1
|
Yao X, Mai X, Tian Y, Liu Y, Jin G, Li Z, Chen S, Dai X, Huang L, Fan Z, Pan G, Pan X, Li X, Yu MC, Sun J, Ou J, Chen H, Xie L. Skeletal muscle-specific Bambi deletion induces hypertrophy and oxidative switching coupling with adipocyte thermogenesis against metabolic disorders. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1352-1368. [PMID: 39821828 DOI: 10.1007/s11427-023-2586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/01/2024] [Indexed: 01/19/2025]
Abstract
Skeletal muscle plays a significant role in both local and systemic energy metabolism. The current investigation aims to explore the role of the Bambi gene in skeletal muscle, focusing on its implications for muscle hypertrophy and systemic metabolism. We hypothesize that skeletal muscle-specific deletion of Bambi induces muscle hypertrophy, improves metabolic performance, and activates thermogenic adipocytes via the reprogramming of progenitor of iWAT, offering potential therapeutic strategies for metabolic syndromes. Leveraging the Chromatin immunoprecipitation (ChIP)-seq and bioinformatics analysis, Bambi gene is shown to be a direct target of HIF2α, which is further confirmed by ChIP-qPCR and promoter luciferase assay. Skeletal muscle-specific Bambi deletion led to significant muscle hypertrophy and improved metabolic parameters, even under high-fat diet conditions. This deletion induced metabolic reprogramming of stromal vascular fractions (SVFs) into thermogenic adipocytes, contributing to systemic metabolic improvements, potentially through the secretory factor. Notably, mice with skeletal muscle-specific Bambi deletion demonstrate resistance to high-fat diet-induced metabolic disorders, highlighting a potential therapeutic pathway for metabolic syndrome management. Thus, skeletal muscle-specific deletion of Bambi triggers muscle growth, enhances metabolic performance, and activates thermogenic adipocytes. These findings suggest Bambi as a novel therapeutic target for metabolic syndromes, providing new insights into the interaction between muscle hypertrophy and systemic metabolic improvement. The study underscores the potential of manipulating muscle physiology to regulate whole-body metabolism, offering a novel perspective on treating metabolic disorders.
Collapse
Affiliation(s)
- Xiangping Yao
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xudong Mai
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Ye Tian
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yifan Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 524023, China
| | - Guanghui Jin
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong province engineering laboratory for transplantation medicine; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Ze Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shujie Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Liujing Huang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Zijing Fan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Guihua Pan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiaohan Pan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Xiangmin Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Michael C Yu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, 14260, USA
| | - Jia Sun
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jingxing Ou
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong province engineering laboratory for transplantation medicine; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China.
| | - Hong Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Liwei Xie
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
- Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 524023, China.
- Department of Internal Medicine, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, 528300, China.
- College of Life and Health Sciences, Guangdong Industry Polytechnic, Guangzhou, 510300, China.
| |
Collapse
|
2
|
Sartorelli V, Ciuffoli V. Metabolic regulation in adult and aging skeletal muscle stem cells. Genes Dev 2025; 39:186-208. [PMID: 39662967 PMCID: PMC11789647 DOI: 10.1101/gad.352277.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Adult stem cells maintain homeostasis and enable regeneration of most tissues. Quiescence, proliferation, and differentiation of stem cells and their progenitors are tightly regulated processes governed by dynamic transcriptional, epigenetic, and metabolic programs. Previously thought to merely reflect a cell's energy state, metabolism is now recognized for its critical regulatory functions, controlling not only energy and biomass production but also the cell's transcriptome and epigenome. In this review, we explore how metabolic pathways, metabolites, and transcriptional and epigenetic regulators are functionally interlinked in adult and aging skeletal muscle stem cells.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
3
|
Fennel ZJ, O'Connell RM, Drummond MJ. Macrophage immunometabolism: emerging targets for regrowth in aging muscle. Am J Physiol Endocrinol Metab 2025; 328:E186-E197. [PMID: 39763086 PMCID: PMC12079615 DOI: 10.1152/ajpendo.00403.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/31/2025]
Abstract
The recovery from muscle atrophy is impaired with aging as characterized by improper muscle remodeling and sustained functional deficits. Age-related deficits in muscle regrowth are tightly linked with the loss of early pro-inflammatory macrophage responses and subsequent cellular dysregulation within the skeletal muscle niche. Macrophage inflammatory phenotype is regulated at the metabolic level, highlighting immunometabolism as an emerging strategy to enhance macrophage responses and restore functional muscle regrowth. Accordingly, metabolic targets with an emphasis on glycolytic, hypoxia, and redox-related pathways stand out for their role in promoting macrophage inflammation and enhancing muscle regrowth in aging. Here we highlight promising immuno-metabolic targets that could be leveraged to restore optimal pro-inflammatory macrophage function in aging and enhance muscle regrowth following muscular atrophy.
Collapse
Affiliation(s)
- Zachary J Fennel
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
| | - Ryan M O'Connell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, United States
| | - Micah J Drummond
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
4
|
Russo C, Valle MS, D’Angeli F, Surdo S, Malaguarnera L. Resveratrol and Vitamin D: Eclectic Molecules Promoting Mitochondrial Health in Sarcopenia. Int J Mol Sci 2024; 25:7503. [PMID: 39062745 PMCID: PMC11277153 DOI: 10.3390/ijms25147503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Sarcopenia refers to the progressive loss and atrophy of skeletal muscle function, often associated with aging or secondary to conditions involving systemic inflammation, oxidative stress, and mitochondrial dysfunction. Recent evidence indicates that skeletal muscle function is not only influenced by physical, environmental, and genetic factors but is also significantly impacted by nutritional deficiencies. Natural compounds with antioxidant properties, such as resveratrol and vitamin D, have shown promise in preventing mitochondrial dysfunction in skeletal muscle cells. These antioxidants can slow down muscle atrophy by regulating mitochondrial functions and neuromuscular junctions. This review provides an overview of the molecular mechanisms leading to skeletal muscle atrophy and summarizes recent advances in using resveratrol and vitamin D supplementation for its prevention and treatment. Understanding these molecular mechanisms and implementing combined interventions can optimize treatment outcomes, ensure muscle function recovery, and improve the quality of life for patients.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
5
|
Flores-Opazo M, Kopinke D, Helmbacher F, Fernández-Verdejo R, Tuñón-Suárez M, Lynch GS, Contreras O. Fibro-adipogenic progenitors in physiological adipogenesis and intermuscular adipose tissue remodeling. Mol Aspects Med 2024; 97:101277. [PMID: 38788527 PMCID: PMC11692456 DOI: 10.1016/j.mam.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Excessive accumulation of intermuscular adipose tissue (IMAT) is a common pathological feature in various metabolic and health conditions and can cause muscle atrophy, reduced function, inflammation, insulin resistance, cardiovascular issues, and unhealthy aging. Although IMAT results from fat accumulation in muscle, the mechanisms underlying its onset, development, cellular components, and functions remain unclear. IMAT levels are influenced by several factors, such as changes in the tissue environment, muscle type and origin, extent and duration of trauma, and persistent activation of fibro-adipogenic progenitors (FAPs). FAPs are a diverse and transcriptionally heterogeneous population of stromal cells essential for tissue maintenance, neuromuscular stability, and tissue regeneration. However, in cases of chronic inflammation and pathological conditions, FAPs expand and differentiate into adipocytes, resulting in the development of abnormal and ectopic IMAT. This review discusses the role of FAPs in adipogenesis and how they remodel IMAT. It highlights evidence supporting FAPs and FAP-derived adipocytes as constituents of IMAT, emphasizing their significance in adipose tissue maintenance and development, as well as their involvement in metabolic disorders, chronic pathologies and diseases. We also investigated the intricate molecular pathways and cell interactions governing FAP behavior, adipogenesis, and IMAT accumulation in chronic diseases and muscle deconditioning. Finally, we hypothesize that impaired cellular metabolic flexibility in dysfunctional muscles impacts FAPs, leading to IMAT. A deeper understanding of the biology of IMAT accumulation and the mechanisms regulating FAP behavior and fate are essential for the development of new therapeutic strategies for several debilitating conditions.
Collapse
Affiliation(s)
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, 32610, FL, USA; Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | - Rodrigo Fernández-Verdejo
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA; Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Mauro Tuñón-Suárez
- Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Parkville 3010, Australia.
| | - Osvaldo Contreras
- Developmental and Regenerative Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia.
| |
Collapse
|
6
|
Zhu P, Peek CB. Circadian timing of satellite cell function and muscle regeneration. Curr Top Dev Biol 2024; 158:307-339. [PMID: 38670711 DOI: 10.1016/bs.ctdb.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Recent research has highlighted an important role for the molecular circadian machinery in the regulation of tissue-specific function and stress responses. Indeed, disruption of circadian function, which is pervasive in modern society, is linked to accelerated aging, obesity, and type 2 diabetes. Furthermore, evidence supporting the importance of the circadian clock within both the mature muscle tissue and satellite cells to regulate the maintenance of muscle mass and repair capacity in response injury has recently emerged. Here, we review the discovery of circadian clocks within the satellite cell (a.k.a. adult muscle stem cell) and how they act to regulate metabolism, epigenetics, and myogenesis during both healthy and diseased states.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - Clara B Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
7
|
Nguyen TH, Limpens M, Bouhmidi S, Paprzycki L, Legrand A, Declèves AE, Heher P, Belayew A, Banerji CRS, Zammit PS, Tassin A. The DUX4-HIF1α Axis in Murine and Human Muscle Cells: A Link More Complex Than Expected. Int J Mol Sci 2024; 25:3327. [PMID: 38542301 PMCID: PMC10969790 DOI: 10.3390/ijms25063327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
FacioScapuloHumeral muscular Dystrophy (FSHD) is one of the most prevalent inherited muscle disorders and is linked to the inappropriate expression of the DUX4 transcription factor in skeletal muscles. The deregulated molecular network causing FSHD muscle dysfunction and pathology is not well understood. It has been shown that the hypoxia response factor HIF1α is critically disturbed in FSHD and has a major role in DUX4-induced cell death. In this study, we further explored the relationship between DUX4 and HIF1α. We found that the DUX4 and HIF1α link differed according to the stage of myogenic differentiation and was conserved between human and mouse muscle. Furthermore, we found that HIF1α knockdown in a mouse model of DUX4 local expression exacerbated DUX4-mediated muscle fibrosis. Our data indicate that the suggested role of HIF1α in DUX4 toxicity is complex and that targeting HIF1α might be challenging in the context of FSHD therapeutic approaches.
Collapse
Affiliation(s)
- Thuy-Hang Nguyen
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Maelle Limpens
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Sihame Bouhmidi
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Lise Paprzycki
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Alexandre Legrand
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Anne-Emilie Declèves
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Philipp Heher
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Alexandra Belayew
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Christopher R. S. Banerji
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London SE1 1UL, UK
- The Alan Turing Institute, The British Library, London NW1 2DB, UK
| | - Peter S. Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Alexandra Tassin
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| |
Collapse
|
8
|
Endo Y, Zhu C, Giunta E, Guo C, Koh DJ, Sinha I. The Role of Hypoxia and Hypoxia Signaling in Skeletal Muscle Physiology. Adv Biol (Weinh) 2024; 8:e2200300. [PMID: 37817370 DOI: 10.1002/adbi.202200300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/06/2023] [Indexed: 10/12/2023]
Abstract
Hypoxia and hypoxia signaling play an integral role in regulating skeletal muscle physiology. Environmental hypoxia and tissue hypoxia in muscles cue for their appropriate physiological response and adaptation, and cause an array of cellular and metabolic changes. In addition, muscle stem cells (satellite cells), exist in a hypoxic state, and this intrinsic hypoxic state correlates with their quiescence and stemness. The mechanisms of hypoxia-mediated regulation of satellite cells and myogenesis are yet to be characterized, and their seemingly contradicting effects reported leave their exact roles somewhat perplexing. This review summarizes the recent findings on the effect of hypoxia and hypoxia signaling on the key aspects of muscle physiology, namely, stem cell maintenance and myogenesis with a particular attention given to distinguish the intrinsic versus local hypoxia in an attempt to better understand their respective regulatory roles and how their relationship affects the overall response. This review further describes their mechanistic links and their possible implications on the relevant pathologies and therapeutics.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| | - Christina Zhu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, 79430, USA
| | - Elena Giunta
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Cynthia Guo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Daniel J Koh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| | - Indranil Sinha
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Careccia G, Mangiavini L, Cirillo F. Regulation of Satellite Cells Functions during Skeletal Muscle Regeneration: A Critical Step in Physiological and Pathological Conditions. Int J Mol Sci 2023; 25:512. [PMID: 38203683 PMCID: PMC10778731 DOI: 10.3390/ijms25010512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal muscle regeneration is a complex process involving the generation of new myofibers after trauma, competitive physical activity, or disease. In this context, adult skeletal muscle stem cells, also known as satellite cells (SCs), play a crucial role in regulating muscle tissue homeostasis and activating regeneration. Alterations in their number or function have been associated with various pathological conditions. The main factors involved in the dysregulation of SCs' activity are inflammation, oxidative stress, and fibrosis. This review critically summarizes the current knowledge on the role of SCs in skeletal muscle regeneration. It examines the changes in the activity of SCs in three of the most common and severe muscle disorders: sarcopenia, muscular dystrophy, and cancer cachexia. Understanding the molecular mechanisms involved in their dysregulations is essential for improving current treatments, such as exercise, and developing personalized approaches to reactivate SCs.
Collapse
Affiliation(s)
- Giorgia Careccia
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Laura Mangiavini
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Federica Cirillo
- IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy
| |
Collapse
|
10
|
Nguyen TH, Paprzycki L, Legrand A, Declèves AE, Heher P, Limpens M, Belayew A, Banerji CRS, Zammit PS, Tassin A. Hypoxia enhances human myoblast differentiation: involvement of HIF1α and impact of DUX4, the FSHD causal gene. Skelet Muscle 2023; 13:21. [PMID: 38104132 PMCID: PMC10724930 DOI: 10.1186/s13395-023-00330-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/20/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Hypoxia is known to modify skeletal muscle biological functions and muscle regeneration. However, the mechanisms underlying the effects of hypoxia on human myoblast differentiation remain unclear. The hypoxic response pathway is of particular interest in patients with hereditary muscular dystrophies since many present respiratory impairment and muscle regeneration defects. For example, an altered hypoxia response characterizes the muscles of patients with facioscapulohumeral dystrophy (FSHD). METHODS We examined the impact of hypoxia on the differentiation of human immortalized myoblasts (LHCN-M2) cultured in normoxia (PO2: 21%) or hypoxia (PO2: 1%). Cells were grown in proliferation (myoblasts) or differentiation medium for 2 (myocytes) or 4 days (myotubes). We evaluated proliferation rate by EdU incorporation, used myogenin-positive nuclei as a differentiation marker for myocytes, and determined the fusion index and myosin heavy chain-positive area in myotubes. The contribution of HIF1α was studied by gain (CoCl2) and loss (siRNAs) of function experiments. We further examined hypoxia in LHCN-M2-iDUX4 myoblasts with inducible expression of DUX4, the transcription factor underlying FSHD pathology. RESULTS We found that the hypoxic response did not impact myoblast proliferation but activated precocious myogenic differentiation and that HIF1α was critical for this process. Hypoxia also enhanced the late differentiation of human myocytes, but in an HIF1α-independent manner. Interestingly, the impact of hypoxia on muscle cell proliferation was influenced by dexamethasone. In the FSHD pathological context, DUX4 suppressed HIF1α-mediated precocious muscle differentiation. CONCLUSION Hypoxia stimulates myogenic differentiation in healthy myoblasts, with HIF1α-dependent early steps. In FSHD, DUX4-HIF1α interplay indicates a novel mechanism by which DUX4 could interfere with HIF1α function in the myogenic program and therefore with FSHD muscle performance and regeneration.
Collapse
Affiliation(s)
- Thuy-Hang Nguyen
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, Mons, 7000, Belgium
| | - Lise Paprzycki
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, Mons, 7000, Belgium
| | - Alexandre Legrand
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, Mons, 7000, Belgium
| | - Anne-Emilie Declèves
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, Mons, 7000, Belgium
| | - Philipp Heher
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Maelle Limpens
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, Mons, 7000, Belgium
| | - Alexandra Belayew
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, Mons, 7000, Belgium
| | - Christopher R S Banerji
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK
- The Alan Turing Institute, British Library, 96 Euston Rd, London, UK
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Alexandra Tassin
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, Mons, 7000, Belgium.
| |
Collapse
|
11
|
Chellini F, Tani A, Parigi M, Palmieri F, Garella R, Zecchi-Orlandini S, Squecco R, Sassoli C. HIF-1α/MMP-9 Axis Is Required in the Early Phases of Skeletal Myoblast Differentiation under Normoxia Condition In Vitro. Cells 2023; 12:2851. [PMID: 38132171 PMCID: PMC10742321 DOI: 10.3390/cells12242851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hypoxia-inducible factor (HIF)-1α represents an oxygen-sensitive subunit of HIF transcriptional factor, which is usually degraded in normoxia and stabilized in hypoxia to regulate several target gene expressions. Nevertheless, in the skeletal muscle satellite stem cells (SCs), an oxygen level-independent regulation of HIF-1α has been observed. Although HIF-1α has been highlighted as a SC function regulator, its spatio-temporal expression and role during myogenic progression remain controversial. Herein, using biomolecular, biochemical, morphological and electrophysiological analyses, we analyzed HIF-1α expression, localization and role in differentiating murine C2C12 myoblasts and SCs under normoxia. In addition, we evaluated the role of matrix metalloproteinase (MMP)-9 as an HIF-1α effector, considering that MMP-9 is involved in myogenesis and is an HIF-1α target in different cell types. HIF-1α expression increased after 24/48 h of differentiating culture and tended to decline after 72 h/5 days. Committed and proliferating mononuclear myoblasts exhibited nuclear HIF-1α expression. Differently, the more differentiated elongated and parallel-aligned cells, which are likely ready to fuse with each other, show a mainly cytoplasmic localization of the factor. Multinucleated myotubes displayed both nuclear and cytoplasmic HIF-1α expression. The MMP-9 and MyoD (myogenic activation marker) expression synchronized with that of HIF-1α, increasing after 24 h of differentiation. By means of silencing HIF-1α and MMP-9 by short-interfering RNA and MMP-9 pharmacological inhibition, this study unraveled MMP-9's role as an HIF-1α downstream effector and the fact that the HIF-1α/MMP-9 axis is essential in morpho-functional cell myogenic commitment.
Collapse
Affiliation(s)
- Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Martina Parigi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Francesco Palmieri
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.G.)
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.G.)
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.G.)
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| |
Collapse
|
12
|
Narkar VA. Exercise and Ischemia-Activated Pathways in Limb Muscle Angiogenesis and Vascular Regeneration. Methodist Debakey Cardiovasc J 2023; 19:58-68. [PMID: 38028974 PMCID: PMC10655757 DOI: 10.14797/mdcvj.1304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Exercise has a profound effect on cardiovascular disease, particularly through vascular remodeling and regeneration. Peripheral artery disease (PAD) is one such cardiovascular condition that benefits from regular exercise or rehabilitative physical therapy in terms of slowing the progression of disease and delaying amputations. Various rodent pre-clinical studies using models of PAD and exercise have shed light on molecular pathways of vascular regeneration. Here, I review key exercise-activated signaling pathways (nuclear receptors, kinases, and hypoxia inducible factors) in the skeletal muscle that drive paracrine regenerative angiogenesis. The rationale for highlighting the skeletal muscle is that it is the largest organ recruited during exercise. During exercise, skeletal muscle releases several myokines, including angiogenic factors and cytokines that drive tissue vascular regeneration via activation of endothelial cells, as well as by recruiting immune and endothelial progenitor cells. Some of these core exercise-activated pathways can be extrapolated to vascular regeneration in other organs. I also highlight future areas of exercise research (including metabolomics, single cell transcriptomics, and extracellular vesicle biology) to advance our understanding of how exercise induces vascular regeneration at the molecular level, and propose the idea of "exercise-mimicking" therapeutics for vascular recovery.
Collapse
Affiliation(s)
- Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, Texas, US
| |
Collapse
|
13
|
Kubat GB, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, Ekinci O, Ozerklig B, Atalay O, Patergnani S, Nur Sahin B, Morciano G, Tuncer M, Tremoli E, Pinton P. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion 2023; 72:33-58. [PMID: 37451353 DOI: 10.1016/j.mito.2023.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Skeletal muscle, which accounts for approximately 40% of total body weight, is one of the most dynamic and plastic tissues in the human body and plays a vital role in movement, posture and force production. More than just a component of the locomotor system, skeletal muscle functions as an endocrine organ capable of producing and secreting hundreds of bioactive molecules. Therefore, maintaining healthy skeletal muscles is crucial for supporting overall body health. Various pathological conditions, such as prolonged immobilization, cachexia, aging, drug-induced toxicity, and cardiovascular diseases (CVDs), can disrupt the balance between muscle protein synthesis and degradation, leading to skeletal muscle atrophy. Mitochondrial dysfunction is a major contributing mechanism to skeletal muscle atrophy, as it plays crucial roles in various biological processes, including energy production, metabolic flexibility, maintenance of redox homeostasis, and regulation of apoptosis. In this review, we critically examine recent knowledge regarding the causes of muscle atrophy (disuse, cachexia, aging, etc.) and its contribution to CVDs. Additionally, we highlight the mitochondrial signaling pathways involvement to skeletal muscle atrophy, such as the ubiquitin-proteasome system, autophagy and mitophagy, mitochondrial fission-fusion, and mitochondrial biogenesis. Furthermore, we discuss current strategies, including exercise, mitochondria-targeted antioxidants, in vivo transfection of PGC-1α, and the potential use of mitochondrial transplantation as a possible therapeutic approach.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey.
| | - Esmaa Bouhamida
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey
| | - Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Gaia Pedriali
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Daniela Ramaccini
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Ozgur Ekinci
- Department of Pathology, Gazi University, 06500 Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Ozbeyen Atalay
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Simone Patergnani
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Beyza Nur Sahin
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Giampaolo Morciano
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Elena Tremoli
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
14
|
Fan S, Spence JP, Feng Y, Hansen MEB, Terhorst J, Beltrame MH, Ranciaro A, Hirbo J, Beggs W, Thomas N, Nyambo T, Mpoloka SW, Mokone GG, Njamnshi A, Folkunang C, Meskel DW, Belay G, Song YS, Tishkoff SA. Whole-genome sequencing reveals a complex African population demographic history and signatures of local adaptation. Cell 2023; 186:923-939.e14. [PMID: 36868214 PMCID: PMC10568978 DOI: 10.1016/j.cell.2023.01.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/16/2022] [Accepted: 01/30/2023] [Indexed: 03/05/2023]
Abstract
We conduct high coverage (>30×) whole-genome sequencing of 180 individuals from 12 indigenous African populations. We identify millions of unreported variants, many predicted to be functionally important. We observe that the ancestors of southern African San and central African rainforest hunter-gatherers (RHG) diverged from other populations >200 kya and maintained a large effective population size. We observe evidence for ancient population structure in Africa and for multiple introgression events from "ghost" populations with highly diverged genetic lineages. Although currently geographically isolated, we observe evidence for gene flow between eastern and southern Khoesan-speaking hunter-gatherer populations lasting until ∼12 kya. We identify signatures of local adaptation for traits related to skin color, immune response, height, and metabolic processes. We identify a positively selected variant in the lightly pigmented San that influences pigmentation in vitro by regulating the enhancer activity and gene expression of PDPK1.
Collapse
Affiliation(s)
- Shaohua Fan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffrey P Spence
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yuanqing Feng
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew E B Hansen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Terhorst
- Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcia H Beltrame
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessia Ranciaro
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jibril Hirbo
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Beggs
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neil Thomas
- Computer Science Division, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Thomas Nyambo
- Department of Biochemistry, Kampala International University in Tanzania, P.O. Box 9790, Dar es Salaam, Tanzania
| | - Sununguko Wata Mpoloka
- Department of Biological Sciences, Faculty of Science, University of Botswana Gaborone, Private Bag UB 0022, Gaborone, Botswana
| | - Gaonyadiwe George Mokone
- Department of Biomedical Sciences, Faculty of Medicine, University of Botswana Gaborone, Private Bag UB 0022, Gaborone, Botswana
| | - Alfred Njamnshi
- Department of Neurology, Central Hospital Yaoundé; Brain Research Africa Initiative (BRAIN), Neuroscience Lab, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Charles Folkunang
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Dawit Wolde Meskel
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Gurja Belay
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Yun S Song
- Computer Science Division, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
16
|
Identification of Key Genes and Biological Pathways Associated with Skeletal Muscle Maturation and Hypertrophy in Bos taurus, Ovis aries, and Sus scrofa. Animals (Basel) 2022; 12:ani12243471. [PMID: 36552391 PMCID: PMC9774933 DOI: 10.3390/ani12243471] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The aim of the current study was to identify the major genes and pathways involved in the process of hypertrophy and skeletal muscle maturation that is common for Bos taurus, Ovis aries, and Sus scrofa species. Gene expression profiles related to Bos taurus, Ovis aries, and Sus scrofa muscle, with accession numbers GSE44030, GSE23563, and GSE38518, respectively, were downloaded from the GEO database. Differentially expressed genes (DEGs) were screened out using the Limma package of R software. Genes with Fold Change > 2 and an adjusted p-value < 0.05 were identified as significantly different between two treatments in each species. Subsequently, gene ontology and pathway enrichment analyses were performed. Moreover, hub genes were detected by creating a protein−protein interaction network (PPI). The results of the analysis in Bos taurus showed that in the period of 280 dpc−3-months old, a total of 1839 genes showed a significant difference. In Ovis aries, however, during the period of 135dpc−2-months old, a total of 486 genes were significantly different. Additionally, in the 91 dpc−adult period, a total of 2949 genes were significantly different in Sus scrofa. The results of the KEGG pathway enrichment analysis and GO function annotation in each species separately revealed that in Bos taurus, DEGs were mainly enriched through skeletal muscle fiber development and skeletal muscle contraction, and the positive regulation of fibroblast proliferation, positive regulation of skeletal muscle fiber development, PPAR signaling pathway, and HIF-1 signaling pathway. In Ovis aries, DEGs were mainly enriched through regulating cell growth, skeletal muscle fiber development, the positive regulation of fibroblast proliferation, skeletal muscle cell differentiation, and the PI3K-Akt signaling, HIF-1 signaling, and Rap1 signaling pathways. In Sus scrofa, DEGs were mainly enriched through regulating striated muscle tissue development, the negative regulation of fibroblast proliferation and myoblast differentiation, and the HIF-1 signaling, AMPK signaling, and PI3K-Akt signaling pathways. Using a Venn diagram, 36 common DEGs were identified between Bos taurus, Ovis aries, and Sus scrofa. A biological pathways analysis of 36 common DEGs in Bos taurus, Ovis aries, and Sus scrofa allowed for the identification of common pathways/biological processes, such as myoblast differentiation, the regulation of muscle cell differentiation, and positive regulation of skeletal muscle fiber development, that orchestrated the development and maturation of skeletal muscle. As a result, hub genes were identified, including PPARGC1A, MYOD1, EPAS1, IGF2, CXCR4, and APOA1, in all examined species. This study provided a better understanding of the relationships between genes and their biological pathways in the skeletal muscle maturation process.
Collapse
|
17
|
Salekeen R, Kyba M. Not young but still immature: a HIF-1α-mediated maturation checkpoint in regenerating muscle. J Clin Invest 2022; 132:165322. [PMID: 36453544 PMCID: PMC9711870 DOI: 10.1172/jci165322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Muscle fibers express particular isoforms of contractile proteins, depending on the fiber's function and the organism's developmental stage. In the adult, after a muscle injury, newly generated fibers transition through embryonic and neonatal myosins, prior to selecting their distinctive adult myosin isoform. In this issue of the JCI, Wang et al. discover a checkpoint that regulates the neonatal-to-adult myosin isoform transition. They found that HIF-1α regulated this checkpoint, with elevated HIF-1α levels blocking progression, while HIF-1α knockout accelerated the transition. They further related these findings to centronuclear myopathy, a disease in which HIF-1α is similarly elevated and neonatal myosin expression is maintained. These findings highlight a maturation checkpoint that impacts the skeletal muscle regeneration following ischemic injury, providing a pharmacologically accessible pathway in injury and diseases such as centronuclear myopathy.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Lillehei Heart Institute.,Biochemistry, Molecular Biology, and Biophysics Graduate Program and
| | - Michael Kyba
- Lillehei Heart Institute.,Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
18
|
Ji S, Ma P, Cao X, Wang J, Yu X, Luo X, Lu J, Hou W, Zhang Z, Yan Y, Dong Y, Wang H. Myoblast-derived exosomes promote the repair and regeneration of injured skeletal muscle in mice. FEBS Open Bio 2022; 12:2213-2226. [PMID: 36325691 PMCID: PMC9714366 DOI: 10.1002/2211-5463.13504] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
When skeletal muscle is damaged, satellite cells (SCs) are activated to proliferate rapidly and fuse with the damaged muscle fibers to form new muscle fibers, thereby promoting muscle growth and remodeling and repair of trauma. Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration. Therefore, we hypothesized that, when muscles are injured, myoblast-derived exosomes may regulate muscle repair and regeneration. Here, we investigated the underlying mechanism by applying C2C12-derived exosomes to injured mouse skeletal muscles. The expression levels of skeletal muscle regeneration factors paired box 7 and lipid-promoting factor peroxisome proliferator-activated receptor γ were upregulated, whereas the expression levels of fibrosis factors collagen-1 and α-smooth muscle actin decreased. The expression of proliferating cell nuclear antigen was elevated after applying C2C12-derived exosomes to SCs. Application of C2C12-derived exosomes to fibro-adipogenic progenitors resulted in an increase in peroxisome proliferator-activated receptor γ expression and adipogenesis capacity, whereas α-smooth muscle actin expression and fibrosis capacity decreased. Analysis of the transcriptome and proteome of SCs after treatment with exosomes showed the involvement of multiple biological processes, including proliferation and differentiation of SCs, muscle regeneration, skeletal muscle atrophy, and the inflammatory response after muscle injury. Hence, our data suggest that C2C12-derived exosomes can promote the regeneration of skeletal muscle fibers, accelerate the production of fat from damaged muscles, inhibit the fibrosis of damaged muscles, and accelerate injury repair, which is related to exosome-mediated regulation of the proliferation of SCs, differentiation of fibro-adipogenic progenitors, and modulation of SC mRNA expression and protein formation and decomposition.
Collapse
Affiliation(s)
- Shusen Ji
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Pei Ma
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Xiaorui Cao
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Juan Wang
- Department of Nephrology, Shanghai General HospitalShanghai Jiao Tong University School of MedicineChina
| | - Xiuju Yu
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Xiaomao Luo
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Jiayin Lu
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Wei Hou
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | | | - Yi Yan
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Yanjun Dong
- College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Haidong Wang
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| |
Collapse
|
19
|
Lim ZX, Goh J. Effects of blood flow restriction (BFR) with resistance exercise on musculoskeletal health in older adults: a narrative review. Eur Rev Aging Phys Act 2022; 19:15. [PMID: 35725379 PMCID: PMC9208167 DOI: 10.1186/s11556-022-00294-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 11/22/2022] Open
Abstract
Background Aging leads to a number of structural and physiological deficits such as loss of muscle mass and strength. Strength training at ~ 70% of 1 repetition max (RM) is recommended to prevent age-related loss of muscle mass and strength. However, most older adults may not be able to perform 70% of 1RM or higher intensity. An alternative exercise training program combining low intensity resistance exercise with blood flow restriction (BFR) can result in similar acute and chronic benefits to skeletal muscles in older adults. Main body and short conclusion The potential mechanisms involved are discussed, and include reactive hyperaemia, metabolic stress, and hypoxia. Key issues and safety with the use of BFR in older adults, especially those with chronic conditions are also discussed. Although there has been no reported evidence to suggest that BFR elevates the risk of clinical complications any more than high intensity exercise, it is recommended for individuals to be medically cleared of any cardiovascular risks, prior to engaging in BFR exercise.
Collapse
Affiliation(s)
- Zi Xiang Lim
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117456, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117456, Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore, 117456, Singapore
| | - Jorming Goh
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117456, Singapore. .,Centre for Healthy Longevity, National University Health System (NUHS), Singapore, 117456, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117456, Singapore.
| |
Collapse
|
20
|
Wang YH, Lin J, Wang J, Wu SG, Qiu K, Zhang HJ, Qi GH. The Role of Incubation Conditions on the Regulation of Muscle Development and Meat Quality in Poultry. Front Physiol 2022; 13:883134. [PMID: 35784883 PMCID: PMC9240787 DOI: 10.3389/fphys.2022.883134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Muscle is the most abundant edible tissue in table poultry, which serves as an important source of high protein for humans. Poultry myofiber originates in the early embryogenic stage, and the overall muscle fiber number is almost determined before hatching. Muscle development in the embryonic stage is critical to the posthatch muscle growth and final meat yield and quality. Incubation conditions including temperature, humidity, oxygen density, ventilation and lighting may substantially affect the number, shape and structure of the muscle fiber, which may produce long-lasting effect on the postnatal muscle growth and meat quality. Suboptimal incubation conditions can induce the onset of myopathies. Early exposure to suitable hatching conditions may modify the muscle histomorphology posthatch and the final muscle mass of the birds by regulating embryonic hormone levels and benefit the muscle cell activity. The elucidation of the muscle development at the embryonic stage would facilitate the modulation of poultry muscle quantity and meat quality. This review starts from the physical and biochemical characteristics of poultry myofiber formation, and brings together recent advances of incubation conditions on satellite cell migration, fiber development and transformation, and subsequent muscle myopathies and other meat quality defects. The underlying molecular and cellular mechanisms for the induced muscle growth and meat quality traits are also discussed. The future studies on the effects of external incubation conditions on the regulation of muscle cell proliferation and meat quality are suggested. This review may broaden our knowledge on the regulation of incubation conditions on poultry muscle development, and provide more informative decisions for hatchery in the selection of hatching parameter for pursuit of more large muscle size and superior meat quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Hai-Jun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Research Institute of Feed, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Research Institute of Feed, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Abstract
Metabolism has been studied mainly in cultured cells or at the level of whole tissues or whole organisms in vivo. Consequently, our understanding of metabolic heterogeneity among cells within tissues is limited, particularly when it comes to rare cells with biologically distinct properties, such as stem cells. Stem cell function, tissue regeneration and cancer suppression are all metabolically regulated, although it is not yet clear whether there are metabolic mechanisms unique to stem cells that regulate their activity and function. Recent work has, however, provided evidence that stem cells do have a metabolic signature that is distinct from that of restricted progenitors and that metabolic changes influence tissue homeostasis and regeneration. Stem cell maintenance throughout life in many tissues depends upon minimizing anabolic pathway activation and cell division. Consequently, stem cell activation by tissue injury is associated with changes in mitochondrial function, lysosome activity and lipid metabolism, potentially at the cost of eroding self-renewal potential. Stem cell metabolism is also regulated by the environment: stem cells metabolically interact with other cells in their niches and are able to sense and adapt to dietary changes. The accelerating understanding of stem cell metabolism is revealing new aspects of tissue homeostasis with the potential to promote tissue regeneration and cancer suppression.
Collapse
|
22
|
Capitanio D, Moriggi M, Barbacini P, Torretta E, Moroni I, Blasevich F, Morandi L, Mora M, Gelfi C. Molecular Fingerprint of BMD Patients Lacking a Portion in the Rod Domain of Dystrophin. Int J Mol Sci 2022; 23:ijms23052624. [PMID: 35269765 PMCID: PMC8910510 DOI: 10.3390/ijms23052624] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/19/2023] Open
Abstract
BMD is characterized by a marked heterogeneity of gene mutations resulting in many abnormal dystrophin proteins with different expression and residual functions. The smaller dystrophin molecules lacking a portion around exon 48 of the rod domain, named the D8 region, are related to milder phenotypes. The study aimed to determine which proteins might contribute to preserving muscle function in these patients. Patients were subdivided, based on the absence or presence of deletions in the D8 region, into two groups, BMD1 and BMD2. Muscle extracts were analyzed by 2-D DIGE, label-free LC-ESI-MS/MS, and Ingenuity pathway analysis (IPA). Increased levels of proteins typical of fast fibers and of proteins involved in the sarcomere reorganization characterize BMD2. IPA of proteomics datasets indicated in BMD2 prevalence of glycolysis and gluconeogenesis and a correct flux through the TCA cycle enabling them to maintain both metabolism and epithelial adherens junction. A 2-D DIGE analysis revealed an increase of acetylated proteoforms of moonlighting proteins aldolase, enolase, and glyceraldehyde-3-phosphate dehydrogenase that can target the nucleus promoting stem cell recruitment and muscle regeneration. In BMD2, immunoblotting indicated higher levels of myogenin and lower levels of PAX7 and SIRT1/2 associated with a set of proteins identified by proteomics as involved in muscle homeostasis maintenance.
Collapse
Affiliation(s)
- Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, 20054 Segrate, Italy; (D.C.); (P.B.)
| | - Manuela Moriggi
- Gastroenterology and Digestive Endoscopy Unit, IRCCS Policlinico San Donato, 20097 Milan, Italy;
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20054 Segrate, Italy; (D.C.); (P.B.)
| | | | - Isabella Moroni
- Child Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Flavia Blasevich
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.B.); (L.M.); (M.M.)
| | - Lucia Morandi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.B.); (L.M.); (M.M.)
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.B.); (L.M.); (M.M.)
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, 20054 Segrate, Italy; (D.C.); (P.B.)
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Correspondence: ; Tel.: +39-025-033-0475
| |
Collapse
|
23
|
Zhu P, Hamlish NX, Thakkar AV, Steffeck AWT, Rendleman EJ, Khan NH, Waldeck NJ, DeVilbiss AW, Martin-Sandoval MS, Mathews TP, Chandel NS, Peek CB. BMAL1 drives muscle repair through control of hypoxic NAD + regeneration in satellite cells. Genes Dev 2022; 36:149-166. [PMID: 35115380 PMCID: PMC8887128 DOI: 10.1101/gad.349066.121] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/05/2022] [Indexed: 01/07/2023]
Abstract
The process of tissue regeneration occurs in a developmentally timed manner, yet the role of circadian timing is not understood. Here, we identify a role for the adult muscle stem cell (MuSC)-autonomous clock in the control of muscle regeneration following acute ischemic injury. We observed greater muscle repair capacity following injury during the active/wake period as compared with the inactive/rest period in mice, and loss of Bmal1 within MuSCs leads to impaired muscle regeneration. We demonstrate that Bmal1 loss in MuSCs leads to reduced activated MuSC number at day 3 postinjury, indicating a failure to properly expand the myogenic precursor pool. In cultured primary myoblasts, we observed that loss of Bmal1 impairs cell proliferation in hypoxia (a condition that occurs in the first 1-3 d following tissue injury in vivo), as well as subsequent myofiber differentiation. Loss of Bmal1 in both cultured myoblasts and in vivo activated MuSCs leads to reduced glycolysis and premature activation of prodifferentiation gene transcription and epigenetic remodeling. Finally, hypoxic cell proliferation and myofiber formation in Bmal1-deficient myoblasts are restored by increasing cytosolic NAD+ Together, we identify the MuSC clock as a pivotal regulator of oxygen-dependent myoblast cell fate and muscle repair through the control of the NAD+-driven response to injury.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Noah X Hamlish
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Abhishek Vijay Thakkar
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Adam W T Steffeck
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Emily J Rendleman
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Nabiha H Khan
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Nathan J Waldeck
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Andrew W DeVilbiss
- Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Misty S Martin-Sandoval
- Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Thomas P Mathews
- Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Navdeep S Chandel
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Clara B Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
24
|
Murugan NJ, Vigran HJ, Miller KA, Golding A, Pham QL, Sperry MM, Rasmussen-Ivey C, Kane AW, Kaplan DL, Levin M. Acute multidrug delivery via a wearable bioreactor facilitates long-term limb regeneration and functional recovery in adult Xenopus laevis. SCIENCE ADVANCES 2022; 8:eabj2164. [PMID: 35080969 PMCID: PMC8791464 DOI: 10.1126/sciadv.abj2164] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Limb regeneration is a frontier in biomedical science. Identifying triggers of innate morphogenetic responses in vivo to induce the growth of healthy patterned tissue would address the needs of millions of patients, from diabetics to victims of trauma. Organisms such as Xenopus laevis-whose limited regenerative capacities in adulthood mirror those of humans-are important models with which to test interventions that can restore form and function. Here, we demonstrate long-term (18 months) regrowth, marked tissue repatterning, and functional restoration of an amputated X. laevis hindlimb following a 24-hour exposure to a multidrug, pro-regenerative treatment delivered by a wearable bioreactor. Regenerated tissues composed of skin, bone, vasculature, and nerves significantly exceeded the complexity and sensorimotor capacities of untreated and control animals' hypomorphic spikes. RNA sequencing of early tissue buds revealed activation of developmental pathways such as Wnt/β-catenin, TGF-β, hedgehog, and Notch. These data demonstrate the successful "kickstarting" of endogenous regenerative pathways in a vertebrate model.
Collapse
Affiliation(s)
- Nirosha J. Murugan
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Hannah J. Vigran
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Kelsie A. Miller
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Annie Golding
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Quang L. Pham
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Megan M. Sperry
- Department of Biology, Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Cody Rasmussen-Ivey
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Anna W. Kane
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - David L. Kaplan
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Corresponding author.
| |
Collapse
|
25
|
Jiang Y, Duan LJ, Fong GH. Oxygen-sensing mechanisms in development and tissue repair. Development 2021; 148:273632. [PMID: 34874450 DOI: 10.1242/dev.200030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Under normoxia, hypoxia inducible factor (HIF) α subunits are hydroxylated by PHDs (prolyl hydroxylase domain proteins) and subsequently undergo polyubiquitylation and degradation. Normal embryogenesis occurs under hypoxia, which suppresses PHD activities and allows HIFα to stabilize and regulate development. In this Primer, we explain molecular mechanisms of the oxygen-sensing pathway, summarize HIF-regulated downstream events, discuss loss-of-function phenotypes primarily in mouse development, and highlight clinical relevance to angiogenesis and tissue repair.
Collapse
Affiliation(s)
- Yida Jiang
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Li-Juan Duan
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
26
|
Brightwell CR, Kulkarni AS, Paredes W, Zhang K, Perkins JB, Gatlin KJ, Custodio M, Farooq H, Zaidi B, Pai R, Buttar RS, Tang Y, Melamed ML, Hostetter TH, Pessin JE, Hawkins M, Fry CS, Abramowitz MK. Muscle fibrosis and maladaptation occur progressively in CKD and are rescued by dialysis. JCI Insight 2021; 6:150112. [PMID: 34784301 PMCID: PMC8783691 DOI: 10.1172/jci.insight.150112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Skeletal muscle maladaptation accompanies chronic kidney disease (CKD) and negatively impacts physical function. Emphasis in CKD has historically been placed on muscle fiber intrinsic deficits, such as altered protein metabolism and atrophy. However, targeted treatment of fiber intrinsic dysfunction has produced limited improvement, whereas alterations within the fiber extrinsic environment have scarcely been examined. METHODS We investigated alterations to the skeletal muscle interstitial environment with deep cellular phenotyping of biopsies from patients with CKD compared to age-matched control participants and performed transcriptome profiling to define the molecular underpinnings of CKD-associated muscle impairments. We further examined changes in the observed muscle maladaptation following initiation of dialysis therapy for kidney failure. RESULTS Patients with CKD exhibited a progressive fibrotic muscle phenotype, which was associated with impaired regenerative capacity and lower vascular density. The severity of these deficits was strongly associated with the degree of kidney dysfunction. Consistent with these profound deficits, CKD was associated with broad alterations to the muscle transcriptome, including altered extracellular matrix organization, downregulated angiogenesis, and altered expression of pathways related to stem cell self-renewal. Remarkably, despite the seemingly advanced nature of this fibrotic transformation, dialysis treatment rescued these deficits, restoring a healthier muscle phenotype. Furthermore, after accounting for muscle atrophy, strength and endurance improved after dialysis initiation. CONCLUSION These data identify a dialysis-responsive muscle fibrotic phenotype in CKD and suggest that the early dialysis window presents a unique opportunity of improved muscle regenerative capacity during which targeted interventions may achieve maximal impact. TRIAL REGISTRATION NCT01452412FUNDING. NIH.
Collapse
Affiliation(s)
- Camille R Brightwell
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, United States of America
| | - Ameya S Kulkarni
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - William Paredes
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Kehao Zhang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Jaclyn B Perkins
- Department of Nutrition and Metabolism, The University of Texas Medical Branch, Galveston, United States of America
| | - Knubian J Gatlin
- Department of Nutrition and Metabolism, The University of Texas Medical Branch, Galveston, United States of America
| | - Matthew Custodio
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Hina Farooq
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Bushra Zaidi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Rima Pai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Rupinder S Buttar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Yan Tang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Michal L Melamed
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Thomas H Hostetter
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, United States of America
| | - Jeffrey E Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Meredith Hawkins
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | | | - Matthew K Abramowitz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| |
Collapse
|
27
|
Fix DK, Ekiz HA, Petrocelli JJ, Mckenzie AM, Mahmassani ZS, O'Connell RM, Drummond MJ. Disrupted macrophage metabolic reprogramming in aged soleus muscle during early recovery following disuse atrophy. Aging Cell 2021; 20:e13448. [PMID: 34365717 PMCID: PMC8441489 DOI: 10.1111/acel.13448] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 06/22/2021] [Accepted: 07/20/2021] [Indexed: 10/25/2022] Open
Abstract
Aged skeletal muscle is characterized by poor muscle recovery following disuse coinciding with an impaired muscle pro-inflammatory macrophage response. Macrophage inflammatory status is regulated by its metabolic state, but little is understood of macrophage metabolism and its relation to macrophage inflammation in the context of muscle recovery and aging. Therefore, the purpose of this study was to thoroughly characterize macrophage metabolism and inflammation in aged muscle during early recovery following disuse atrophy using single cell transcriptomics and functional assays. Young (4-5 months) and old (20-22 months) male C57BL/6 mice underwent 14 days of hindlimb unloading followed by 4 days of ambulatory recovery. CD45+ cells were isolated from solei muscles and analyzed using 10x Genomics single cell RNA sequencing. We found that aged pro-inflammatory macrophage clusters were characterized with an impaired inflammatory and glycolytic transcriptome, and this dysregulation was accompanied by a suppression of HIF-1α and its immediate downstream target, Glut1. As a follow-up, bone marrow-derived macrophages were isolated from a separate cohort of young and old mice at 4-d recovery and were polarized to a pro-inflammatory phenotype and used for glycolysis stress test, phagocytosis activity assay, and targeted GC-MS metabolomics. Aged bone marrow-derived pro-inflammatory macrophages were characterized with impaired glycolysis and phagocytosis function, decreased succinate and an accumulation of glycolytic metabolic intermediates overall supporting reduced glycolytic flux and macrophage function. Our results indicate that the metabolic reprograming and function of aged skeletal muscle pro-inflammatory macrophages are dysfunctional during early recovery from disuse atrophy possibly attributing to attenuated regrowth.
Collapse
Affiliation(s)
- Dennis K. Fix
- Molecular Medicine ProgramDepartment of Integrative Physiology and NutritionDepartment of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
| | - H. Atakan Ekiz
- Department of PathologyDivision of Microbiology and ImmunologyUniversity of UtahSalt Lake CityUtahUSA
| | - Jonathan J. Petrocelli
- Molecular Medicine ProgramDepartment of Integrative Physiology and NutritionDepartment of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
| | - Alec M. Mckenzie
- Molecular Medicine ProgramDepartment of Integrative Physiology and NutritionDepartment of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
| | - Ziad S. Mahmassani
- Molecular Medicine ProgramDepartment of Integrative Physiology and NutritionDepartment of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
| | - Ryan M. O'Connell
- Department of PathologyDivision of Microbiology and ImmunologyUniversity of UtahSalt Lake CityUtahUSA
| | - Micah J. Drummond
- Molecular Medicine ProgramDepartment of Integrative Physiology and NutritionDepartment of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
- Department of PathologyDivision of Microbiology and ImmunologyUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
28
|
Nguyen TH, Conotte S, Belayew A, Declèves AE, Legrand A, Tassin A. Hypoxia and Hypoxia-Inducible Factor Signaling in Muscular Dystrophies: Cause and Consequences. Int J Mol Sci 2021; 22:7220. [PMID: 34281273 PMCID: PMC8269128 DOI: 10.3390/ijms22137220] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies (MDs) are a group of inherited degenerative muscle disorders characterized by a progressive skeletal muscle wasting. Respiratory impairments and subsequent hypoxemia are encountered in a significant subgroup of patients in almost all MD forms. In response to hypoxic stress, compensatory mechanisms are activated especially through Hypoxia-Inducible Factor 1 α (HIF-1α). In healthy muscle, hypoxia and HIF-1α activation are known to affect oxidative stress balance and metabolism. Recent evidence has also highlighted HIF-1α as a regulator of myogenesis and satellite cell function. However, the impact of HIF-1α pathway modifications in MDs remains to be investigated. Multifactorial pathological mechanisms could lead to HIF-1α activation in patient skeletal muscles. In addition to the genetic defect per se, respiratory failure or blood vessel alterations could modify hypoxia response pathways. Here, we will discuss the current knowledge about the hypoxia response pathway alterations in MDs and address whether such changes could influence MD pathophysiology.
Collapse
Affiliation(s)
- Thuy-Hang Nguyen
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Stephanie Conotte
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Belayew
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Anne-Emilie Declèves
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium;
| | - Alexandre Legrand
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Tassin
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| |
Collapse
|
29
|
Tsuchiya R, Yoshimatsu Y, Noguchi R, Sin Y, Ono T, Sei A, Takeshita F, Sugaya J, Nakatani F, Yoshida A, Ohtori S, Kawai A, Kondo T. Establishment and characterization of NCC-ssRMS2-C1: a novel patient-derived cell line of spindle cell/sclerosing rhabdomyosarcoma. Hum Cell 2021; 34:1569-1578. [PMID: 34164773 DOI: 10.1007/s13577-021-00569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022]
Abstract
Spindle cell/sclerosing rhabdomyosarcoma (ssRMS) is a rare subtype of rhabdomyosarcoma (RMS) that has fascicular spindle cell and/or sclerosing morphology. SsRMS has a diverse molecular background and is categorized into three groups: congenital/infantile ssRMS with a gene fusion involving the NCOA2 and VGLL2, ssRMS with the MYOD1 mutation, and ssRMS with no recurrent identifiable genetic alterations. Because ssRMS is a newly defined disease concept of RMS, the optimal treatment methods have not been determined. This results in unfavorable prognosis and consequently signals the urgent need for continuous research. Patient-derived cell lines are essential tools in basic and translational research. However, only two ssRMS cell lines with the MYOD1 mutation have been reported to date. Thus, we established a novel ssRMS cell line named NCC-ssRMS2-C1 using a surgically resected tumor tissue from an adult ssRMS patient. NCC-ssRMS2-C1 cells retained the copy number alterations corresponding to the original tumor and are categorized into the group with no recurrent identifiable genetic alterations. NCC-ssRMS2-C1 cells demonstrated constant proliferation, spheroid formation, and capability for invasion in vitro, reflecting the malignant features of the original tumor tissue. In a drug screening test, ssRMS demonstrated remarkable sensitivity to romidepsin, trabectedin, actinomycin D, and bortezomib. Hence, we conclude that the NCC-ssRMS2-C1 cell line is the first ssRMS cell line which belongs to the group with no recurrent identifiable genetic alterations, and it will be a useful resource in both basic and translational studies for ssRMS.
Collapse
Affiliation(s)
- Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yooksil Sin
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akane Sei
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Fumitaka Takeshita
- Department of Translational Oncology, Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Jun Sugaya
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Fumihiko Nakatani
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
30
|
Pircher T, Wackerhage H, Aszodi A, Kammerlander C, Böcker W, Saller MM. Hypoxic Signaling in Skeletal Muscle Maintenance and Regeneration: A Systematic Review. Front Physiol 2021; 12:684899. [PMID: 34248671 PMCID: PMC8260947 DOI: 10.3389/fphys.2021.684899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022] Open
Abstract
In skeletal muscle tissue, oxygen (O2) plays a pivotal role in both metabolism and the regulation of several intercellular pathways, which can modify proliferation, differentiation and survival of cells within the myogenic lineage. The concentration of oxygen in muscle tissue is reduced during embryogenesis and pathological conditions. Myogenic progenitor cells, namely satellite cells, are necessary for muscular regeneration in adults and are localized in a hypoxic microenvironment under the basal lamina, suggesting that the O2 level could affect their function. This review presents the effects of reduced oxygen levels (hypoxia) on satellite cell survival, myoblast regeneration and differentiation in vertebrates. Further investigations and understanding of the pathways involved in adult muscle regeneration during hypoxic conditions are maybe clinically relevant to seek for novel drug treatments for patients with severe muscle damage. We especially outlined the effect of hypoxia-inducible factor 1-alpha (HIF1A), the most studied transcriptional regulator of cellular and developmental response to hypoxia, whose investigation has recently been awarded with the Nobel price.
Collapse
Affiliation(s)
- Tamara Pircher
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Henning Wackerhage
- Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Christian Kammerlander
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Wolfgang Böcker
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Maximilian Michael Saller
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| |
Collapse
|
31
|
Nakamura N, Shi X, Darabi R, Li Y. Hypoxia in Cell Reprogramming and the Epigenetic Regulations. Front Cell Dev Biol 2021; 9:609984. [PMID: 33585477 PMCID: PMC7876330 DOI: 10.3389/fcell.2021.609984] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Cellular reprogramming is a fundamental topic in the research of stem cells and molecular biology. It is widely investigated and its understanding is crucial for learning about different aspects of development such as cell proliferation, determination of cell fate and stem cell renewal. Other factors involved during development include hypoxia and epigenetics, which play major roles in the development of tissues and organs. This review will discuss the involvement of hypoxia and epigenetics in the regulation of cellular reprogramming and how interplay between each factor can contribute to different cellular functions as well as tissue regeneration.
Collapse
Affiliation(s)
- Nariaki Nakamura
- Department of Orthopaedic Surgery, and Biomedical Engineering, Homer Stryker M.D. School of Medicine, Western Michigan University, Kalamazoo, MI, United States
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Radbod Darabi
- The Center for Stem Cell and Regenerative Medicine (CSCRM), Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), Houston, TX, United States
| | - Yong Li
- Department of Orthopaedic Surgery, and Biomedical Engineering, Homer Stryker M.D. School of Medicine, Western Michigan University, Kalamazoo, MI, United States
| |
Collapse
|
32
|
Choi KH, Yoon JW, Kim M, Lee HJ, Jeong J, Ryu M, Jo C, Lee CK. Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Compr Rev Food Sci Food Saf 2021; 20:429-457. [PMID: 33443788 DOI: 10.1111/1541-4337.12661] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Cultured muscle tissue-based protein products, also known as cultured meat, are produced through in vitro myogenesis involving muscle stem cell culture and differentiation, and mature muscle cell processing for flavor and texture. This review focuses on the in vitro myogenesis for cultured meat production. The muscle stem cell-based in vitro muscle tissue production consists of a sequential process: (1) muscle sampling for stem cell collection, (2) muscle tissue dissociation and muscle stem cell isolation, (3) primary cell culture, (4) upscaled cell culture, (5) muscle differentiation and maturation, and (6) muscle tissue harvest. Although muscle stem cell research is a well-established field, the majority of these steps remain to be underoptimized to enable the in vitro creation of edible muscle-derived meat products. The profound understanding of the process would help not only cultured meat production but also business sectors that have been seeking new biomaterials for the food industry. In this review, we discuss comprehensively and in detail each step of cutting-edge methods for cultured meat production. This would be meaningful for both academia and industry to prepare for the new era of cellular agriculture.
Collapse
Affiliation(s)
- Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Ji Won Yoon
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minsu Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minkyung Ryu
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| |
Collapse
|
33
|
TAKAI Y, WATANABE T, SANO T. Elevated level of microRNA-210 at the initiation of muscular regeneration in acetic acid-induced non-ischemic skeletal muscular injury in mice. J Toxicol Pathol 2021; 35:183-192. [PMID: 35516838 PMCID: PMC9018401 DOI: 10.1293/tox.2021-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022] Open
Abstract
The alteration in microRNA-210 level, a hypoxia-inducible microRNA, is not well known in
non-ischemic tissue injury. In this study, we characterized the histopathological time
course of acetic acid-induced skeletal muscle injury as a non-ischemic tissue injury model
and investigated the expression of microRNA-210, hypoxia-inducible factor 1α, and growth
factors using quantitative polymerase chain reaction analysis. After a single
intramuscular dose of 3% (v/v) acetic acid to C57BL/6J mice, focal coagulative necrosis of
muscle fibers was noted from 3 h after dosing and infiltration of F4/80 and Galectin-3
positive M2 macrophage was noted at 1 d after dosing. Muscular regeneration was initiated
from 3 d, when M2 macrophage infiltration was most prominent, till 14 d after dosing.
Hif1α and Hgf expression increased from 3 h onwards,
and microRNA-210 level increased after 3 d after the treatment. However, no clear
elevation in the levels of Igf1 or Vegf was observed.
The infiltrative macrophages and regenerative muscle fibers were positive for
hypoxia-inducible factor 1α, microRNA-210, and hepatocyte growth factor as assessed by
immunohistochemistry or in situ hybridization. In this study, dominant
infiltration of M2 macrophages at muscular necrosis and subsequent regeneration after a
single intramuscular injection of acetic acid in mice were observed. The increase in hif1α
level was observed just after the muscular injury in this non-ischemic tissue injury
model, and the elevation in microRNA-210 level was noted at the initiation of tissue
regeneration, indicating its effects on tissue protection and repair.
Collapse
Affiliation(s)
- Yuichi TAKAI
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2 Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takeshi WATANABE
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2 Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomoya SANO
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2 Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
34
|
Cirillo F, Resmini G, Angelino E, Ferrara M, Tarantino A, Piccoli M, Rota P, Ghiroldi A, Monasky MM, Ciconte G, Pappone C, Graziani A, Anastasia L. HIF-1α Directly Controls WNT7A Expression During Myogenesis. Front Cell Dev Biol 2020; 8:593508. [PMID: 33262987 PMCID: PMC7686515 DOI: 10.3389/fcell.2020.593508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
Herein we unveil that Hypoxia-inducible factor-1α (HIF-1α) directly regulates WNT7A expression during myogenesis. In fact, chromatin immunoprecipitation (ChiP) and site-directed mutagenesis experiments revealed two distinct hypoxia response elements (HREs) that are specific HIF-1α binding sites on the WNT7A promoter. Remarkably, a pharmacological activation of HIF-1α induced WNT7A expression and enhanced muscle differentiation. On the other hand, silencing of WNT7A using CRISPR/Cas9 genome editing blocked the effects of HIF-1α activation on myogenesis. Finally, treatment with prolyl hydroxylases (PHDs) inhibitors improved muscle regeneration in vitro and in vivo in a cardiotoxin (CTX)-induced muscle injury mouse model, paving the way for further studies to test its efficacy on acute and chronic muscular pathologies.
Collapse
Affiliation(s)
- Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Giulia Resmini
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Elia Angelino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Michele Ferrara
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adriana Tarantino
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Paola Rota
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | | | - Giuseppe Ciconte
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy.,Vita-Salute San Raffaele University, Faculty of Medicine, Milan, Italy
| | - Andrea Graziani
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Vita-Salute San Raffaele University, Faculty of Medicine, Milan, Italy
| |
Collapse
|
35
|
Abreu P, Kowaltowski AJ. Satellite cell self-renewal in endurance exercise is mediated by inhibition of mitochondrial oxygen consumption. J Cachexia Sarcopenia Muscle 2020; 11:1661-1676. [PMID: 32748470 PMCID: PMC7749620 DOI: 10.1002/jcsm.12601] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/07/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Skeletal muscle stem cells (satellite cells) are well known to participate in regeneration and maintenance of the tissue over time. Studies have shown increases in the number of satellite cells after exercise, but their functional role in endurance training remains unexplored. METHODS Young adult mice were submitted to endurance exercise training and the function, differentiation, and metabolic characteristics of satellite cells were investigated in vivo and in vitro. RESULTS We found that injured muscles from endurance-exercised mice display improved regenerative capacity, demonstrated through higher densities of newly formed myofibres compared with controls (evidenced by an increase in embryonic myosin heavy chain expression), as well as lower inflammation (evidenced by quantifying CD68-marked macrophages), and reduced fibrosis. Enhanced myogenic function was accompanied by an increased fraction of satellite cells expressing self-renewal markers, while control satellite cells had morphologies suggestive of early differentiation. The beneficial effects of endurance exercise were associated with satellite cell metabolic reprogramming, including reduced mitochondrial respiration (O2 consumption) under resting conditions (absence of muscle injury) and increased stemness. During proliferation or activated states (3 days after injury), O2 consumption was equal in control and exercised cells, while exercise enhanced myogenic colony formation. Surprisingly, inhibition of mitochondrial O2 consumption was sufficient to enhance muscle stem cell self-renewal characteristics in vitro. Moreover, transplanted muscle satellite cells from exercised mice or cells with reduced mitochondrial respiration promoted a significant reduction in inflammation compared with controls. CONCLUSIONS Our results indicate that endurance exercise promotes self-renewal and inhibits differentiation in satellite cells, an effect promoted by metabolic reprogramming and respiratory inhibition, which is associated with a more favourable muscular response to injury.
Collapse
Affiliation(s)
- Phablo Abreu
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Endo Y, Baldino K, Li B, Zhang Y, Sakthivel D, MacArthur M, Panayi AC, Kip P, Spencer DJ, Jasuja R, Bagchi D, Bhasin S, Nuutila K, Neppl RL, Wagers AJ, Sinha I. Loss of ARNT in skeletal muscle limits muscle regeneration in aging. FASEB J 2020; 34:16086-16104. [PMID: 33064329 PMCID: PMC7756517 DOI: 10.1096/fj.202000761rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
The ability of skeletal muscle to regenerate declines significantly with aging. The expression of aryl hydrocarbon receptor nuclear translocator (ARNT), a critical component of the hypoxia signaling pathway, was less abundant in skeletal muscle of old (23-25 months old) mice. This loss of ARNT was associated with decreased levels of Notch1 intracellular domain (N1ICD) and impaired regenerative response to injury in comparison to young (2-3 months old) mice. Knockdown of ARNT in a primary muscle cell line impaired differentiation in vitro. Skeletal muscle-specific ARNT deletion in young mice resulted in decreased levels of whole muscle N1ICD and limited muscle regeneration. Administration of a systemic hypoxia pathway activator (ML228), which simulates the actions of ARNT, rescued skeletal muscle regeneration in both old and ARNT-deleted mice. These results suggest that the loss of ARNT in skeletal muscle is partially responsible for diminished myogenic potential in aging and activation of hypoxia signaling holds promise for rescuing regenerative activity in old muscle.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Kodi Baldino
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Bin Li
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
- Department of Plastic and Aesthetic SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuteng Zhang
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
- Department of Plastic and Aesthetic SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | | | - Michael MacArthur
- Department of Genetics and Complex DiseasesHarvard School of Public HealthBostonMAUSA
- Division of Vascular and Endovascular SurgeryBrigham and Women's HospitalBostonMAUSA
| | - Adriana C. Panayi
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Peter Kip
- Division of Vascular and Endovascular SurgeryBrigham and Women's HospitalBostonMAUSA
| | | | - Ravi Jasuja
- Division of EndocrinologyBrigham and Women's HospitalBostonMAUSA
| | - Debalina Bagchi
- Department of Orthopedic SurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Shalender Bhasin
- Division of EndocrinologyBrigham and Women's HospitalBostonMAUSA
| | - Kristo Nuutila
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Ronald L. Neppl
- Department of Orthopedic SurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Amy J. Wagers
- Joslin Diabetes CenterBostonMAUSA
- Harvard Department of Stem Cell and Regenerative BiologyHarvard Stem Cell InstituteCambridgeMAUSA
- Paul F. Glenn Center for the Biology of AgingHarvard Medical SchoolBostonMAUSA
| | - Indranil Sinha
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
- Harvard Department of Stem Cell and Regenerative BiologyHarvard Stem Cell InstituteCambridgeMAUSA
| |
Collapse
|
37
|
Oviedo-Rondón EO, Velleman SG, Wineland MJ. The Role of Incubation Conditions in the Onset of Avian Myopathies. Front Physiol 2020; 11:545045. [PMID: 33041856 PMCID: PMC7530269 DOI: 10.3389/fphys.2020.545045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
White striping, wooden breast, and spaghetti muscle have become common myopathies in broilers worldwide. Several research reports have indicated that the origin of these lesions is metabolic disorders. These failures in normal metabolism can start very early in life, and suboptimal incubation conditions may trigger some of the key alterations on muscle metabolism. Incubation conditions affect the development of muscle and can be associated with the onset of myopathies. A series of experiments conducted with broilers, turkeys, and ducks are discussed to overview primary information showing the main changes in breast muscle histomorphology, metabolism, and physiology caused by suboptimal incubation conditions. These modifications may be associated with current myopathies. Those effects of incubation on myopathy occurrence and severity have also been confirmed at slaughter age. The impact of egg storage, temperature profiles, oxygen concentrations, and time of hatch have been evaluated. The effects have been observed in diverse species, genetic lines, and both genders. Histological and muscle evaluations have detected that myopathies could be induced by extended hypoxia and high temperatures, and those effects depend on the genetic line. Thus, these modifications in muscle metabolic responses may make hatchlings more susceptible to develop myopathies during grow out due to thermal stress, high-density diets, and fast growth rates.
Collapse
Affiliation(s)
| | - Sandra G. Velleman
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
38
|
Bhattacharya D, Scimè A. Mitochondrial Function in Muscle Stem Cell Fates. Front Cell Dev Biol 2020; 8:480. [PMID: 32612995 PMCID: PMC7308489 DOI: 10.3389/fcell.2020.00480] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/22/2020] [Indexed: 01/25/2023] Open
Abstract
Mitochondria are crucial organelles that control cellular metabolism through an integrated mechanism of energy generation via oxidative phosphorylation. Apart from this canonical role, it is also integral for ROS production, fatty acid metabolism and epigenetic remodeling. Recently, a role for the mitochondria in effecting stem cell fate decisions has gained considerable interest. This is important for skeletal muscle, which exhibits a remarkable property for regeneration following injury, owing to satellite cells (SCs), the adult myogenic stem cells. Mitochondrial function is associated with maintaining and dictating SC fates, linked to metabolic programming during quiescence, activation, self-renewal, proliferation and differentiation. Notably, mitochondrial adaptation might take place to alter SC fates and function in the presence of different environmental cues. This review dissects the contribution of mitochondria to SC operational outcomes, focusing on how their content, function, dynamics and adaptability work to influence SC fate decisions.
Collapse
Affiliation(s)
| | - Anthony Scimè
- Molecular, Cellular and Integrative Physiology, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
39
|
Peek CB. Metabolic Implications of Circadian-HIF Crosstalk. Trends Endocrinol Metab 2020; 31:459-468. [PMID: 32396846 DOI: 10.1016/j.tem.2020.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
Research over the past few decades has shed light on the mechanisms underlying the link between circadian disruption and the development of metabolic diseases such as obesity, type 2 diabetes, and cancer. However, how the clock network interacts with tissue-specificnutrient-sensing pathways during conditions of nutrient stress or pathological states remains incompletely understood. Recent work has demonstrated that the circadian clock can 'reprogram' the transcriptome to control distinct sets of genes during altered nutrient conditions, such as high fat diet, aging, and exercise. In this review, I discuss connections between circadian clock transcription factors and the oxygen- and nutrient-responsivehypoxia-inducible factor (HIF) pathway. I highlight recently uncovered mechanistic insights underlying these pathway interactions and address potential implications for the role of circadian disruption in metabolic diseases.
Collapse
Affiliation(s)
- Clara B Peek
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL 60611, USA; Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
40
|
Involvement of JNK/FOXO1 pathway in apoptosis induced by severe hypoxia in porcine granulosa cells. Theriogenology 2020; 154:120-127. [PMID: 32562827 DOI: 10.1016/j.theriogenology.2020.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022]
Abstract
In ovaries, follicles undergo a periodic process of degeneration, namely atresia, during each stage of development. Granulosa cell (GC) apoptosis is believed as the hallmark of follicular atresia. The avascular environment within the granulosa compartment is supposed to cause hypoxic conditions. The effects of hypoxia on organs, tissues, cells can be either positive or negative, depending on the severity and context. The present study aimed to explore whether and how severe hypoxia under in vitro conditions functions in apoptosis of porcine GCs. The current results showed that the apoptosis in porcine GCs exposed to severe hypoxia (1% O2) was correlated with enhanced activation of c-Jun N-terminal kinase (JNK), nuclear accumulation of FOXO1, as well as elevated level of cleaved caspase-3 and decreased ratio of BCL-2/BAX. Further investigations revealed that severe hypoxia-mediated JNK activation was required for the apoptotic death of porcine GCs and the nuclear transport of FOXO1. Moreover, inhibition of FOXO1 reduced GCs apoptosis upon severe hypoxia exposure. Together, these findings suggested that severe hypoxia might act through JNK/FOXO1 axis to induce apoptosis in porcine GCs.
Collapse
|
41
|
Valle-Tenney R, Rebolledo D, Acuña MJ, Brandan E. HIF-hypoxia signaling in skeletal muscle physiology and fibrosis. J Cell Commun Signal 2020; 14:147-158. [PMID: 32088838 DOI: 10.1007/s12079-020-00553-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxia refers to the decrease in oxygen tension in the tissues, and the central effector of the hypoxic response is the transcription factor Hypoxia-Inducible Factor α (HIF1-α). Transient hypoxia in acute events, such as exercising or regeneration after damage, play an important role in skeletal muscle physiology and homeostasis. However, sustained activation of hypoxic signaling is a feature of skeletal muscle injury and disease, which can be a consequence of chronic damage but can also increase the severity of the pathology and worsen its outcome. Here, we review evidence that supports the idea that hypoxia and HIF-1α can contribute to the establishment of fibrosis in skeletal muscle through its crosstalk with other profibrotic factors, such as Transforming growth factor β (TGF-β), the induction of profibrotic cytokines expression, as is the case of Connective Tissue Growth Factor (CTGF/CCN2), or being the target of the Renin-angiotensin system (RAS).
Collapse
Affiliation(s)
- Roger Valle-Tenney
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Santiago, Chile.,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Rebolledo
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, Santiago, Chile
| | - María José Acuña
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Santiago, Chile.,Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, Santiago, Chile
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Santiago, Chile. .,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Fundación Ciencia & Vida, Santiago, Chile. .,Department Cell and Molecular Biology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
42
|
Qian FY, Li ZL, Guo YD, Gao HC, Gu LH, Le K, Xie CM, Wang B, Zhang ZJ. Hypoxia-inducible factor-prolyl hydroxylase inhibitor ameliorates myopathy in a mouse model of chronic kidney disease. Am J Physiol Renal Physiol 2019; 317:F1265-F1273. [PMID: 31588798 DOI: 10.1152/ajprenal.00260.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Muscle wasting and diminished physical performance contribute to the morbidity and mortality of chronic kidney disease (CKD), for which no curative therapy exists. Accumulating evidence indicates that impaired angiogenesis occurs in the muscles of CKD models. Therefore, proangiogenesis therapy is considered a potentially effective strategy for limiting CKD-associated myopathy. Hypoxia-inducible factor (HIF)-prolyl hydroxylase inhibitor (HIF-PHI) stabilizes HIF and enhances muscle angiogenesis during acute ischemia; however, little evidence was available from CKD models. Here, we assessed whether pharmacological activation of HIF by MK-8617 (MK), a novel orally active HIF-PHI, improves CKD-associated myopathy. Mice were divided into sham or CKD groups, and CKD mice were subdivided into CKD + vehicle or MK treatment groups (1.5, 5, or 12.5 mg/kg for 12 wk). In CKD mice, skeletal muscle mass, mitochondrial amount, and exercise capacity decreased compared with sham mice. Compared with the CKD + vehicle group, low (1.5 mg/kg) and medium (5 mg/kg) doses of MK, but not the high dose (12.5 mg/kg), significantly restored these changes and was accompanied by incremental increases in HIF-1α. Furthermore, increased capillary density and area were observed in a MK dose-dependent manner, which is likely related to an improved VEGF response in the skeletal muscle of CKD mice. In addition, macrophage and proinflammatory cytokines, including monocyte chemoattractant protein 1, TNF-α, and IL-6, significantly increased in the high-dose MK group. These results indicate that HIF-PHI provides a potential therapeutic strategy to improve CKD-associated myopathy.
Collapse
Affiliation(s)
- Fang-Yuan Qian
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Zuo-Lin Li
- Institute of Nephrology, ZhongDa Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yu-Dong Guo
- Department of Orthopedic, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Han-Chao Gao
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Li-Hua Gu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Kai Le
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Chun-Ming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Bin Wang
- Institute of Nephrology, ZhongDa Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Malila Y, Thanatsang K, Arayamethakorn S, Uengwetwanit T, Srimarut Y, Petracci M, Strasburg GM, Rungrassamee W, Visessanguan W. Absolute expressions of hypoxia-inducible factor-1 alpha (HIF1A) transcript and the associated genes in chicken skeletal muscle with white striping and wooden breast myopathies. PLoS One 2019; 14:e0220904. [PMID: 31393948 PMCID: PMC6687142 DOI: 10.1371/journal.pone.0220904] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/25/2019] [Indexed: 01/29/2023] Open
Abstract
Development of white striping (WS) and wooden breast (WB) in broiler breast meat have been linked to hypoxia, but their etiologies are not fully understood. This study aimed at investigating absolute expression of hypoxia-inducible factor-1 alpha subunit (HIF1A) and genes involved in stress responses and muscle repair using a droplet digital polymerase chain reaction. Total RNA was isolated from pectoralis major collected from male 6-week-old medium (carcass weight ≤ 2.5 kg) and heavy (carcass weight > 2.5 kg) broilers. Samples were classified as “non-defective” (n = 4), “medium-WS” (n = 6), “heavy-WS” (n = 7) and “heavy-WS+WB” (n = 3) based on abnormality scores. The HIF1A transcript was up-regulated in all of the abnormal groups. Transcript abundances of genes encoding 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4), lactate dehydrogenase-A (LDHA), and phosphorylase kinase beta subunit (PHKB) were increased in heavy-WS but decreased in heavy-WS+WB. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was up-regulated in non-defective samples. The muscle-specific mu-2 isoform of glutathione S-transferases (GSTM2) was up-regulated in the abnormal samples, particularly in the heavy groups. The genes encoding myogenic differentiation (MYOD1) and myosin light chain kinase (MYLK) exhibited similar expression pattern, of which medium-WS and heavy-WS significantly increased compared to non-defective whereas expression in heavy-WS+WB was not different from either non-defective or WS-affected group. The greatest and the lowest levels of calpain-3 (CAPN3) and delta-sarcoglycan (SCGD) were observed in heavy-WS and heavy-WS+WB, respectively. Based on micrographs, the abnormal muscles primarily comprised fibers with cross-sectional areas ranging from 2,000 to 3,000 μm2. Despite induced glycolysis at the transcriptional level, lower stored glycogen in the abnormal muscles corresponded with the reduced lactate and higher pH within their meats. The findings support hypoxia within the abnormal breasts, potentially associated with oversized muscle fibers. Between WS and WB, divergent glucose metabolism, cellular detoxification and myoregeneration at the transcriptional level could be anticipated.
Collapse
Affiliation(s)
- Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
- * E-mail:
| | - Krittaporn Thanatsang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Sopacha Arayamethakorn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Tanaporn Uengwetwanit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Yanee Srimarut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena (FC), Italy
| | - Gale M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States of America
| | - Wanilada Rungrassamee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
44
|
Lampert MA, Gustafsson ÅB. Mitochondria and autophagy in adult stem cells: proliferate or differentiate. J Muscle Res Cell Motil 2019; 41:355-362. [PMID: 31313217 DOI: 10.1007/s10974-019-09542-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
Abstract
Adult stem cells are undifferentiated cells that are found in many different tissues after development. They are responsible for regenerating and repairing tissues after injury, as well as replacing cells when needed. Adult stem cells maintain a delicate balance between self-renewal to prevent depletion of the stem cell pool and differentiation to continually replenish downstream lineages. The important role of mitochondria in generating energy, calcium storage and regulating cell death is well established. However, new research has linked mitochondria to stem cell maintenance and fate. In addition, efficient mitochondrial quality control is critical for stem cell homeostasis to ensure their long-term survival in tissues. In this review, we discuss the latest evidence linking mitochondrial function, remodeling and turnover via autophagy to regulation of adult stem cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Mark A Lampert
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive #0751, La Jolla, CA, 92093-0751, USA
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive #0751, La Jolla, CA, 92093-0751, USA.
| |
Collapse
|
45
|
Drouin G, Couture V, Lauzon MA, Balg F, Faucheux N, Grenier G. Muscle injury-induced hypoxia alters the proliferation and differentiation potentials of muscle resident stromal cells. Skelet Muscle 2019; 9:18. [PMID: 31217019 PMCID: PMC6582603 DOI: 10.1186/s13395-019-0202-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background Trauma-induced heterotopic ossification (HO) is a complication that develops under three conditions: the presence of an osteogenic progenitor cell, an inducing factor, and a permissive environment. We previously showed that a mouse multipotent Sca1+ CD31− Lin− muscle resident stromal cell (mrSC) population is involved in the development of HO in the presence of inducing factors, members of the bone morphogenetic protein family. Interestingly, BMP9 unlike BMP2 causes HO only if the muscle is damaged by injection of cardiotoxin. Because acute trauma often results in blood vessel breakdown, we hypothesized that a hypoxic state in damaged muscles may foster mrSCs activation and proliferation and trigger differentiation toward an osteogenic lineage, thus promoting the development of HO. Methods Three- to - six-month-old male C57Bl/6 mice were used to induce muscle damage by injection of cardiotoxin intramuscularly into the tibialis anterior and gastrocnemius muscles. mrSCs were isolated from damaged (hypoxic state) and contralateral healthy muscles and counted, and their osteoblastic differentiation with or without BMP2 and BMP9 was determined by alkaline phosphatase activity measurement. The proliferation and differentiation of mrSCs isolated from healthy muscles was also studied in normoxic incubator and hypoxic conditions. The effect of hypoxia on BMP synthesis and Smad pathway activation was determined by qPCR and/or Western blot analyses. Differences between normally distributed groups were compared using a Student’s paired t test or an unpaired t test. Results The hypoxic state of a severely damaged muscle increased the proliferation and osteogenic differentiation of mrSCs. mrSCs isolated from damaged muscles also displayed greater sensitivity to osteogenic signals, especially BMP9, than did mrSCs from a healthy muscle. In hypoxic conditions, mrSCs isolated from a control muscle were more proliferative and were more prone to osteogenic differentiation. Interestingly, Smad1/5/8 activation was detected in hypoxic conditions and was still present after 5 days, while Smad1/5/8 phosphorylation could not be detected after 3 h of normoxic incubator condition. BMP9 mRNA transcripts and protein levels were higher in mrSCs cultured in hypoxic conditions. Our results suggest that low-oxygen levels in damaged muscle influence mrSC behavior by facilitating their differentiation into osteoblasts. This effect may be mediated partly through the activation of the Smad pathway and the expression of osteoinductive growth factors such as BMP9 by mrSCs. Conclusion Hypoxia should be considered a key factor in the microenvironment of damaged muscle that triggers HO. Electronic supplementary material The online version of this article (10.1186/s13395-019-0202-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geneviève Drouin
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.,Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C8, Canada
| | - Vanessa Couture
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Laboratory of 3D Cell Culture Systems, Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul Universite, Sherbrooke, QC, J1K 2R1, Canada
| | - Frédéric Balg
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.,Department of Orthopedic Surgery, Faculty of Medicine, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Nathalie Faucheux
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada. .,Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul Universite, Sherbrooke, QC, J1K 2R1, Canada.
| | - Guillaume Grenier
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.,Department of Orthopedic Surgery, Faculty of Medicine, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| |
Collapse
|
46
|
Chen F, Zhou J, Li Y, Zhao Y, Yuan J, Cao Y, Wang L, Zhang Z, Zhang B, Wang CC, Cheung TH, Wu Z, Wong CCL, Sun H, Wang H. YY1 regulates skeletal muscle regeneration through controlling metabolic reprogramming of satellite cells. EMBO J 2019; 38:embj.201899727. [PMID: 30979776 DOI: 10.15252/embj.201899727] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/04/2023] Open
Abstract
Skeletal muscle satellite cells (SCs) are adult muscle stem cells responsible for muscle regeneration after acute or chronic injuries. The lineage progression of quiescent SC toward activation, proliferation, and differentiation during the regeneration is orchestrated by cascades of transcription factors (TFs). Here, we elucidate the function of TF Yin Yang1 (YY1) in muscle regeneration. Muscle-specific deletion of YY1 in embryonic muscle progenitors leads to severe deformity of diaphragm muscle formation, thus neonatal death. Inducible deletion of YY1 in SC almost completely blocks the acute damage-induced muscle repair and exacerbates the chronic injury-induced dystrophic phenotype. Examination of SC revealed that YY1 loss results in cell-autonomous defect in activation and proliferation. Mechanistic search revealed that YY1 binds and represses mitochondrial gene expression. Simultaneously, it also stabilizes Hif1α protein and activates Hif1α-mediated glycolytic genes to facilitate a metabolic reprogramming toward glycolysis which is needed for SC proliferation. Altogether, our findings have identified YY1 as a key regulator of SC metabolic reprogramming through its dual roles in modulating both mitochondrial and glycolytic pathways.
Collapse
Affiliation(s)
- Fengyuan Chen
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jiajian Zhou
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yuying Li
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Zhao
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jie Yuan
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yang Cao
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Lijun Wang
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, Li Ka Shing Institute of Health Sciences, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Tom H Cheung
- The State Key Lab in Molecular Neuroscience, Division of Life Science, Center for Stem Cell Research and Center for Systems Biology and Human Diseases, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhenguo Wu
- The State Key Lab in Molecular Neuroscience, Division of Life Science, Center for Stem Cell Research and Center for Systems Biology and Human Diseases, The Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
47
|
Sinha KM, Tseng C, Guo P, Lu A, Pan H, Gao X, Andrews R, Eltzschig H, Huard J. Hypoxia-inducible factor 1α (HIF-1α) is a major determinant in the enhanced function of muscle-derived progenitors from MRL/MpJ mice. FASEB J 2019; 33:8321-8334. [PMID: 30970214 DOI: 10.1096/fj.201801794r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the mouse strain Murphy Roths Large (MRL/MpJ) possesses high regenerative potential, the mechanism of tissue regeneration, including skeletal muscle, in MRL/MpJ mice after injury is still unclear. Our previous studies have shown that muscle-derived stem/progenitor cell (MDSPC) function is significantly enhanced in MRL/MpJ mice when compared with MDSPCs isolated from age-matched wild-type (WT) mice. Using mass spectrometry-based proteomic analysis, we identified increased expression of hypoxia-inducible factor (HIF) 1α target genes (expression of glycolytic factors and antioxidants) in sera from MRL/MpJ mice compared with WT mice. Therefore, we hypothesized that HIF-1α promotes the high muscle healing capacity of MRL/MpJ mice by increasing the potency of MDSPCs. We demonstrated that treating MRL/MpJ MDSPCs with dimethyloxalylglycine and CoCl2 increased the expression of HIF-1α and target genes, including angiogenic and cell survival genes. We also observed that HIF-1α activated the expression of paired box (Pax)7 through direct interaction with the Pax7 promoter. Furthermore, we also observed a higher myogenic potential of MDSPCs derived from prolyl hydroxylase (Phd) 3-knockout (Phd3-/-) mice, which displayed higher stability of HIF-1α. Taken together, our findings suggest that HIF-1α is a major determinant in the increased MDSPC function of MRL/MpJ mice through enhancement of cell survival, proliferation, and myogenic differentiation.-Sinha, K. M., Tseng, C., Guo, P., Lu, A., Pan, H., Gao, X., Andrews, R., Eltzschig, H., Huard, J. Hypoxia-inducible factor 1α (HIF-1α) is a major determinant in the enhanced function of muscle-derived progenitors from MRL/MpJ mice.
Collapse
Affiliation(s)
- Krishna M Sinha
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center-Houston, Houston, Texas, USA
| | - Chieh Tseng
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center-Houston, Houston, Texas, USA
| | - Ping Guo
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center-Houston, Houston, Texas, USA
| | - Aiping Lu
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center-Houston, Houston, Texas, USA
| | - Haiying Pan
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center-Houston, Houston, Texas, USA
| | - Xueqin Gao
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center-Houston, Houston, Texas, USA
| | - Reid Andrews
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center-Houston, Houston, Texas, USA
| | - Holger Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center-Houston, Houston, Texas, USA
| | - Johnny Huard
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center-Houston, Houston, Texas, USA.,Steadman Philippon Research Institute, Vail, Colorado, USA
| |
Collapse
|
48
|
Hori S, Hiramuki Y, Nishimura D, Sato F, Sehara-Fujisawa A. PDH‐mediated metabolic flow is critical for skeletal muscle stem cell differentiation and myotube formation during regeneration in mice. FASEB J 2019; 33:8094-8109. [DOI: 10.1096/fj.201802479r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shimpei Hori
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
| | - Yosuke Hiramuki
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
- Human Biology DivisionFred Hutchinson Cancer Research Center Seattle Washington USA
| | - Daigo Nishimura
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
| | - Fuminori Sato
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
| | - Atsuko Sehara-Fujisawa
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
| |
Collapse
|
49
|
Chua MWJ, Yildirim ED, Tan JHE, Chua YJB, Low SMC, Ding SLS, Li CW, Jiang Z, Teh BT, Yu K, Shyh-Chang N. Assessment of different strategies for scalable production and proliferation of human myoblasts. Cell Prolif 2019; 52:e12602. [PMID: 30891802 PMCID: PMC6536385 DOI: 10.1111/cpr.12602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Myoblast transfer therapy (MTT) is a technique to replace muscle satellite cells with genetically repaired or healthy myoblasts, to treat muscular dystrophies. However, clinical trials with human myoblasts were ineffective, showing almost no benefit with MTT. One important obstacle is the rapid senescence of human myoblasts. The main purpose of our study was to compare the various methods for scalable generation of proliferative human myoblasts. METHODS We compared the immortalization of primary myoblasts with hTERT, cyclin D1 and CDK4R24C , two chemically defined methods for deriving myoblasts from pluripotent human embryonic stem cells (hESCs), and introduction of viral MyoD into hESC-myoblasts. RESULTS Our results show that, while all the strategies above are suboptimal at generating bona fide human myoblasts that can both proliferate and differentiate robustly, chemically defined hESC-monolayer-myoblasts show the most promise in differentiation potential. CONCLUSIONS Further efforts to optimize the chemically defined differentiation of hESC-monolayer-myoblasts would be the most promising strategy for the scalable generation of human myoblasts, for applications in MTT and high-throughput drug screening.
Collapse
Affiliation(s)
- Min-Wen Jason Chua
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore City, Singapore.,Stem Cell & Regenerative Biology, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore City, Singapore.,Laboratory of Cancer Therapeutics, Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore City, Singapore.,Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore City, Singapore.,Division of Medical Science, Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore City, Singapore
| | - Ege Deniz Yildirim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Jun-Hao Elwin Tan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore City, Singapore.,Stem Cell & Regenerative Biology, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore City, Singapore.,Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore City, Singapore.,Division of Medical Science, Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore City, Singapore
| | - Yan-Jiang Benjamin Chua
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore City, Singapore.,Stem Cell & Regenerative Biology, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore City, Singapore.,Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore City, Singapore.,Division of Medical Science, Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore City, Singapore
| | - Suet-Mei Crystal Low
- Stem Cell & Regenerative Biology, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore City, Singapore
| | - Suet Lee Shirley Ding
- Stem Cell & Regenerative Biology, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore City, Singapore
| | - Chun-Wei Li
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zongmin Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Bin Tean Teh
- Laboratory of Cancer Therapeutics, Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore City, Singapore.,Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore City, Singapore.,Division of Medical Science, Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore City, Singapore
| | - Kang Yu
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Xie L, Yin A, Nichenko AS, Beedle AM, Call JA, Yin H. Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration. J Clin Invest 2018. [PMID: 29533927 PMCID: PMC5983316 DOI: 10.1172/jci96208] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The remarkable regeneration capability of skeletal muscle depends on the coordinated proliferation and differentiation of satellite cells (SCs). The self-renewal of SCs is critical for long-term maintenance of muscle regeneration potential. Hypoxia profoundly affects the proliferation, differentiation, and self-renewal of cultured myoblasts. However, the physiological relevance of hypoxia and hypoxia signaling in SCs in vivo remains largely unknown. Here, we demonstrate that SCs are in an intrinsic hypoxic state in vivo and express hypoxia-inducible factor 2A (HIF2A). HIF2A promotes the stemness and long-term homeostatic maintenance of SCs by maintaining their quiescence, increasing their self-renewal, and blocking their myogenic differentiation. HIF2A stabilization in SCs cultured under normoxia augments their engraftment potential in regenerative muscle. Conversely, HIF2A ablation leads to the depletion of SCs and their consequent regenerative failure in the long-term. In contrast, transient pharmacological inhibition of HIF2A accelerates muscle regeneration by increasing SC proliferation and differentiation. Mechanistically, HIF2A induces the quiescence and self-renewal of SCs by binding the promoter of the Spry1 gene and activating Spry1 expression. These findings suggest that HIF2A is a pivotal mediator of hypoxia signaling in SCs and may be therapeutically targeted to improve muscle regeneration.
Collapse
Affiliation(s)
- Liwei Xie
- Department of Biochemistry and Molecular Biology.,Center for Molecular Medicine, and
| | - Amelia Yin
- Department of Biochemistry and Molecular Biology.,Center for Molecular Medicine, and
| | - Anna S Nichenko
- Department of Kinesiology, The University of Georgia, Athens, Georgia, USA
| | - Aaron M Beedle
- Department of Pharmaceutical Sciences, Binghamton University-SUNY, Binghamton, New York, USA
| | - Jarrod A Call
- Department of Kinesiology, The University of Georgia, Athens, Georgia, USA.,Regenerative Bioscience Center, The University of Georgia, Athens, Georgia, USA
| | - Hang Yin
- Department of Biochemistry and Molecular Biology.,Center for Molecular Medicine, and
| |
Collapse
|