DOI: 10.1021/acschembio.2c00181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ribitol phosphate modifications to the core M3 O-mannosyl glycan are important for the functional maturation of α-dystroglycan. Three sequentially extended partial structures of the core M3 O-mannosyl glycan including a tandem ribitol phosphate were regio- and stereo-selectively synthesized: Rbo5P-3GalNAcβ, Rbo5P-1Rbo5P-3GalNAcβ, and Xylβ1-4Rbo5P-1Rbo5P-3GalNAcβ (Rbo5P, d-ribitol-5-phosphate; GalNAc, N-acetyl-d-galactosamine; Xyl, d-xylose). Rbo5P-3GalNAcβ with p-nitrophenyl at the aglycon part served as a substrate for ribitol phosphate transferase (FKRP, fukutin-related protein), and its product was glycosylated by the actions of a series of glycosyltransferases, namely, ribitol xylosyltransferase 1 (RXYLT1), β1,4-glucuronyltransferase 1 (B4GAT1), and like-acetyl-glucosaminyltransferase (LARGE). Rbo5P-3GalNAcβ equipped with an alkyne-type aglycon was also active for FKRP. The molecular information obtained on FKRP suggests that Rbo5P-3GalNAcβ derivatives are the minimal units required as the acceptor glycan for Rbo5P transfer and may serve as a precursor for the elongation of the core M3 O-mannosyl glycan.
Collapse
Affiliation(s)
- Jun-Ichi Tamura
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
| | - Takahiro Tamura
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
| | - Shunsuke Hoshino
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | - Rieko Imae
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | - Ryuichi Kato
- Structural Biology Research Center, Institute of Material Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
| | - Mizuki Yokono
- Technical Department, Tottori University, Tottori 680-8550, Japan
| | - Mao Nagase
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Noriyoshi Manabe
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
19
|
Jiang R, Hu J, Zhou H, Wei H, He S, Xiao J. A Novel Defined Hypoxia-Related Gene Signature for Prognostic Prediction of Patients With Ewing Sarcoma. Front Genet 2022; 13:908113. [PMID: 35719404 PMCID: PMC9201760 DOI: 10.3389/fgene.2022.908113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
The therapeutic strategy of Ewing sarcoma (EWS) remains largely unchanged over the past few decades. Hypoxia is reported to have an impact on tumor cell progression and is regarded as a novel potential therapeutic target in tumor treatment. This study aimed at developing a prognostic gene signature based on hypoxia-related genes (HRGs). EWS patients from GSE17674 in the GEO database were analyzed as a training cohort, and differently expressed HRGs between tumor and normal samples were identified. The univariate Cox regression, Least Absolute Shrinkage and Selection Operator (LASSO) and multivariate Cox regression analyses were used in this study. A total of 57 EWS patients from the International Cancer Genome Consortium (ICGC) database were set as the validation cohort. A total of 506 differently expressed HRGs between tumor and normal tissues were identified, among which 52 were associated with the prognoses of EWS patients. Based on 52 HRGs, EWS patients were divided into two molecular subgroups with different survival statuses. In addition, a prognostic signature based on 4 HRGs (WSB1, RXYLT1, GLCE and RORA) was constructed, dividing EWS patients into low- and high-risk groups. The 2-, 3- and 5-years area under the receiver operator characteristic curve of this signature was 0.913, 0.97 and 0.985, respectively. It was found that the survival rates of patients in the high-risk group were significantly lower than those in the low-risk group (p < 0.001). The risk level based on the risk score could serve as an independent clinical factor for predicting the survival probabilities of EWS patients. Additionally, antigen-presenting cell (APC) related pathways and T cell co-inhibition were differently activated in two risk groups, which may result in different prognoses. CTLA4 may be an effective immune checkpoint inhibitor to treat EWS patients. All results were verified in the validation cohort. This study constructed 4-HRGs as a novel prognostic marker for predicting survival in EWS patients.
Collapse
Affiliation(s)
- Runyi Jiang
- Spinal Tumor Center, Department of Orthopaedic Oncology, No.905 Hospital of PLA Navy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jinbo Hu
- Spinal Tumor Center, Department of Orthopaedic Oncology, No.905 Hospital of PLA Navy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hongfei Zhou
- Spinal Tumor Center, Department of Orthopaedic Oncology, No.905 Hospital of PLA Navy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- The Third Convalescent Department, Hangzhou Sanatorium, Hangzhou, China
| | - Haifeng Wei
- Spinal Tumor Center, Department of Orthopaedic Oncology, No.905 Hospital of PLA Navy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- *Correspondence: Jianru Xiao, ; Shaohui He, ; Haifeng Wei,
| | - Shaohui He
- Spinal Tumor Center, Department of Orthopaedic Oncology, No.905 Hospital of PLA Navy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- *Correspondence: Jianru Xiao, ; Shaohui He, ; Haifeng Wei,
| | - Jianru Xiao
- Spinal Tumor Center, Department of Orthopaedic Oncology, No.905 Hospital of PLA Navy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- *Correspondence: Jianru Xiao, ; Shaohui He, ; Haifeng Wei,
| |
Collapse
|
20
|
Boyd A, Montandon M, Wood AJ, Currie PD. FKRP directed fibronectin glycosylation: A novel mechanism giving insights into muscular dystrophies? Bioessays 2022; 44:e2100270. [PMID: 35229908 DOI: 10.1002/bies.202100270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
Abstract
The recently uncovered role of Fukutin-related protein (FKRP) in fibronectin glycosylation has challenged our understanding of the basis of disease pathogenesis in the muscular dystrophies. FKRP is a Golgi-resident glycosyltransferase implicated in a broad spectrum of muscular dystrophy (MD) pathologies that are not fully attributable to the well-described α-Dystroglycan hypoglycosylation. By revealing a new role for FKRP in the glycosylation of fibronectin, a modification critical for the development of the muscle basement membrane (MBM) and its associated muscle linkages, new possibilities for understanding clinical phenotype arise. This modification involves an interaction between FKRP and myosin-10, a protein involved in the Golgi organization and function. These observations suggest a FKRP nexus exists that controls two critical aspects to muscle fibre integrity, both fibre stability at the MBM and its elastic properties. This review explores the new potential disease axis in the context of our current knowledge of muscular dystrophies.
Collapse
Affiliation(s)
- Andrew Boyd
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Margo Montandon
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Alasdair J Wood
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
21
|
Hang J, Wang J, Lu M, Xue Y, Qiao J, Tao L. Protein O-mannosylation across kingdoms and related diseases: From glycobiology to glycopathology. Biomed Pharmacother 2022; 148:112685. [PMID: 35149389 DOI: 10.1016/j.biopha.2022.112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
The post-translational glycosylation of proteins by O-linked α-mannose is conserved from bacteria to humans. Due to advances in high-throughput mass spectrometry-based approaches, a variety of glycoproteins are identified to be O-mannosylated. Various proteins with O-mannosylation are involved in biological processes, providing essential necessity for proper growth and development. In this review, we summarize the process and regulation of O-mannosylation. The multi-step O-mannosylation procedures are quite dynamic and complex, especially when considering the structural and functional inspection of the involved enzymes. The widely studied O-mannosylated proteins in human include α-Dystroglycan (α-DG), cadherins, protocadherins, and plexin, and their aberrant O-mannosylation are associated with many diseases. In addition, O-mannosylation also contributes to diverse functions in lower eukaryotes and prokaryotes. Finally, we present the relationship between O-mannosylation and gut microbiota (GM), and elucidate that O-mannosylation in microbiome is of great importance in the dynamic balance of GM. Our study provides an overview of the processes of O-mannosylation in mammalian cells and other organisms, and also associated regulated enzymes and biological functions, which could contribute to the understanding of newly discovered O-mannosylated glycoproteins.
Collapse
Affiliation(s)
- Jing Hang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Jinpeng Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang 110001, China
| | - Minzhen Lu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yuchuan Xue
- The First Department of Clinical Medicine, China Medical University, Shenyang 110001, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China.
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
22
|
Tamura T, Omura Y, Kotera K, Ito R, Ohno S, Manabe N, Yamaguchi Y, Tamura JI. Synthesis of the matriglycan hexasaccharide, -3Xylα1-3GlcAβ1-trimer and its interaction with laminin. Org Biomol Chem 2022; 20:8489-8500. [DOI: 10.1039/d2ob01388f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Matriglycan hexasaccharide (-3Xylα1-3GlcAβ1)3-O(C2H4O)3CH2CCH and the biotin conjugate was synthesized. The hexasaccharide showed good interaction with laminin-G-like domains 4 and 5 of laminin-α2 using saturation transfer difference-NMR and bio-layer interferometry.
Collapse
Affiliation(s)
- Takahiro Tamura
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8553 Japan
| | - Yuka Omura
- Department of Agricultural, life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, 680-8553 Japan
| | - Kota Kotera
- Department of Agricultural, life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, 680-8553 Japan
| | - Ryota Ito
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558 Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558 Japan
| | - Noriyoshi Manabe
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558 Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558 Japan
| | - Jun-ichi Tamura
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8553 Japan
- Department of Agricultural, life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, 680-8553 Japan
| |
Collapse
|
23
|
Huang PW, Xu YS, Sun XM, Shi TQ, Gu Y, Ye C, Huang H. Development of an Efficient Gene Editing Tool in Schizochytrium sp. and Improving Its Lipid and Terpenoid Biosynthesis. Front Nutr 2022; 8:795651. [PMID: 34970583 PMCID: PMC8712325 DOI: 10.3389/fnut.2021.795651] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/24/2021] [Indexed: 01/04/2023] Open
Abstract
Schizochytrium sp. HX-308 is a marine microalga with fast growth and high lipid content, which has potential as microbial cell factories for lipid compound biosynthesis. It is significant to develop efficient genetic editing tool and discover molecular target in Schizochytrium sp. HX-308 for lipid compound biosynthesis. In this study, we developed an efficient gene editing tool in HX-308 which was mediated by Agrobacterium tumefaciens AGL-1. Results showed that the random integration efficiency reached 100%, and the homologous recombination efficiency reached about 30%. Furthermore, the metabolic pathway of lipid and terpenoid biosynthesis were engineered. Firstly, the acetyl-CoA c-acetyltransferase was overexpressed in HX-308 with a strong constitutive promoter. With the overexpression of acetyl-CoA c-acetyltransferase, more acetyl-CoA was used to synthesize terpenoids, and the production of squalene, β-carotene and astaxanthin was increased 5.4, 1.8, and 2.4 times, respectively. Interestingly, the production of saturated fatty acids and polyunsaturated fatty acids also changed. Moreover, three Acyl-CoA oxidase genes which catalyze the first step of β-oxidation were knocked out using homologous recombination. Results showed that the production of lipids increased in the three knock-out strains. Our results demonstrated that the A. tumefaciens-mediated transformation method will be of great use for the study of function genes, as well as developing Schizochytrium sp. as a strong cell factory for producing high value products.
Collapse
Affiliation(s)
- Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
24
|
Kanagawa M. Dystroglycanopathy: From Elucidation of Molecular and Pathological Mechanisms to Development of Treatment Methods. Int J Mol Sci 2021; 22:ijms222313162. [PMID: 34884967 PMCID: PMC8658603 DOI: 10.3390/ijms222313162] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/13/2023] Open
Abstract
Dystroglycanopathy is a collective term referring to muscular dystrophies with abnormal glycosylation of dystroglycan. At least 18 causative genes of dystroglycanopathy have been identified, and its clinical symptoms are diverse, ranging from severe congenital to adult-onset limb-girdle types. Moreover, some cases are associated with symptoms involving the central nervous system. In the 2010s, the structure of sugar chains involved in the onset of dystroglycanopathy and the functions of its causative gene products began to be identified as if they were filling the missing pieces of a jigsaw puzzle. In parallel with these discoveries, various dystroglycanopathy model mice had been created, which led to the elucidation of its pathological mechanisms. Then, treatment strategies based on the molecular basis of glycosylation began to be proposed after the latter half of the 2010s. This review briefly explains the sugar chain structure of dystroglycan and the functions of the causative gene products of dystroglycanopathy, followed by introducing the pathological mechanisms involved as revealed from analyses of dystroglycanopathy model mice. Finally, potential therapeutic approaches based on the pathological mechanisms involved are discussed.
Collapse
Affiliation(s)
- Motoi Kanagawa
- Department of Cell Biology and Molecular Medicine, Graduate School of Medicine, Ehime University, 454 Shitsukawa, Toon 791-0295, Ehime, Japan
| |
Collapse
|
25
|
Ortiz-Cordero C, Bincoletto C, Dhoke NR, Selvaraj S, Magli A, Zhou H, Kim DH, Bang AG, Perlingeiro RCR. Defective autophagy and increased apoptosis contribute toward the pathogenesis of FKRP-associated muscular dystrophies. Stem Cell Reports 2021; 16:2752-2767. [PMID: 34653404 PMCID: PMC8581053 DOI: 10.1016/j.stemcr.2021.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Fukutin-related protein (FKRP) is a glycosyltransferase involved in glycosylation of alpha-dystroglycan (α-DG). Mutations in FKRP are associated with muscular dystrophies (MD) ranging from limb-girdle LGMDR9 to Walker-Warburg Syndrome (WWS), a severe type of congenital MD. Although hypoglycosylation of α-DG is the main hallmark of this group of diseases, a full understanding of the underlying pathophysiology is still missing. Here, we investigated molecular mechanisms impaired by FKRP mutations in pluripotent stem (PS) cell–derived myotubes. FKRP-deficient myotubes show transcriptome alterations in genes involved in extracellular matrix receptor interactions, calcium signaling, PI3K-Akt pathway, and lysosomal function. Accordingly, using a panel of patient-specific LGMDR9 and WWS induced PS cell–derived myotubes, we found a significant reduction in the autophagy-lysosome pathway for both disease phenotypes. In addition, we show that WWS myotubes display decreased ERK1/2 activity and increased apoptosis, which were restored in gene edited myotubes. Our results suggest the autophagy-lysosome pathway and apoptosis may contribute to the FKRP-associated MD pathogenesis. The lysosome pathway is deregulated in FKRP-deficient myotubes Autophagy is decreased in patient-specific LGMDR9 and WWS iPS cell–derived myotubes FKRP WWS and LGMDR9 iPS cell–derived myotubes have increased apoptosis FKRP correction in WWS myotubes rescues changes in autophagy and apoptosis
Collapse
Affiliation(s)
- Carolina Ortiz-Cordero
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Claudia Bincoletto
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA; Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Neha R Dhoke
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA
| | - Sridhar Selvaraj
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA
| | - Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA
| | - Haowen Zhou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
26
|
Biosynthetic Mechanisms and Biological Significance of Glycerol Phosphate-Containing Glycan in Mammals. Molecules 2021; 26:molecules26216675. [PMID: 34771084 PMCID: PMC8587909 DOI: 10.3390/molecules26216675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
Bacteria contain glycerol phosphate (GroP)-containing glycans, which are important constituents of cell-surface glycopolymers such as the teichoic acids of Gram-positive bacterial cell walls. These glycopolymers comprising GroP play crucial roles in bacterial physiology and virulence. Recently, the first identification of a GroP-containing glycan in mammals was reported as a variant form of O-mannosyl glycan on α-dystroglycan (α-DG). However, the biological significance of such GroP modification remains largely unknown. In this review, we provide an overview of this new discovery of GroP-containing glycan in mammals and then outline the recent progress in elucidating the biosynthetic mechanisms of GroP-containing glycans on α-DG. In addition, we discuss the potential biological role of GroP modification along with the challenges and prospects for further research. The progress in this newly identified glycan modification will provide insights into the phylogenetic implications of glycan.
Collapse
|
27
|
Bigotti MG, Brancaccio A. High degree of conservation of the enzymes synthesizing the laminin-binding glycoepitope of α-dystroglycan. Open Biol 2021; 11:210104. [PMID: 34582712 PMCID: PMC8478517 DOI: 10.1098/rsob.210104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The dystroglycan (DG) complex plays a pivotal role for the stabilization of muscles in Metazoa. It is formed by two subunits, extracellular α-DG and transmembrane β-DG, originating from a unique precursor via a complex post-translational maturation process. The α-DG subunit is extensively glycosylated in sequential steps by several specific enzymes and employs such glycan scaffold to tightly bind basement membrane molecules. Mutations of several of these enzymes cause an alteration of the carbohydrate structure of α-DG, resulting in severe neuromuscular disorders collectively named dystroglycanopathies. Given the fundamental role played by DG in muscle stability, it is biochemically and clinically relevant to investigate these post-translational modifying enzymes from an evolutionary perspective. A first phylogenetic history of the thirteen enzymes involved in the fabrication of the so-called 'M3 core' laminin-binding epitope has been traced by an overall sequence comparison approach, and interesting details on the primordial enzyme set have emerged, as well as substantial conservation in Metazoa. The optimization along with the evolution of a well-conserved enzymatic set responsible for the glycosylation of α-DG indicate the importance of the glycosylation shell in modulating the connection between sarcolemma and surrounding basement membranes to increase skeletal muscle stability, and eventually support movement and locomotion.
Collapse
Affiliation(s)
- Maria Giulia Bigotti
- School of Translational Health Sciences, Research Floor Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK,School of Biochemistry, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Andrea Brancaccio
- School of Biochemistry, University Walk, University of Bristol, Bristol BS8 1TD, UK,Institute of Chemical Sciences and Technologies ‘Giulio Natta’ (SCITEC) - CNR, Largo F.Vito 1, 00168, Rome, Italy
| |
Collapse
|
28
|
Imae R, Manya H, Tsumoto H, Miura Y, Endo T. PCYT2 synthesizes CDP-glycerol in mammals and reduced PCYT2 enhances the expression of functionally glycosylated α-dystroglycan. J Biochem 2021; 170:183-194. [PMID: 34255834 DOI: 10.1093/jb/mvab069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/31/2021] [Indexed: 11/14/2022] Open
Abstract
α-Dystroglycan (α-DG) is a highly glycosylated cell-surface protein. Defective O-mannosyl glycan on α-DG is associated with muscular dystrophies and cancer. In the biosynthetic pathway of the O-mannosyl glycan, fukutin (FKTN) and fukutin-related protein (FKRP) transfer ribitol phosphate (RboP). Previously, we reported that FKTN and FKRP can also transfer glycerol phosphate (GroP) from CDP-glycerol (CDP-Gro) and showed the inhibitory effects of CDP-Gro on functional glycan synthesis by preventing glycan elongation in vitro. However, whether mammalian cells have CDP-Gro or associated synthetic machinery has not been elucidated. Therefore, the function of CDP-Gro in mammals is largely unknown. Here, we reveal that cultured human cells and mouse tissues contain CDP-Gro using liquid chromatography tandem-mass spectrometry (LC-MS/MS). By performing the enzyme activity assay of candidate recombinant proteins, we found that ethanolamine-phosphate cytidylyltransferase (PCYT2), the key enzyme in de novo phosphatidylethanolamine biosynthesis, has CDP-Gro synthetic activity from glycerol-3-phosphate (Gro3P) and CTP. In addition, knockdown of PCYT2 dramatically reduced cellular CDP-Gro. These results indicate that PCYT2 is a CDP-Gro synthase in mammals. Furthermore, we found that the expression of functionally glycosylated α-DG is increased by reducing PCYT2 expression. Our results suggest an important role for CDP-Gro in the regulation of α-DG function in mammals.
Collapse
Affiliation(s)
| | | | - Hiroki Tsumoto
- Proteome Research, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Yuri Miura
- Proteome Research, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan
| | | |
Collapse
|
29
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
30
|
Imae R, Kuwabara N, Manya H, Tanaka T, Tsuyuguchi M, Mizuno M, Endo T, Kato R. The structure of POMGNT2 provides new insights into the mechanism to determine the functional O-mannosylation site on α-dystroglycan. Genes Cells 2021; 26:485-494. [PMID: 33893702 PMCID: PMC8360118 DOI: 10.1111/gtc.12853] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022]
Abstract
Defects in the O‐mannosyl glycan of α‐dystroglycan (α‐DG) are associated with α‐dystroglycanopathy, a group of congenital muscular dystrophies. While α‐DG has many O‐mannosylation sites, only the specific positions can be modified with the functional O‐mannosyl glycan, namely, core M3‐type glycan. POMGNT2 is a glycosyltransferase which adds β1,4‐linked GlcNAc to the O‐mannose (Man) residue to acquire core M3‐type glycan. Although it is assumed that POMGNT2 extends the specific O‐Man residues around particular amino acid sequences, the details are not well understood. Here, we determined a series of crystal structures of POMGNT2 with and without the acceptor O‐mannosyl peptides and identified the critical interactions between POMGNT2 and the acceptor peptide. POMGNT2 has an N‐terminal catalytic domain and a C‐terminal fibronectin type III (FnIII) domain and forms a dimer. The acceptor peptide is sandwiched between the two protomers. The catalytic domain of one protomer recognizes the O‐mannosylation site (TPT motif), and the FnIII domain of the other protomer recognizes the C‐terminal region of the peptide. Structure‐based mutational studies confirmed that amino acid residues of the catalytic domain interacting with mannose or the TPT motif are essential for POMGNT2 enzymatic activity. In addition, the FnIII domain is also essential for the activity and it interacts with the peptide mainly by hydrophobic interaction. Our study provides the first atomic‐resolution insights into specific acceptor recognition by the FnIII domain of POMGNT2. The catalytic mechanism of POMGNT2 is proposed based on the structure.
Collapse
Affiliation(s)
- Rieko Imae
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Japan
| | - Naoyuki Kuwabara
- High Energy Accelerator Research Organization (KEK), Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Japan
| | - Tomohiro Tanaka
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, Itabashi-ku, Japan
| | - Masato Tsuyuguchi
- High Energy Accelerator Research Organization (KEK), Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan
| | - Mamoru Mizuno
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, Itabashi-ku, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Japan
| | - Ryuichi Kato
- High Energy Accelerator Research Organization (KEK), Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan
| |
Collapse
|
31
|
The promiscuous binding pocket of SLC35A1 ensures redundant transport of CDP-ribitol to the Golgi. J Biol Chem 2021; 296:100789. [PMID: 34015330 PMCID: PMC8192872 DOI: 10.1016/j.jbc.2021.100789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 01/23/2023] Open
Abstract
The glycoprotein α-dystroglycan helps to link the intracellular cytoskeleton to the extracellular matrix. A unique glycan structure attached to this protein is required for its interaction with extracellular matrix proteins such as laminin. Up to now, this is the only mammalian glycan known to contain ribitol phosphate groups. Enzymes in the Golgi apparatus use CDP-ribitol to incorporate ribitol phosphate into the glycan chain of α-dystroglycan. Since CDP-ribitol is synthesized in the cytoplasm, we hypothesized that an unknown transporter must be required for its import into the Golgi apparatus. We discovered that CDP-ribitol transport relies on the CMP-sialic acid transporter SLC35A1 and the transporter SLC35A4 in a redundant manner. These two transporters are closely related, but bulky residues in the predicted binding pocket of SLC35A4 limit its size. We hypothesized that the large binding pocket SLC35A1 might accommodate the bulky CMP-sialic acid and the smaller CDP-ribitol, whereas SLC35A4 might only accept CDP-ribitol. To test this, we expressed SLC35A1 with mutations in its binding pocket in SLC35A1 KO cell lines. When we restricted the binding site of SLC35A1 by introducing the bulky residues present in SLC35A4, the mutant transporter was unable to support sialylation of proteins in cells but still supported ribitol phosphorylation. This demonstrates that the size of the binding pocket determines the substrate specificity of SLC35A1, allowing a variety of cytosine nucleotide conjugates to be transported. The redundancy with SLC35A4 also explains why patients with SLC35A1 mutations do not show symptoms of α-dystroglycan deficiency.
Collapse
|
32
|
Flynn RA, Pedram K, Malaker SA, Batista PJ, Smith BAH, Johnson AG, George BM, Majzoub K, Villalta PW, Carette JE, Bertozzi CR. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell 2021; 184:3109-3124.e22. [PMID: 34004145 DOI: 10.1016/j.cell.2021.04.023] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 04/14/2021] [Indexed: 12/20/2022]
Abstract
Glycans modify lipids and proteins to mediate inter- and intramolecular interactions across all domains of life. RNA is not thought to be a major target of glycosylation. Here, we challenge this view with evidence that mammals use RNA as a third scaffold for glycosylation. Using a battery of chemical and biochemical approaches, we found that conserved small noncoding RNAs bear sialylated glycans. These "glycoRNAs" were present in multiple cell types and mammalian species, in cultured cells, and in vivo. GlycoRNA assembly depends on canonical N-glycan biosynthetic machinery and results in structures enriched in sialic acid and fucose. Analysis of living cells revealed that the majority of glycoRNAs were present on the cell surface and can interact with anti-dsRNA antibodies and members of the Siglec receptor family. Collectively, these findings suggest the existence of a direct interface between RNA biology and glycobiology, and an expanded role for RNA in extracellular biology.
Collapse
Affiliation(s)
- Ryan A Flynn
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Kayvon Pedram
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Stacy A Malaker
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Pedro J Batista
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin A H Smith
- Department of Chemical and Systems Biology and ChEM-H, Stanford University, Stanford, CA, USA
| | - Alex G Johnson
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Benson M George
- Department of Cancer Biology, Stanford University, Stanford, CA, USA
| | - Karim Majzoub
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA; IGMM, CNRS, University of Montpellier, Montpellier, France
| | - Peter W Villalta
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
33
|
Abstract
Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22-83 years old) of the GESTALT study of the National Institute on Aging-NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age.
Collapse
|
34
|
John A, Järvå MA, Shah S, Mao R, Chappaz S, Birkinshaw RW, Czabotar PE, Lo AW, Scott NE, Goddard-Borger ED. Yeast- and antibody-based tools for studying tryptophan C-mannosylation. Nat Chem Biol 2021; 17:428-437. [PMID: 33542533 DOI: 10.1038/s41589-020-00727-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Tryptophan C-mannosylation is an unusual co-translational protein modification performed by metazoans and apicomplexan protists. The prevalence and biological functions of this modification are poorly understood, with progress in the field hampered by a dearth of convenient tools for installing and detecting the modification. Here, we engineer a yeast system to produce a diverse array of proteins with and without tryptophan C-mannosylation and interrogate the modification's influence on protein stability and function. This system also enabled mutagenesis studies to identify residues of the glycosyltransferase and its protein substrates that are crucial for catalysis. The collection of modified proteins accrued during this work facilitated the generation and thorough characterization of monoclonal antibodies against tryptophan C-mannosylation. These antibodies empowered proteomic analyses of the brain C-glycome by enriching for peptides possessing tryptophan C-mannosylation. This study revealed many new modification sites on proteins throughout the secretory pathway with both conventional and non-canonical consensus sequences.
Collapse
Affiliation(s)
- Alan John
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Michael A Järvå
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Sayali Shah
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Runyu Mao
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Stephane Chappaz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Richard W Birkinshaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Alvin W Lo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Ethan D Goddard-Borger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
35
|
Yang JY, Halmo SM, Praissman J, Chapla D, Singh D, Wells L, Moremen KW, Lanzilotta WN. Crystal structures of β-1,4-N-acetylglucosaminyltransferase 2: structural basis for inherited muscular dystrophies. Acta Crystallogr D Struct Biol 2021; 77:486-495. [PMID: 33825709 PMCID: PMC8025878 DOI: 10.1107/s2059798321001261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/02/2021] [Indexed: 11/11/2022] Open
Abstract
The canonical O-mannosylation pathway in humans is essential for the functional glycosylation of α-dystroglycan. Disruption of this post-translational modification pathway leads to congenital muscular dystrophies. The first committed step in the construction of a functional matriglycan structure involves the post-translational modification of α-dystroglycan. This is essential for binding extracellular matrix proteins and arenaviruses, and is catalyzed by β-1,4-N-acetylglucosaminyltransferase 2 (POMGNT2). While another glycosyl transferase, β-1,4-N-acetylglucosaminyltransferase 1 (POMGNT1), has been shown to be promiscuous in extending O-mannosylated sites, POMGNT2 has been shown to display significant primary amino-acid selectivity near the site of O-mannosylation. Moreover, several single point mutations in POMGNT2 have been identified in patients with assorted dystroglycanopathies such as Walker-Warburg syndrome and limb girdle muscular dystrophy. To gain insight into POMGNT2 function in humans, the enzyme was expressed as a soluble, secreted fusion protein by transient infection of HEK293 suspension cultures. Here, crystal structures of POMGNT2 (amino-acid residues 25-580) with and without UDP bound are reported. Consistent with a novel fold and a unique domain organization, no molecular-replacement model was available and phases were obtained through crystallization of a selenomethionine variant of the enzyme in the same space group. Tetragonal (space group P4212; unit-cell parameters a = b = 129.8, c = 81.6 Å, α = γ = β = 90°) crystals with UDP bound diffracted to 1.98 Å resolution and contained a single monomer in the asymmetric unit. Orthorhombic (space group P212121; unit-cell parameters a = 142.3, b = 153.9, c = 187.4 Å, α = γ = β = 90°) crystals were also obtained; they diffracted to 2.57 Å resolution and contained four monomers with differential glycosylation patterns and conformations. These structures provide the first rational basis for an explanation of the loss-of-function mutations and offer significant insights into the mechanics of this important human enzyme.
Collapse
Affiliation(s)
- Jeong Yeh Yang
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Stephanie M. Halmo
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Jeremy Praissman
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Digantkumar Chapla
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Danish Singh
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Lance Wells
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Kelley W. Moremen
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - William N. Lanzilotta
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
36
|
Ortiz-Cordero C, Magli A, Dhoke NR, Kuebler T, Selvaraj S, Oliveira NA, Zhou H, Sham YY, Bang AG, Perlingeiro RC. NAD+ enhances ribitol and ribose rescue of α-dystroglycan functional glycosylation in human FKRP-mutant myotubes. eLife 2021; 10:65443. [PMID: 33513091 PMCID: PMC7924940 DOI: 10.7554/elife.65443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022] Open
Abstract
Mutations in the fukutin-related protein (FKRP) cause Walker-Warburg syndrome (WWS), a severe form of congenital muscular dystrophy. Here, we established a WWS human induced pluripotent stem cell-derived myogenic model that recapitulates hallmarks of WWS pathology. We used this model to investigate the therapeutic effect of metabolites of the pentose phosphate pathway in human WWS. We show that functional recovery of WWS myotubes is promoted not only by ribitol but also by its precursor ribose. Moreover, we found that the combination of each of these metabolites with NAD+ results in a synergistic effect, as demonstrated by rescue of α-dystroglycan glycosylation and laminin binding capacity. Mechanistically, we found that FKRP residual enzymatic capacity, characteristic of many recessive FKRP mutations, is required for rescue as supported by functional and structural mutational analyses. These findings provide the rationale for testing ribose/ribitol in combination with NAD+ to treat WWS and other diseases associated with FKRP mutations.
Collapse
Affiliation(s)
- Carolina Ortiz-Cordero
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, United States.,Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, United States
| | - Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, United States
| | - Neha R Dhoke
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Taylor Kuebler
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, United States
| | - Sridhar Selvaraj
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Nelio Aj Oliveira
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Haowen Zhou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, United States.,Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, United States
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Rita Cr Perlingeiro
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, United States.,Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, United States
| |
Collapse
|
37
|
Narimatsu Y, Büll C, Chen YH, Wandall HH, Yang Z, Clausen H. Genetic glycoengineering in mammalian cells. J Biol Chem 2021; 296:100448. [PMID: 33617880 PMCID: PMC8042171 DOI: 10.1016/j.jbc.2021.100448] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in nuclease-based gene-editing technologies have enabled precise, stable, and systematic genetic engineering of glycosylation capacities in mammalian cells, opening up a plethora of opportunities for studying the glycome and exploiting glycans in biomedicine. Glycoengineering using chemical, enzymatic, and genetic approaches has a long history, and precise gene editing provides a nearly unlimited playground for stable engineering of glycosylation in mammalian cells to explore and dissect the glycome and its many biological functions. Genetic engineering of glycosylation in cells also brings studies of the glycome to the single cell level and opens up wider use and integration of data in traditional omics workflows in cell biology. The last few years have seen new applications of glycoengineering in mammalian cells with perspectives for wider use in basic and applied glycosciences, and these have already led to discoveries of functions of glycans and improved designs of glycoprotein therapeutics. Here, we review the current state of the art of genetic glycoengineering in mammalian cells and highlight emerging opportunities.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark.
| | - Christian Büll
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| | | | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Zhang Yang
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
38
|
Ortiz-Cordero C, Azzag K, Perlingeiro RCR. Fukutin-Related Protein: From Pathology to Treatments. Trends Cell Biol 2020; 31:197-210. [PMID: 33272829 DOI: 10.1016/j.tcb.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022]
Abstract
Fukutin-related protein (FKRP) is a glycosyltransferase involved in the functional glycosylation of α-dystroglycan (DG), a key component in the link between the cytoskeleton and the extracellular matrix (ECM). Mutations in FKRP lead to dystroglycanopathies with broad severity, including limb-girdle and congenital muscular dystrophy. Studies over the past 5 years have elucidated the function of FKRP, which has expanded the number of therapeutic opportunities for patients carrying FKRP mutations. These include small molecules, gene delivery, and cell therapy. Here we summarize recent findings on the function of FKRP and describe available models for studying diseases and testing therapeutics. Lastly, we highlight preclinical studies that hold potential for the treatment of FKRP-associated dystroglycanopathies.
Collapse
Affiliation(s)
- Carolina Ortiz-Cordero
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
39
|
Tamura T, Omura Y, Tamura JI. Stereo- and Regioselective Synthesis of O-Mannosyl Glycan Containing Matriglycan and a Part of Tandem Ribitol Phosphate. J Org Chem 2020; 85:12935-12946. [PMID: 32930586 DOI: 10.1021/acs.joc.0c01569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We herein successfully synthesized two pivotal structures of O-mannosyl glycan: (1) the matriglycan-repeating tetrasaccharide Xylα1-3GlcAβ1-3Xylα1-3GlcAβ and (2) the link between matriglycan and a part of tandem ribitol phosphate, Xylα1-3GlcAβ1-4Xylβ1-4Rbo, in a regio- and stereocontrolled manner. The disaccharide unit with the α-linkage of xylose was obtained by adopting the conformational fixation of the xylopyranoside ring and a specific solvation system of diastereoselective solubility.
Collapse
Affiliation(s)
- Takahiro Tamura
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
| | - Yuka Omura
- Graduate School of Sustainability Science, Department of Agricultural Science, Tottori University, Tottori 680-8553, Japan
| | - Jun-Ichi Tamura
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan.,Graduate School of Sustainability Science, Department of Agricultural Science, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
40
|
Ribitol enhances matriglycan of α-dystroglycan in breast cancer cells without affecting cell growth. Sci Rep 2020; 10:4935. [PMID: 32188898 PMCID: PMC7080755 DOI: 10.1038/s41598-020-61747-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/25/2020] [Indexed: 11/24/2022] Open
Abstract
The laminin-binding glycan (matriglycan) on α-dystroglycan (α-DG) enables diverse roles, from neuronal development to muscle integrity. Reduction or loss of matriglycan has also been implicated in cancer development and metastasis, and specifically associated with high-grade tumors and poor prognoses in breast cancers. Hyperglycosylation of α-DG with LARGE overexpression is shown to inhibit cancer cell growth and tumorigenicity. We recently demonstrated that ribitol, considered to be a metabolic end-product, enhances matriglycan expression in dystrophic muscles in vivo. In the current study, we tested the hypothesis that ribitol could also enhance matriglycan expression in cancer cells. Our results showed for the first time that ribitol is able to significantly enhance the expression of matriglycan on α-DG in breast cancer cells. The ribitol effect is associated with an increase in levels of CDP-ribitol, the substrate for the ribitol-5-phosphate transferases FKRP and FKTN. Direct use of CDP-ribitol is also effective for matriglycan expression. Ribitol treatment does not alter the expression of FKRP, FKTN as well as LARGEs and ISPD which are critical for the synthesis of matriglycan. The results suggest that alteration in substrates could also be involved in regulation of matriglycan expression. Interestingly, expression of matriglycan is related to cell cycle progression with highest levels in S and G2 phases and ribitol treatment does not alter the pattern. Although matriglycan up-regulation does not affect cell cycle progression and proliferation of the cancer cells tested, the novel substrate-mediated treatment opens a new approach easily applicable to experimental systems in vivo for further exploitation of matriglycan expression in cancer progression and for therapeutic potential.
Collapse
|
41
|
Sheikh MO, Venzke D, Anderson ME, Yoshida-Moriguchi T, Glushka JN, Nairn AV, Galizzi M, Moremen KW, Campbell KP, Wells L. HNK-1 sulfotransferase modulates α-dystroglycan glycosylation by 3-O-sulfation of glucuronic acid on matriglycan. Glycobiology 2020; 30:817-829. [PMID: 32149355 DOI: 10.1093/glycob/cwaa024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
Mutations in multiple genes required for proper O-mannosylation of α-dystroglycan are causal for congenital/limb-girdle muscular dystrophies and abnormal brain development in mammals. Previously, we and others further elucidated the functional O-mannose glycan structure that is terminated by matriglycan, [(-GlcA-β3-Xyl-α3-)n]. This repeating disaccharide serves as a receptor for proteins in the extracellular matrix. Here, we demonstrate in vitro that HNK-1 sulfotransferase (HNK-1ST/carbohydrate sulfotransferase) sulfates terminal glucuronyl residues of matriglycan at the 3-hydroxyl and prevents further matriglycan polymerization by the LARGE1 glycosyltransferase. While α-dystroglycan isolated from mouse heart and kidney is susceptible to exoglycosidase digestion of matriglycan, the functional, lower molecular weight α-dystroglycan detected in brain, where HNK-1ST expression is elevated, is resistant. Removal of the sulfate cap by a sulfatase facilitated dual-glycosidase digestion. Our data strongly support a tissue specific mechanism in which HNK-1ST regulates polymer length by competing with LARGE for the 3-position on the nonreducing GlcA of matriglycan.
Collapse
Affiliation(s)
- M Osman Sheikh
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - David Venzke
- Department of Molecular Physiology and Biophysics, Department of Neurology, Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Mary E Anderson
- Department of Molecular Physiology and Biophysics, Department of Neurology, Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Takako Yoshida-Moriguchi
- Department of Molecular Physiology and Biophysics, Department of Neurology, Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - John N Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Alison V Nairn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Melina Galizzi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Kevin P Campbell
- Department of Molecular Physiology and Biophysics, Department of Neurology, Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
42
|
Kuwabara N, Imae R, Manya H, Tanaka T, Mizuno M, Tsumoto H, Kanagawa M, Kobayashi K, Toda T, Senda T, Endo T, Kato R. Crystal structures of fukutin-related protein (FKRP), a ribitol-phosphate transferase related to muscular dystrophy. Nat Commun 2020; 11:303. [PMID: 31949166 PMCID: PMC6965139 DOI: 10.1038/s41467-019-14220-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
α-Dystroglycan (α-DG) is a highly-glycosylated surface membrane protein. Defects in the O-mannosyl glycan of α-DG cause dystroglycanopathy, a group of congenital muscular dystrophies. The core M3 O-mannosyl glycan contains tandem ribitol-phosphate (RboP), a characteristic feature first found in mammals. Fukutin and fukutin-related protein (FKRP), whose mutated genes underlie dystroglycanopathy, sequentially transfer RboP from cytidine diphosphate-ribitol (CDP-Rbo) to form a tandem RboP unit in the core M3 glycan. Here, we report a series of crystal structures of FKRP with and without donor (CDP-Rbo) and/or acceptor [RboP-(phospho-)core M3 peptide] substrates. FKRP has N-terminal stem and C-terminal catalytic domains, and forms a tetramer both in crystal and in solution. In the acceptor complex, the phosphate group of RboP is recognized by the catalytic domain of one subunit, and a phosphate group on O-mannose is recognized by the stem domain of another subunit. Structure-based functional studies confirmed that the dimeric structure is essential for FKRP enzymatic activity. Fukutin-related protein (FKRP) catalyses the addition of ribitol-phosphate (RboP) to the O-mannosyl glycan of α-dystroglycan and mutations in FKRP cause dystroglycanopathy. Here the authors provide insights into its oligomerization and recognition of the substrates, CDP-Rbo and the RboP-(phospho-)core M3 glycan, by determining the crystal structures of human FKRP.
Collapse
Affiliation(s)
- Naoyuki Kuwabara
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan
| | - Rieko Imae
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Tomohiro Tanaka
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Mamoru Mizuno
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Hiroki Tsumoto
- Proteome Research, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Motoi Kanagawa
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kazuhiro Kobayashi
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Tatsushi Toda
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.,Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan.,School of High Energy Accelerator Science, SOKENDAI, Tsukuba, Ibaraki, 305-0801, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Ryuichi Kato
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan. .,School of High Energy Accelerator Science, SOKENDAI, Tsukuba, Ibaraki, 305-0801, Japan.
| |
Collapse
|
43
|
Manya H, Kuwabara N, Kato R, Endo T. FAM3B/PANDER-Like Carbohydrate-Binding Domain in a Glycosyltransferase, POMGNT1. Methods Mol Biol 2020; 2132:609-619. [PMID: 32306360 DOI: 10.1007/978-1-0716-0430-4_52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein O-mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGNT1) is one of the gene products responsible for α-dystroglycanopathy, which is a type of congenital muscular dystrophy caused by O-mannosyl glycan defects. The originally identified function of POMGNT1 was as a glycosyltransferase that catalyzes the formation of the GlcNAcβ1-2Man linkage of O-mannosyl glycan, but the enzyme function is not essential for α-dystroglycanopathy pathogenesis. Our recent study revealed that the stem domain of POMGNT1 has a carbohydrate-binding ability, which recognizes the GalNAcβ1-3GlcNAc structure. This carbohydrate-binding activity is required for the formation of the ribitol phosphate (RboP)-3GalNAcβ1-3GlcNAc structure by fukutin. This protocol describes methods to assess the carbohydrate-binding activity of the POMGNT1 stem domain.
Collapse
Affiliation(s)
- Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | - Naoyuki Kuwabara
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan
| | - Ryuichi Kato
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, Japan.
| |
Collapse
|
44
|
Kanagawa M, Toda T. Muscular Dystrophy with Ribitol-Phosphate Deficiency: A Novel Post-Translational Mechanism in Dystroglycanopathy. J Neuromuscul Dis 2019; 4:259-267. [PMID: 29081423 PMCID: PMC5701763 DOI: 10.3233/jnd-170255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Muscular dystrophy is a group of genetic disorders characterized by progressive muscle weakness. In the early 2000s, a new classification of muscular dystrophy, dystroglycanopathy, was established. Dystroglycanopathy often associates with abnormalities in the central nervous system. Currently, at least eighteen genes have been identified that are responsible for dystroglycanopathy, and despite its genetic heterogeneity, its common biochemical feature is abnormal glycosylation of alpha-dystroglycan. Abnormal glycosylation of alpha-dystroglycan reduces its binding activities to ligand proteins, including laminins. In just the last few years, remarkable progress has been made in determining the sugar chain structures and gene functions associated with dystroglycanopathy. The normal sugar chain contains tandem structures of ribitol-phosphate, a pentose alcohol that was previously unknown in humans. The dystroglycanopathy genes fukutin, fukutin-related protein (FKRP), and isoprenoid synthase domain-containing protein (ISPD) encode essential enzymes for the synthesis of this structure: fukutin and FKRP transfer ribitol-phosphate onto sugar chains of alpha-dystroglycan, and ISPD synthesizes CDP-ribitol, a donor substrate for fukutin and FKRP. These findings resolved long-standing questions and established a disease subgroup that is ribitol-phosphate deficient, which describes a large population of dystroglycanopathy patients. Here, we review the history of dystroglycanopathy, the properties of the sugar chain structure of alpha-dystroglycan, dystroglycanopathy gene functions, and therapeutic strategies.
Collapse
Affiliation(s)
- Motoi Kanagawa
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan.,Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
45
|
van Tol W, Wessels H, Lefeber DJ. O-glycosylation disorders pave the road for understanding the complex human O-glycosylation machinery. Curr Opin Struct Biol 2019; 56:107-118. [PMID: 30708323 DOI: 10.1016/j.sbi.2018.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 01/17/2023]
Abstract
Over 100 human Congenital Disorders of Glycosylation (CDG) have been described. Of these, about 30% reside in the O-glycosylation pathway. O-glycosylation disorders are characterized by a high phenotypic variability, reflecting the large diversity of O-glycan structures. In contrast to N-glycosylation disorders, a generic biochemical screening test is lacking, which limits the identification of novel O-glycosylation disorders. The emergence of next generation sequencing (NGS) and O-glycoproteomics technologies have changed this situation, resulting in significant progress to link disease phenotypes with underlying biochemical mechanisms. Here, we review the current knowledge on O-glycosylation disorders, and discuss the biochemical lessons that we can learn on 1) novel glycosyltransferases and metabolic pathways, 2) tissue-specific O-glycosylation mechanisms, 3) O-glycosylation targets and 4) structure-function relationships. Additionally, we provide an outlook on how genetic disorders, O-glycoproteomics and biochemical methods can be combined to answer fundamental questions regarding O-glycan synthesis, structure and function.
Collapse
Affiliation(s)
- Walinka van Tol
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
46
|
Hinou H, Kikuchi S, Ochi R, Igarashi K, Takada W, Nishimura SI. Synthetic glycopeptides reveal specific binding pattern and conformational change at O-mannosylated position of α-dystroglycan by POMGnT1 catalyzed GlcNAc modification. Bioorg Med Chem 2019; 27:2822-2831. [PMID: 31079966 DOI: 10.1016/j.bmc.2019.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 01/06/2023]
Abstract
Structural and functional effects of core M1 type glycan modification catalyzed by protein O-linked mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) were investigated using a core M1 glycoform focused library of an α-dystroglycan fragment, 372TRGAIIQTPTLGPIQPTRV390. Evanescent-field fluorescence-assisted microarray system illuminated the specific binding pattern of plant lectins that can discriminate the glycan structure of core M1 glycan of the library. The comparative NMR analysis of synthetic glycopeptide having different length of the O-mannosylated glycans revealed a conformational change of the peptide backbone along with core M1 disaccharide formation. No long-range NOE signals of glycan-amino acid nor inter amino acid indicate the conformational change is induced by steric hindrance of core M1, the sole 1,2-O-modified form among protein binding sugar residue found in mammals.
Collapse
Affiliation(s)
- Hiroshi Hinou
- Graduate School of Life Science, Frontier Research Center for Advanced Material & Life Science, Hokkaido University, N21, W11, Sapporo 001-0021, Japan; Medicinal Chemistry Pharmaceuticals Co. Ltd., Sapporo, Japan.
| | - Seiya Kikuchi
- Graduate School of Life Science, Frontier Research Center for Advanced Material & Life Science, Hokkaido University, N21, W11, Sapporo 001-0021, Japan
| | - Rika Ochi
- Graduate School of Life Science, Frontier Research Center for Advanced Material & Life Science, Hokkaido University, N21, W11, Sapporo 001-0021, Japan
| | | | | | - Shin-Ichiro Nishimura
- Graduate School of Life Science, Frontier Research Center for Advanced Material & Life Science, Hokkaido University, N21, W11, Sapporo 001-0021, Japan; Medicinal Chemistry Pharmaceuticals Co. Ltd., Sapporo, Japan
| |
Collapse
|
47
|
Regio- and stereo-controlled synthesis of β-Xyl(1–4)Rbo-5P1-Rbo, the partial structure of O-mannosyl glycan. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.12.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
ENDO T. Mammalian O-mannosyl glycans: Biochemistry and glycopathology. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:39-51. [PMID: 30643095 PMCID: PMC6395781 DOI: 10.2183/pjab.95.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/05/2018] [Indexed: 05/20/2023]
Abstract
Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N-glycans and O-glycans, according to their glycan-peptide linkage regions. Recently, O-mannosyl glycan, an O-glycan, has been shown to be important in muscle and brain development. A clear relationship between O-mannosyl glycans and the pathomechanisms of some congenital muscular dystrophies has been established in humans. Ribitol-5-phosphate is a newly identified glycan component in mammals, and its biosynthetic pathway has been elucidated. The discovery of new glycan structures and the identification of highly regulated mechanisms of glycan processing will help researchers to understand glycan functions and develop therapeutic strategies.
Collapse
Affiliation(s)
- Tamao ENDO
- Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Correspondence should be addressed: T. Endo, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan (e-mail: )
| |
Collapse
|
49
|
Vannoy CH, Blaeser A, Lu QL. Dystroglycanopathy Gene Therapy: Unlocking the Potential of Genetic Engineering. MUSCLE GENE THERAPY 2019:469-490. [DOI: 10.1007/978-3-030-03095-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
50
|
Hohenester E. Laminin G-like domains: dystroglycan-specific lectins. Curr Opin Struct Biol 2018; 56:56-63. [PMID: 30530204 DOI: 10.1016/j.sbi.2018.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/31/2023]
Abstract
A unique O-mannose-linked glycan on the transmembrane protein dystroglycan binds a number of extracellular matrix proteins containing laminin G-like (LG) domains. The dystroglycan-matrix interaction is essential for muscle function: disrupted biosynthesis of the matrix-binding modification causes several forms of muscular dystrophy. The complete chemical structure of this modification has been deciphered in the past few years. We now know that LG domains bind to a glycosaminoglycan-like polysaccharide of [-3GlcAβ1,3Xylα1-] units, termed matriglycan, that is attached to a highly unusual heptasaccharide linker. X-ray crystallography has revealed the principles of Ca2+-dependent matriglycan binding by LG domains. In this review, the new structural insights are applied to the growing number of LG domain-containing proteins that bind dystroglycan. It is proposed that LG domains be recognised as 'D-type' lectins to indicate their conserved function in dystroglycan binding.
Collapse
Affiliation(s)
- Erhard Hohenester
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|