1
|
Babu AT, Abdul Vahid A, Reselammal DS, Kizhakkeduth ST, Pinhero F, Vijayan V. Exploring the Potential Interaction between the Functional Prion Protein CPEB3 and the Amyloidogenic Pathogenic Protein Tau. J Phys Chem B 2025; 129:1916-1926. [PMID: 39908090 DOI: 10.1021/acs.jpcb.4c06423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Abnormal aggregation of tau protein is pathologically linked to Alzheimer's disease, while the aggregation of the prion-like RNA-binding protein (RBP) CPEB3 is functional and is associated with long-term memory. However, the interaction between these two memory-related proteins has not yet been explored. Our residue-specific NMR relaxation study revealed that the first prion domain of CPEB3 (PRD1) interacts with the 306VQIVYKPVDLSKV318 segment of tau and prevents the aggregation of tau-K18. Notably, this interaction is synergistic as it not only inhibits tau-K18 aggregation but also enhances PRD1 fibril formation. We also studied the interaction of different PRD1 subdomains with tau-K18 to elucidate the precise region of PRD1 that inhibits tau-K18 aggregation. This revealed that the PRD1-Q region is responsible for preventing tau-K18 aggregation. Inspired by this, we synthesized a 15 amino acid Poly-Q peptide that inhibits tau-K18 aggregation, suggesting its potential as a small drug-like molecule for Alzheimer's disease therapeutics.
Collapse
Affiliation(s)
- Ann Teres Babu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Arshad Abdul Vahid
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Dhanya S Reselammal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Safwa T Kizhakkeduth
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Faina Pinhero
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
2
|
Soldatov V, Venediktov A, Belykh A, Piavchenko G, Naimzada MD, Ogneva N, Kartashkina N, Bushueva O. Chaperones vs. oxidative stress in the pathobiology of ischemic stroke. Front Mol Neurosci 2024; 17:1513084. [PMID: 39723236 PMCID: PMC11668803 DOI: 10.3389/fnmol.2024.1513084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
As many proteins prioritize functionality over constancy of structure, a proteome is the shortest stave in the Liebig's barrel of cell sustainability. In this regard, both prokaryotes and eukaryotes possess abundant machinery supporting the quality of the proteome in healthy and stressful conditions. This machinery, namely chaperones, assists in folding, refolding, and the utilization of client proteins. The functions of chaperones are especially important for brain cells, which are highly sophisticated in terms of structural and functional organization. Molecular chaperones are known to exert beneficial effects in many brain diseases including one of the most threatening and widespread brain pathologies, ischemic stroke. However, whether and how they exert the antioxidant defense in stroke remains unclear. Herein, we discuss the chaperones shown to fight oxidative stress and the mechanisms of their antioxidant action. In ischemic stroke, during intense production of free radicals, molecular chaperones preserve the proteome by interacting with oxidized proteins, regulating imbalanced mitochondrial function, and directly fighting oxidative stress. For instance, cells recruit Hsp60 and Hsp70 to provide proper folding of newly synthesized proteins-these factors are required for early ischemic response and to refold damaged polypeptides. Additionally, Hsp70 upregulates some dedicated antioxidant pathways such as FOXO3 signaling. Small HSPs decrease oxidative stress via attenuation of mitochondrial function through their involvement in the regulation of Nrf- (Hsp22), Akt and Hippo (Hsp27) signaling pathways as well as mitophagy (Hsp27, Hsp22). A similar function has also been proposed for the Sigma-1 receptor, contributing to the regulation of mitochondrial function. Some chaperones can prevent excessive formation of reactive oxygen species whereas Hsp90 is suggested to be responsible for pro-oxidant effects in ischemic stroke. Finally, heat-resistant obscure proteins (Hero) are able to shield client proteins, thus preventing their possible over oxidation.
Collapse
Affiliation(s)
- Vladislav Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Artem Venediktov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrei Belykh
- Pathophysiology Department, Kursk State Medical University, Kursk, Russia
- Research Institute of General Pathology, Kursk State Medical University, Kursk, Russia
| | - Gennadii Piavchenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mukhammad David Naimzada
- Research Institute of Experimental Medicine, Kursk State Medical University, Kursk, Russia
- Laboratory of Public Health Indicators Analysis and Health Digitalization, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nastasya Ogneva
- Scientific Center of Biomedical Technologies, Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - Natalia Kartashkina
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| |
Collapse
|
3
|
Mitra R, Usher ET, Dedeoğlu S, Crotteau MJ, Fraser OA, Yennawar NH, Gadkari VV, Ruotolo BT, Holehouse AS, Salmon L, Showalter SA, Bardwell JCA. Molecular insights into the interaction between a disordered protein and a folded RNA. Proc Natl Acad Sci U S A 2024; 121:e2409139121. [PMID: 39589885 PMCID: PMC11626198 DOI: 10.1073/pnas.2409139121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Intrinsically disordered protein regions (IDRs) are well established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR-RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, Small ERDK-Rich Factor (SERF). At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 Trans-Activation Response (TAR) RNA with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF-RNA system will lower the barrier to accessing the details that support IDR-RNA interactions and likewise deepen our understanding of the role of IDR-RNA contacts in complex formation and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Rishav Mitra
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63110
| | - Selin Dedeoğlu
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne69100, France
| | - Matthew J. Crotteau
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Olivia A. Fraser
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA16802
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | | | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63110
| | - Loïc Salmon
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne69100, France
| | - Scott A. Showalter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - James C. A. Bardwell
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
4
|
Mitra R, Usher ET, Dedeoğlu S, Crotteau MJ, Fraser OA, Yennawar NH, Gadkari VV, Ruotolo BT, Holehouse AS, Salmon L, Showalter SA, Bardwell JCA. Molecular insights into the interaction between a disordered protein and a folded RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598678. [PMID: 38915483 PMCID: PMC11195163 DOI: 10.1101/2024.06.12.598678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Intrinsically disordered protein regions (IDRs) are well-established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR-RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, SERF. At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 TAR RNA (TAR) with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF-RNA system will lower the barrier to accessing the details that support IDR-RNA interactions and likewise deepen our understanding of the role of IDR-RNA contacts in complex formation and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Rishav Mitra
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Selin Dedeoğlu
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, (CRMN), UMR 5082, CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Matthew J. Crotteau
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olivia A. Fraser
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Loïc Salmon
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, (CRMN), UMR 5082, CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Scott A. Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - James C. A. Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Sahoo BR, Subramanian V, Bardwell JC. Backbone 1H, 13C, and 15N chemical shift assignments for human SERF2. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:51-57. [PMID: 38466543 PMCID: PMC12022958 DOI: 10.1007/s12104-024-10167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Human small EDRK-rich factor protein SERF2 is a cellular driver of protein amyloid formation, a process that has been linked to neurodegenerative diseases including Alzheimer's and Parkinson's disease. SERF2 is a 59 amino acid protein, highly charged, and well conserved whose structure and physiological function is unclear. SERF family proteins including human SERF2 have shown a tendency to form fuzzy complexes with misfolded proteins such as α-Synuclein which has been linked to Parkinson's disease. SERF family proteins have been recently identified to bind nucleic acids, but the binding mechanism(s) remain enigmatic. Here, using multidimensional solution NMR, we report the 1H, 15N, and 13C chemical shift assignments (~ 86% of backbone resonance assignments) for human SERF2. TALOS-N predicted secondary structure of SERF2 showed three very short helices (3-4 residues long) in the N-terminal region of the protein and a long helix in the C-terminal region spanning residues 37-46 which is consistent with the helical content indicated by circular dichroism spectroscopy. Paramagnetic relaxation enhancement NMR analysis revealed that a short C-terminal region E53-K55 is in the proximity of the N-terminus. Having the backbone assignment of SERF2 allowed us to probe its interaction with α-Synuclein and to identify the residues in SERF2 binding interfaces that likely promote α-Synuclein aggregation.
Collapse
Affiliation(s)
- Bikash R. Sahoo
- Howard Hughes Medical Institute, Chevy Chase MD-20815, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor MI-48109, USA
| | | | - James C.A. Bardwell
- Howard Hughes Medical Institute, Chevy Chase MD-20815, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor MI-48109, USA
| |
Collapse
|
6
|
Sahoo BR, Kocman V, Clark N, Myers N, Deng X, Wong EL, Yang HJ, Kotar A, Guzman BB, Dominguez D, Plavec J, Bardwell JCA. Protein G-quadruplex interactions and their effects on phase transitions and protein aggregation. Nucleic Acids Res 2024; 52:4702-4722. [PMID: 38572746 PMCID: PMC11077067 DOI: 10.1093/nar/gkae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
The SERF family of proteins were originally discovered for their ability to accelerate amyloid formation. Znf706 is an uncharacterized protein whose N-terminus is homologous to SERF proteins. We show here that human Znf706 can promote protein aggregation and amyloid formation. Unexpectedly, Znf706 specifically interacts with stable, non-canonical nucleic acid structures known as G-quadruplexes. G-quadruplexes can affect gene regulation and suppress protein aggregation; however, it is unknown if and how these two activities are linked. We find Znf706 binds preferentially to parallel G-quadruplexes with low micromolar affinity, primarily using its N-terminus, and upon interaction, its dynamics are constrained. G-quadruplex binding suppresses Znf706's ability to promote protein aggregation. Znf706 in conjunction with G-quadruplexes therefore may play a role in regulating protein folding. RNAseq analysis shows that Znf706 depletion specifically impacts the mRNA abundance of genes that are predicted to contain high G-quadruplex density. Our studies give insight into how proteins and G-quadruplexes interact, and how these interactions affect both partners and lead to the modulation of protein aggregation and cellular mRNA levels. These observations suggest that the SERF family of proteins, in conjunction with G-quadruplexes, may have a broader role in regulating protein folding and gene expression than previously appreciated.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Vojč Kocman
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Nathan Clark
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nikhil Myers
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xiexiong Deng
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ee L Wong
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Harry J Yang
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Anita Kotar
- National Institute of Chemistry, Ljubljana, Slovenia
| | | | | | - Janez Plavec
- National Institute of Chemistry, Ljubljana, Slovenia
| | - James C A Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Sahoo BR, Kocman V, Clark N, Myers N, Deng X, Wong EL, Yang HJ, Kotar A, Guzman BB, Dominguez D, Plavec J, Bardwell JC. Protein G-quadruplex interactions and their effects on phase transitions and protein aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558871. [PMID: 37790366 PMCID: PMC10542165 DOI: 10.1101/2023.09.21.558871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The SERF family of proteins were originally discovered for their ability to accelerate amyloid formation. Znf706 is an uncharacterized protein whose N-terminus is homologous to SERF proteins. We show here that human Znf706 can promote protein aggregation and amyloid formation. Unexpectedly, Znf706 specifically interacts with stable, non-canonical nucleic acid structures known as G-quadruplexes. G-quadruplexes can affect gene regulation and suppress protein aggregation; however, it is unknown if and how these two activities are linked. We find Znf706 binds preferentially to parallel G-quadruplexes with low micromolar affinity, primarily using its N-terminus, and upon interaction, its dynamics are constrained. G-quadruplex binding suppresses Znf706's ability to promote protein aggregation. Znf706 in conjunction with G-quadruplexes therefore may play a role in regulating protein folding. RNAseq analysis shows that Znf706 depletion specifically impacts the mRNA abundance of genes that are predicted to contain high G-quadruplex density. Our studies give insight into how proteins and G-quadruplexes interact, and how these interactions affect both partners and lead to the modulation of protein aggregation and cellular mRNA levels. These observations suggest that the SERF family of proteins, in conjunction with G-quadruplexes, may have a broader role in regulating protein folding and gene expression than previously appreciated.
Collapse
Affiliation(s)
- Bikash R. Sahoo
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Vojč Kocman
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Nathan Clark
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nikhil Myers
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xiexiong Deng
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ee L. Wong
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Harry J. Yang
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Anita Kotar
- National Institute of Chemistry, Ljubljana, Slovenia
| | | | | | - Janez Plavec
- National Institute of Chemistry, Ljubljana, Slovenia
| | - James C.A. Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Abdul Vahid A, Oliyantakath Hassan MS, Sahayaraj AE, Babu AT, Kizhakkeduth ST, Vijayan V. Modulation of Primary and Secondary Processes in Tau Fibril Formation by Salt-Induced Dynamics. ACS Chem Neurosci 2024; 15:1242-1253. [PMID: 38433380 DOI: 10.1021/acschemneuro.3c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
The initial stages of amyloid fibrilization begin with the monomers populating aggregation-prone conformers. Characterization of such aggregation-prone conformers is crucial in the study of neurodegenerative diseases. The current study characterizes the aggregation pathway of two tau protein constructs that have been recently demonstrated to form Alzheimer's (AD) fibril structures with divalent ions and chronic traumatic encephalopathy (CTE) fibril structures with monovalent ions. The results highlight the involvement of identical residues in both the primary and secondary processes of both AD and CTE fibril propagation. Nuclear magnetic resonance relaxation experiments reveal increased flexibility of the motifs 321KCGS within R3 and 364PGGGN within R4 in the presence of MgCl2/NaCl, correlating with faster aggregation kinetics and indicating efficient primary nucleation. Notably, the seeded aggregation kinetics of the tau monomers in the presence and absence of metal ions are strikingly different. This correlates with the overall sign of the 15N-ΔR2 profile specifying the dominant mechanism involved in the process of aggregation.
Collapse
Affiliation(s)
- Arshad Abdul Vahid
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura, Thiruvananthapuram695551,India
| | | | - Allwin Ebenezer Sahayaraj
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura, Thiruvananthapuram695551,India
| | - Ann Teres Babu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura, Thiruvananthapuram695551,India
| | - Safwa T Kizhakkeduth
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura, Thiruvananthapuram695551,India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura, Thiruvananthapuram695551,India
| |
Collapse
|
9
|
Qi S, Peng Y, Wang G, Zhang X, Liu M, He L. A tale of dual functions of SERF family proteins in regulating amyloid formation. Chembiochem 2024; 25:e202300727. [PMID: 38100267 DOI: 10.1002/cbic.202300727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
The abnormal aggregation of proteins is a significant pathological hallmark of diseases, such as the amyloid formation associated with fused in sarcoma protein (FUS) in frontotemporal lobar degeneration and amyotrophic lateral sclerosis diseases. Understanding which cellular components and how these components regulate the process of abnormal protein aggregation in living organisms is crucial for the prevention and treatment of neurodegenerative diseases. MOAG-4/SERF is a conserved family of proteins with rich positive charged residues, which was initially identified as an enhancer for the formation of amyloids in C. elegans. Knocking out SERF impedes the amyloid formation of various proteins, including α-synuclein and β-amyloid, which are linked to Parkinson's and Alzheimer's diseases, respectively. However, recent studies revealed SERF exhibited dual functions, as it could both promote and inhibit the fibril formation of the neurodegenerative disease-related amyloidogenic proteins. The connection between functions and structure basis of SERF in regulating the amyloid formation is still unclear. This review will outline the hallmark proteins in neurodegenerative diseases, summarize the contradictory role of the SERF protein family in promoting and inhibiting the aggregation of neurodegenerative proteins, and finally explore the potential structural basis and functional selectivity of the SERF protein.
Collapse
Affiliation(s)
- Shixing Qi
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yun Peng
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guan Wang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Optics Valley Laboratory, Wu Han Shi, 430074, Hubei, China
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
10
|
Tsai TY, Jhang WT, Hsu HK, Chan YT, Chang CF, Chen YR. Amyloid Modifier SERF1a Accelerates Alzheimer's Amyloid-β Fibrillization and Exacerbates the Cytotoxicity. ACS Chem Neurosci 2024; 15:479-490. [PMID: 38211979 DOI: 10.1021/acschemneuro.3c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating, progressive neurodegenerative disease affecting the elderly in the world. The pathological hallmark senile plaques are mainly composed of amyloid-β (Aβ), in which the main isoforms are Aβ40 and Aβ42. Aβ is prone to aggregate and ultimately forms amyloid fibrils in the brains of AD patients. Factors that alter the Aβ aggregation process have been considered to be potential targets for treatments of AD. Modifier of aggregation 4 (MOAG-4)/small EDRK-rich factor (SERF) was previously selected from a chemical mutagenesis screen and identified as an amyloid modifier that promotes amyloid aggregation for α-synuclein, huntingtin, and Aβ40. The interaction and effect of yeast ScSERF on Aβ40 were previously described. Here, we examined the human SERF1a effect on Aβ40 and Aβ42 fibrillization by the Thioflavin T assay and found that SERF1a accelerated Aβ fibrillization in a dose-dependent manner without changing the fibril amount and without incorporation. By Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM), we found that SERF1a altered the secondary structures and the morphology of Aβ fibrils. The electrospray ionization mass spectrometry (ESI-MS) and analytical ultracentrifugation (AUC) results showed that SERF1a binds to Aβ in a 1:1 stoichiometry. Moreover, the NMR study showed that SERF1a interacts with Aβ via its N-terminal region. Cytotoxicity assay demonstrated that SERF1a enhanced toxicity of Aβ intermediates, and the effect can be rescued by SERF1a antibody. Overall, our study provides the underlying molecular mechanism for the SERF1a effect on Aβ fibrillization and facilitates the therapeutic development of AD.
Collapse
Affiliation(s)
- Tien-Ying Tsai
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ting Jhang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hung-Kai Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 115, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 115, Taiwan
| |
Collapse
|
11
|
Louros N, Schymkowitz J, Rousseau F. Mechanisms and pathology of protein misfolding and aggregation. Nat Rev Mol Cell Biol 2023; 24:912-933. [PMID: 37684425 DOI: 10.1038/s41580-023-00647-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
Despite advances in machine learning-based protein structure prediction, we are still far from fully understanding how proteins fold into their native conformation. The conventional notion that polypeptides fold spontaneously to their biologically active states has gradually been replaced by our understanding that cellular protein folding often requires context-dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding process, creating a self-reinforcing cascade. A surge in amyloid fibril structures has deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid conformations, known as polymorphism. The assembly of these polymorphs is not a random process but is influenced by the specific conditions and tissues in which they originate. This observation suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly are modulated by interactions specific to cells and tissues. Here, we review the current understanding of how intrinsic protein conformational propensities are modulated by physiological and pathological interactions in the cell to shape protein misfolding and aggregation pathology.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Sahoo BR, Bardwell JCA. SERF, a family of tiny highly conserved, highly charged proteins with enigmatic functions. FEBS J 2023; 290:4150-4162. [PMID: 35694898 DOI: 10.1111/febs.16555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022]
Abstract
Amyloid formation is a misfolding process that has been linked to age-related diseases, including Alzheimer's and Huntington's. Understanding how cellular factors affect this process in vivo is vital in realizing the dream of controlling this insidious process that robs so many people of their humanity. SERF (small EDRK-rich factor) was initially isolated as a factor that accelerated polyglutamine amyloid formation in a C. elegans model. SERF knockouts inhibit amyloid formation of a number of proteins that include huntingtin, α-synuclein and β-amyloid which are associated with Huntington's, Parkinson's and Alzheimer's disease, respectively, and purified SERF protein speeds their amyloid formation in vitro. SERF proteins are highly conserved, highly charged and conformationally dynamic proteins that form a fuzzy complex with amyloid precursors. They appear to act by specifically accelerating the primary step of amyloid nucleation. Brain-specific SERF knockout mice, though viable, appear to be more prone to deposition of amyloids, and show modified fibril morphology. Whole-body knockouts are perinatally lethal due to an apparently unrelated developmental issue. Recently, it was found that SERF binds RNA and is localized to nucleic acid-rich membraneless compartments. SERF-related sequences are commonly found fused to zinc finger sequences. These results point towards a nucleic acid-binding function. How this function relates to their ability to accelerate amyloid formation is currently obscure. In this review, we discuss the possible biological functions of SERF family proteins in the context of their structural fuzziness, modulation of amyloid pathway, nucleic acid binding and their fusion to folded proteins.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - James C A Bardwell
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Stroo E, Janssen L, Sin O, Hogewerf W, Koster M, Harkema L, Youssef SA, Beschorner N, Wolters AH, Bakker B, Becker L, Garrett L, Marschall S, Hoelter SM, Wurst W, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Thathiah A, Foijer F, van de Sluis B, van Deursen J, Jucker M, de Bruin A, Nollen EA. Deletion of SERF2 in mice delays embryonic development and alters amyloid deposit structure in the brain. Life Sci Alliance 2023; 6:e202201730. [PMID: 37130781 PMCID: PMC10155860 DOI: 10.26508/lsa.202201730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/04/2023] Open
Abstract
In age-related neurodegenerative diseases, like Alzheimer's and Parkinson's, disease-specific proteins become aggregation-prone and form amyloid-like deposits. Depletion of SERF proteins ameliorates this toxic process in worm and human cell models for diseases. Whether SERF modifies amyloid pathology in mammalian brain, however, has remained unknown. Here, we generated conditional Serf2 knockout mice and found that full-body deletion of Serf2 delayed embryonic development, causing premature birth and perinatal lethality. Brain-specific Serf2 knockout mice, on the other hand, were viable, and showed no major behavioral or cognitive abnormalities. In a mouse model for amyloid-β aggregation, brain depletion of Serf2 altered the binding of structure-specific amyloid dyes, previously used to distinguish amyloid polymorphisms in the human brain. These results suggest that Serf2 depletion changed the structure of amyloid deposits, which was further supported by scanning transmission electron microscopy, but further study will be required to confirm this observation. Altogether, our data reveal the pleiotropic functions of SERF2 in embryonic development and in the brain and support the existence of modifying factors of amyloid deposition in mammalian brain, which offer possibilities for polymorphism-based interventions.
Collapse
Affiliation(s)
- Esther Stroo
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Leen Janssen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Olga Sin
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Wytse Hogewerf
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Mirjam Koster
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Liesbeth Harkema
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sameh A Youssef
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Natalie Beschorner
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anouk Hg Wolters
- Department of Biomedical Sciences of Cells and Systems, University Medical Centre Groningen, Groningen, The Netherlands
| | - Bjorn Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Lilian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sabine M Hoelter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universität München, Freising-Weihenstephan, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Freising, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Amantha Thathiah
- VIB Center for the Biology of Disease, KU Leuven Center for Human Genetics, University of Leuven, Leuven, Belgium
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Bart van de Sluis
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Matthias Jucker
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Alain de Bruin
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ellen Aa Nollen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Torres PB, Blanco PM, Garcés JL, Narambuena CF. The electrostatic potential inside and around α-lactalbumin: Fluctuations and mean-field models. J Chem Phys 2022; 157:205101. [DOI: 10.1063/5.0122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The electrostatic potential (EP) generated by the protein α-lactoalbumin in the presence of added salt is computed as a thermal average at a given point in space. With this aim, constant pH Monte Carlo (MC) simulations are performed within the primitive model, namely, the solvent is treated as a continuum dielectric. The study of the thermal and spatial fluctuations of the EP reveals that they are remarkably high inside the protein. The calculations indicate that fluctuations inside the protein are mainly due to the asymmetric distribution of the charge groups, while the charge fluctuations of the titratable groups play a minor role. The computed EP matches very well with the one obtained from the Poisson equation for the average charge density in spherical symmetry. The Tanford–Kirkwood multipole expansion reproduces the simulated angular-averaged potential rather accurately. Surprisingly, two of the simplest mean-field models, the linear Poisson–Boltzmann (PB) equation and Donnan potential, provide good estimations of the average EP in the effective protein surface (surface EP). The linear PB equation predicts a linear relationship between charge and surface EP, which is numerically reproduced only if the small ions within the protein are taken into account. On the other hand, the partition coefficients of the small ions inside and outside the protein predicted by Donnan theory reproduce reasonably well the simulation results.
Collapse
Affiliation(s)
- Paola B. Torres
- Grupo Bionanotecnología y Sistemas Complejos. (UTN-CONICET), Facultad Regional San Rafael, Universidad Tecnológica Nacional, Av. General Urquiza 314 C.P, M5600 San Rafael, Mendoza, Argentina
| | - Pablo M. Blanco
- Materials Science and Physical Chemistry Department and Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague 2, Czech Republic
| | - Josep L. Garcés
- Department of Chemistry, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Catalonia, Spain
| | - Claudio F. Narambuena
- Grupo Bionanotecnología y Sistemas Complejos. (UTN-CONICET), Facultad Regional San Rafael, Universidad Tecnológica Nacional, Av. General Urquiza 314 C.P, M5600 San Rafael, Mendoza, Argentina
| |
Collapse
|
15
|
Liu Y, Wang C, Jin Y, Jiang G, He L, Liu M. Backbone resonance assignments and dynamics of S. cerevisiae SERF. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:187-190. [PMID: 35713792 DOI: 10.1007/s12104-022-10077-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
Abnormal protein aggregation and precipitation are associated with the perturbation of cellular function and underlie a variety of neurodegenerative diseases. S. cerevisiae SERF (ScSERF), a homolog of modifier of aggregation-4 (MOAG-4) and small EDRK-rich factor protein (SERF1a) is highly conserved and discovered as an enhancer of amyloid formation of Aβ40 and α-synuclein both in vitro and in vivo. However, the detailed molecular mechanism whereby ScSERF and its homologs accelerate amyloid formation is not well known yet. Herein, we present the 1 H, 15 N and 13 C NMR assignments of the 68 amino acids long ScSERF. Although ScSERF displays a very high degree of disorder, secondary chemical shifts of Cα, Cβ, 15 N{1 H}-NOE values and the residue-specific secondary structure propensity (SSP) scores indicate the segment spanning residues 36E-65 K has a strong helical propensity. This work sets the stage for further detailed structural and dynamic investigations of ScSERF and the molecular mechanism it utilizes in accelerating amyloid formation.
Collapse
Affiliation(s)
- Yicong Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Yangzhuoyue Jin
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guosheng Jiang
- Binzhou Medical University, Binzhou, China
- Weifang Medical University, Weifang, China
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Optics Valley Laboratory, 430074, Wuhan, Hubei, China.
| |
Collapse
|
16
|
Im J, Lee J, Lee JH. Surface Accessibility of an Intrinsically Disordered Protein Probed by 2D Time-Resolved Laser-Assisted NMR Spectroscopy. J Am Chem Soc 2022; 144:17010-17021. [PMID: 36083135 DOI: 10.1021/jacs.2c06309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Probing the protein surface accessibility of different residues is a powerful way of characterizing the overall conformation of intrinsically disordered proteins (IDPs). We present a two-dimensional (2D) time-resolved photo-CIDNP (TR-CIDNP) experiment suitable for IDP analysis. Pulse stretching of high-power laser pulses, band-selective decoupling of 13Cα, and simultaneous application of radiofrequency and laser pulses were implemented to quantitatively analyze the IDP surface at ultrahigh resolution. Comparative analysis with other methods that measure protein surface accessibility validated the newly developed method and emphasized the importance of dye charge in photo-CIDNP. Using the neutral riboflavin dye, surface accessibilities were measured to be nearly identical for the four Tyr residues of α-synuclein (α-Syn), whose 1Hα-13Cα correlations were well-resolved in the 2D TR-CIDNP spectrum. Having confirmed the similarity between the time-resolved and steady-state photo-CIDNP results for α-Syn, we used the more sensitive latter method to show that divalent cations induce compaction of the C-terminal region and release of the N-terminal region of α-Syn. The photo-CIDNP method presented herein can be used as an orthogonal and independent method for investigating important biological processes associated with changes in the overall IDP conformation.
Collapse
Affiliation(s)
- Jonghyuk Im
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jongchan Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jung Ho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea.,Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do 16229, Korea
| |
Collapse
|
17
|
Saraiva MA, Florêncio MH. Buffering capacity is determinant for restoring early α-synuclein aggregation. Biophys Chem 2022; 282:106760. [DOI: 10.1016/j.bpc.2022.106760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/28/2021] [Accepted: 01/10/2022] [Indexed: 11/02/2022]
|
18
|
Pras A, Houben B, Aprile FA, Seinstra R, Gallardo R, Janssen L, Hogewerf W, Gallrein C, De Vleeschouwer M, Mata‐Cabana A, Koopman M, Stroo E, de Vries M, Louise Edwards S, Kirstein J, Vendruscolo M, Falsone SF, Rousseau F, Schymkowitz J, Nollen EAA. The cellular modifier MOAG-4/SERF drives amyloid formation through charge complementation. EMBO J 2021; 40:e107568. [PMID: 34617299 PMCID: PMC8561633 DOI: 10.15252/embj.2020107568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022] Open
Abstract
While aggregation-prone proteins are known to accelerate aging and cause age-related diseases, the cellular mechanisms that drive their cytotoxicity remain unresolved. The orthologous proteins MOAG-4, SERF1A, and SERF2 have recently been identified as cellular modifiers of such proteotoxicity. Using a peptide array screening approach on human amyloidogenic proteins, we found that SERF2 interacted with protein segments enriched in negatively charged and hydrophobic, aromatic amino acids. The absence of such segments, or the neutralization of the positive charge in SERF2, prevented these interactions and abolished the amyloid-promoting activity of SERF2. In protein aggregation models in the nematode worm Caenorhabditis elegans, protein aggregation and toxicity were suppressed by mutating the endogenous locus of MOAG-4 to neutralize charge. Our data indicate that MOAG-4 and SERF2 drive protein aggregation and toxicity by interactions with negatively charged segments in aggregation-prone proteins. Such charge interactions might accelerate primary nucleation of amyloid by initiating structural changes and by decreasing colloidal stability. Our study points at charge interactions between cellular modifiers and amyloidogenic proteins as potential targets for interventions to reduce age-related protein toxicity.
Collapse
Affiliation(s)
- Anita Pras
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Bert Houben
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Francesco A Aprile
- Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeCambridgeUK
- Present address:
Department of ChemistryMolecular Sciences Research HubImperial College LondonLondonUK
| | - Renée Seinstra
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Rodrigo Gallardo
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- Present address:
Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
| | - Leen Janssen
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Wytse Hogewerf
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Christian Gallrein
- Department of Molecular Physiology and Cell BiologyLeibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V. (FMP)BerlinGermany
| | - Matthias De Vleeschouwer
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Alejandro Mata‐Cabana
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Mandy Koopman
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Esther Stroo
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Minke de Vries
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Samantha Louise Edwards
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Janine Kirstein
- Department of Molecular Physiology and Cell BiologyLeibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V. (FMP)BerlinGermany
- Faculty of Biology & ChemistryUniversity of BremenBremenGermany
| | - Michele Vendruscolo
- Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeCambridgeUK
| | | | - Frederic Rousseau
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Joost Schymkowitz
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Ellen A A Nollen
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| |
Collapse
|
19
|
Dass R, Corlianò E, Mulder FAA. The contribution of electrostatics to hydrogen exchange in the unfolded protein state. Biophys J 2021; 120:4107-4114. [PMID: 34370996 PMCID: PMC8510857 DOI: 10.1016/j.bpj.2021.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/20/2021] [Accepted: 08/03/2021] [Indexed: 12/03/2022] Open
Abstract
Although electrostatics have long been recognized to play an important role in hydrogen exchange (HX) with solvent, the quantitative assessment of its magnitude in the unfolded state has hitherto been lacking. This limits the utility of HX as a quantitative method to study protein stability, folding, and dynamics. Using the intrinsically disordered human protein α-synuclein as a proxy for the unfolded state, we show that a hybrid mean-field approach can effectively compute the electrostatic potential at all backbone amide positions along the chain. From the electrochemical potential, a fourfold reduction in hydroxide concentration near the protein backbone is predicted for the C-terminal domain, a prognosis that is in direct agreement with experimentally derived protection factors from NMR spectroscopy. Thus, impeded HX for the C-terminal region of α-synuclein is not the result of intramolecular hydrogen bonding and/or structure formation.
Collapse
Affiliation(s)
- Rupashree Dass
- Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Enrico Corlianò
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Frans A A Mulder
- Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
20
|
NMR spectroscopy charges into protein surface electrostatics. Proc Natl Acad Sci U S A 2021; 118:2110176118. [PMID: 34301877 DOI: 10.1073/pnas.2110176118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Cleverley K, Lee WC, Mumford P, Collins T, Rickman M, Cunningham TJ, Cleak J, Mianne J, Szoke-Kovacs Z, Stewart M, Teboul L, Maduro C, Wells S, Wiseman FK, Fisher EMC. A novel knockout mouse for the small EDRK-rich factor 2 (Serf2) showing developmental and other deficits. Mamm Genome 2021; 32:94-103. [PMID: 33713180 PMCID: PMC8012326 DOI: 10.1007/s00335-021-09864-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/22/2021] [Indexed: 11/29/2022]
Abstract
The small EDRK-rich factor 2 (SERF2) is a highly conserved protein that modifies amyloid fibre assembly in vitro and promotes protein misfolding. However, the role of SERF2 in regulating age-related proteotoxicity remains largely unexplored due to a lack of in vivo models. Here, we report the generation of Serf2 knockout mice using an ES cell targeting approach, with Serf2 knockout alleles being bred onto different defined genetic backgrounds. We highlight phenotyping data from heterozygous Serf2+/− mice, including unexpected male-specific phenotypes in startle response and pre-pulse inhibition. We report embryonic lethality in Serf2−/− null animals when bred onto a C57BL/6 N background. However, homozygous null animals were viable on a mixed genetic background and, remarkably, developed without obvious abnormalities. The Serf2 knockout mice provide a powerful tool to further investigate the role of SERF2 protein in previously unexplored pathophysiological pathways in the context of a whole organism.
Collapse
Affiliation(s)
- Karen Cleverley
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, London, UK
| | - Weaverly Colleen Lee
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, London, UK
| | - Paige Mumford
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, London, UK.,The UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK
| | - Toby Collins
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, London, UK
| | - Matthew Rickman
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, London, UK
| | | | | | - Joffrey Mianne
- Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | | | | | | | - Cheryl Maduro
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, London, UK
| | - Sara Wells
- Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Frances K Wiseman
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, London, UK.,The UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
22
|
Yamaguchi K, So M, Aguirre C, Ikenaka K, Mochizuki H, Kawata Y, Goto Y. Polyphosphates induce amyloid fibril formation of α-synuclein in concentration-dependent distinct manners. J Biol Chem 2021; 296:100510. [PMID: 33676889 PMCID: PMC8059054 DOI: 10.1016/j.jbc.2021.100510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
Polyphosphates (polyPs), chains of phosphate residues found in species across nature from bacteria to mammals, were recently reported to accelerate the amyloid fibril formation of many proteins. How polyPs facilitate this process, however, remains unknown. To gain insight into their mechanisms, we used various physicochemical approaches to examine the effects of polyPs of varying chain lengths on ultrasonication-dependent α-synuclein (α-syn) amyloid formation. Although orthophosphate and diphosphate exhibited a single optimal concentration of amyloid formation, triphosphate and longer-chain phosphates exhibited two optima, with the second at a concentration lower than that of orthophosphate or diphosphate. The second optimum decreased markedly as the polyP length increased. This suggested that although the optima at lower polyP concentrations were caused by interactions between negatively charged phosphate groups and the positive charges of α-syn, the optima at higher polyP concentrations were caused by the Hofmeister salting-out effects of phosphate groups, where the effects do not depend on the net charge. NMR titration experiments of α-syn with tetraphosphate combined with principal component analysis revealed that, at low tetraphosphate concentrations, negatively charged tetraphosphates interacted with positively charged "KTK" segments in four KTKEGV repeats located at the N-terminal region. At high concentrations, hydrated tetraphosphates affected the surface-exposed hydrophilic groups of compact α-syn. Taken together, our results suggest that long-chain polyPs consisting of 60 to 70 phosphates induce amyloid formation at sub-μM concentrations, which are comparable with the concentrations of polyPs in the blood or tissues. Thus, these findings may identify a role for polyPs in the pathogenesis of amyloid-related diseases.
Collapse
Affiliation(s)
- Keiichi Yamaguchi
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan; Institute for Protein Research, Osaka University, Osaka, Japan
| | - Masatomo So
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - César Aguirre
- Institute for Protein Research, Osaka University, Osaka, Japan; Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan; Institute for Protein Research, Osaka University, Osaka, Japan.
| |
Collapse
|
23
|
Pras A, Nollen EAA. Regulation of Age-Related Protein Toxicity. Front Cell Dev Biol 2021; 9:637084. [PMID: 33748125 PMCID: PMC7973223 DOI: 10.3389/fcell.2021.637084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/10/2021] [Indexed: 12/23/2022] Open
Abstract
Proteome damage plays a major role in aging and age-related neurodegenerative diseases. Under healthy conditions, molecular quality control mechanisms prevent toxic protein misfolding and aggregation. These mechanisms include molecular chaperones for protein folding, spatial compartmentalization for sequestration, and degradation pathways for the removal of harmful proteins. These mechanisms decline with age, resulting in the accumulation of aggregation-prone proteins that are harmful to cells. In the past decades, a variety of fast- and slow-aging model organisms have been used to investigate the biological mechanisms that accelerate or prevent such protein toxicity. In this review, we describe the most important mechanisms that are required for maintaining a healthy proteome. We describe how these mechanisms decline during aging and lead to toxic protein misassembly, aggregation, and amyloid formation. In addition, we discuss how optimized protein homeostasis mechanisms in long-living animals contribute to prolonging their lifespan. This knowledge might help us to develop interventions in the protein homeostasis network that delay aging and age-related pathologies.
Collapse
Affiliation(s)
| | - Ellen A. A. Nollen
- Laboratory of Molecular Neurobiology of Ageing, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
24
|
Evidence of the existence of micellar-like aggregates for α-synuclein. Int J Biol Macromol 2021; 177:392-400. [PMID: 33631264 DOI: 10.1016/j.ijbiomac.2021.02.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/14/2021] [Accepted: 02/20/2021] [Indexed: 11/20/2022]
Abstract
We have been investigating the early stages of α-synuclein (Syn) aggregation, a small presynaptic protein implicated in Parkinson's disease. We previously reported that for pH jumps (1000 s) from pH 7 to pH 2 the variation of the Syn intrinsic fluorescence intensity did not change in the concentration range of ca. 10-50 μM (ref. 16). Additionally, I reported dynamic light scattering (DLS) experiments revealing the formation of early large Syn aggregates (ref. 7). These reported results mean that some molecular entity is being early formed. Herein, it was decided to investigate in detail these early Syn aggregates by using light scattering. By DLS analysis, these aggregates exhibited a hydrodynamic diameter of ca. 420 nm along with a high scattering intensity, characteristic of micellar-like aggregates formation. The critical micelle concentration (CMC) at which the Syn micellar-like aggregates are formed was ca. 10 μM. DLS analysis has also revealed that the micellar-like aggregates for Syn evolved, for protein concentrations >100 μM, to the formation of smaller aggregates (hydrodynamic diameter of ca. 165 nm), possibly Syn oligomers. The Syn micellar-like aggregates formed at pH 7 solutions seem to be active species and to have a role in this protein aggregation mechanism.
Collapse
|
25
|
Saraiva MA. Interpretation of α-synuclein UV absorption spectra in the peptide bond and the aromatic regions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 212:112022. [DOI: 10.1016/j.jphotobiol.2020.112022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/14/2020] [Accepted: 09/05/2020] [Indexed: 10/23/2022]
|
26
|
Pontoriero L, Schiavina M, Murrali MG, Pierattelli R, Felli IC. Monitoring the Interaction of α‐Synuclein with Calcium Ions through Exclusively Heteronuclear Nuclear Magnetic Resonance Experiments. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Letizia Pontoriero
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
| | - Marco Schiavina
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
| | - Maria Grazia Murrali
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
- Present address: Department of Chemistry and Biochemistry University of California at Los Angeles USA
| | - Roberta Pierattelli
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
| | - Isabella C. Felli
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
| |
Collapse
|
27
|
Pontoriero L, Schiavina M, Murrali MG, Pierattelli R, Felli IC. Monitoring the Interaction of α‐Synuclein with Calcium Ions through Exclusively Heteronuclear Nuclear Magnetic Resonance Experiments. Angew Chem Int Ed Engl 2020; 59:18537-18545. [DOI: 10.1002/anie.202008079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/14/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Letizia Pontoriero
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
| | - Marco Schiavina
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
| | - Maria Grazia Murrali
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
- Present address: Department of Chemistry and Biochemistry University of California at Los Angeles USA
| | - Roberta Pierattelli
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
| | - Isabella C. Felli
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
| |
Collapse
|
28
|
Pravin N, Kumar R, Tripathi S, Kumar P, Mohite GM, Navalkar A, Panigrahi R, Singh N, Gadhe LG, Manchanda S, Shimozawa M, Nilsson P, Johansson J, Kumar A, Maji SK, Shanmugam M. Benzimidazole-based fluorophores for the detection of amyloid fibrils with higher sensitivity than Thioflavin-T. J Neurochem 2020; 156:1003-1019. [PMID: 32750740 DOI: 10.1111/jnc.15138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022]
Abstract
Protein aggregation into amyloid fibrils is a key feature of a multitude of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Prion disease. To detect amyloid fibrils, fluorophores with high sensitivity and better efficiency coupled with the low toxicity are in high demand even to date. In this pursuit, we have unveiled two benzimidazole-based fluorescence sensors ([C15 H15 N3 ] (C1) and [C16 H16 N3 O2 ] (C2), which possess exceptional affinity toward different amyloid fibrils in its submicromolar concentration (8 × 10-9 M), whereas under a similar concentration, the gold standard Thioflavin-T (ThT) fails to bind with amyloid fibrils. These fluorescent markers bind to α-Syn amyloid fibrils as well as amyloid fibrils forming other proteins/peptides including Aβ42 amyloid fibrils. The 1 H-15 N heteronuclear quantum correlation spectroscopy nuclear magnetic resonance data collected on wild-type α-Syn monomer with and without the fluorophores (C1 and C2) reveal that there is weak or no interactions between C1 or C2 with residues in α-Syn monomer, which indirectly reflects the specific binding ability of C1 and C2 to the α-Syn amyloid fibrils. Detailed studies further suggest that C1 and C2 can detect/bind with the α-Syn amyloid fibril as low as 100 × 10-9 M. Extremely low or no cytotoxicity is observed for C1 and C2 and they do not interfere with α-Syn fibrillation kinetics, unlike ThT. Both C1/C2 not only shows selective binding with amyloid fibrils forming various proteins/peptides but also displays excellent affinity and selectivity toward α-Syn amyloid aggregates in SH-SY5Y cells and Aβ42 amyloid plaques in animal brain tissues. Overall, our data show that the developed dyes could be used for the detection of amyloid fibrils including α-Syn and Aβ42 amyloids with higher sensitivity as compared to currently used ThT.
Collapse
Affiliation(s)
- Narayanaperumal Pravin
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Shalini Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Pardeep Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ganesh M Mohite
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Rajlaxmi Panigrahi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Namrata Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Laxmikant G Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Shaffi Manchanda
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Makoto Shimozawa
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Per Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Jan Johansson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
29
|
Meyer NH, Dellago H, Tam-Amersdorfer C, Merle DA, Parlato R, Gesslbauer B, Almer J, Gschwandtner M, Leon A, Franzmann TM, Grillari J, Kungl AJ, Zangger K, Falsone SF. Structural Fuzziness of the RNA-Organizing Protein SERF Determines a Toxic Gain-of-interaction. J Mol Biol 2019; 432:930-951. [PMID: 31794729 DOI: 10.1016/j.jmb.2019.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022]
Abstract
The mechanisms by which protein complexes convert from functional to pathogenic are the subject of intensive research. Here, we report how functionally unfavorable protein interactions can be induced by structural fuzziness, i.e., by persisting conformational disorder in protein complexes. We show that extreme disorder in the bound state transforms the intrinsically disordered protein SERF1a from an RNA-organizing factor into a pathogenic enhancer of alpha-synuclein (aSyn) amyloid toxicity. We demonstrate that SERF1a promotes the incorporation of RNA into nucleoli and liquid-like artificial RNA-organelles by retaining an unusually high degree of conformational disorder in the RNA-bound state. However, this type of structural fuzziness also determines an undifferentiated interaction with aSyn. RNA and aSyn both bind to one identical, positively charged site of SERF1a by an analogous electrostatic binding mode, with similar binding affinities, and without any observable disorder-to-order transition. The absence of primary or secondary structure discriminants results in SERF1a being unable to select between nucleic acid and amyloidogenic protein, leading the pro-amyloid aSyn:SERF1a interaction to prevail in the cytosol under conditions of cellular stress. We suggest that fuzzy disorder in SERF1a complexes accounts for an adverse gain-of-interaction which favors toxic binding to aSyn at the expense of nontoxic RNA binding, thereby leading to a functionally distorted and pathogenic process. Thus, structural fuzziness constitutes a direct link between extreme conformational flexibility, amyloid aggregation, and the malfunctioning of RNA-associated cellular processes, three signatures of neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- N Helge Meyer
- Division of Experimental Allergology and Immunodermatology, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Hanna Dellago
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Wien, Austria
| | - Carmen Tam-Amersdorfer
- Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstr. 31, 8010 Graz, Austria
| | - David A Merle
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036 Graz, Austria
| | - Rosanna Parlato
- Institute of Applied Physiology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstr. 1, 8010 Graz, Austria
| | - Johannes Almer
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstr. 1, 8010 Graz, Austria
| | - Martha Gschwandtner
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstr. 1, 8010 Graz, Austria
| | - A Leon
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstr. 1, 8010 Graz, Austria
| | - Titus M Franzmann
- Biotechnology Center of the TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Johannes Grillari
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Wien, Austria; Ludwig Boltzmann Institute of Experimental and Clinical Traumatology, Donaueschingenstr. 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Andreas J Kungl
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstr. 1, 8010 Graz, Austria
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, Heinrichstr. 28, 8010 Graz, Austria
| | - S Fabio Falsone
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstr. 1, 8010 Graz, Austria; Steiermärkische Krankenanstaltengesellschaft m.b.H. (KAGes), Stiftingtalstraße 4-6, 8010, Graz, Austria.
| |
Collapse
|
30
|
SERF engages in a fuzzy complex that accelerates primary nucleation of amyloid proteins. Proc Natl Acad Sci U S A 2019; 116:23040-23049. [PMID: 31659041 DOI: 10.1073/pnas.1913316116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The assembly of small disordered proteins into highly ordered amyloid fibrils in Alzheimer's and Parkinson's patients is closely associated with dementia and neurodegeneration. Understanding the process of amyloid formation is thus crucial in the development of effective treatments for these devastating neurodegenerative diseases. Recently, a tiny, highly conserved and disordered protein called SERF was discovered to modify amyloid formation in Caenorhabditis elegans and humans. Here, we use kinetics measurements and native ion mobility-mass spectrometry to show that SERF mainly affects the rate of primary nucleation in amyloid formation for the disease-related proteins Aβ40 and α-synuclein. SERF's high degree of plasticity enables it to bind various conformations of monomeric Aβ40 and α-synuclein to form structurally diverse, fuzzy complexes. This structural diversity persists into early stages of amyloid formation. Our results suggest that amyloid nucleation is considerably more complex than age-related conversion of Aβ40 and α-synuclein into single amyloid-prone conformations.
Collapse
|
31
|
Pan BB, Yang Y, Liu HZ, Li YH, Su XC. Coordination of Platinum to α-Synuclein Inhibits Filamentous Aggregation in Solution. Chembiochem 2019; 20:1953-1958. [PMID: 30958607 DOI: 10.1002/cbic.201900224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Indexed: 12/18/2022]
Abstract
Accumulation of filamentous aggregates of α-synuclein (AS) in Lewy bodies and neurites is characteristic of neurodegenerative diseases such as Parkinson's disease. Inhibition of AS fibrillation is helpful for understanding of AS aggregate structure and for developing chemical therapies. Herein, we report that the PtII -containing antitumor drug cisplatin suppresses filamentous aggregation of AS in solution. PtII thus contrasts strongly with reported transition-metal ions such as MnII , FeIII , and CuII , which accelerate AS aggregation. Interaction between PtII and the side chains of methionine and histidine residues was essential for inhibition of AS fibrillation. Binding of PtII to AS did not change the protein's overall random coil structure, as indicated by solution-state two-dimensional NMR and circular dichroism spectroscopy; and a solution of the AS⋅PtII complex remained free of filamentous aggregates. Our results constitute interesting new information about the biological chemistry of metal ions in Parkinson's disease and might open new lines of research into the suppression of filamentous aggregation.
Collapse
Affiliation(s)
- Bin-Bin Pan
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yin Yang
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hui-Zhong Liu
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yi-Hua Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
32
|
Merle DA, Witternigg A, Tam-Amersdorfer C, Hartlmüller C, Spreitzer E, Schrank E, Wagner-Lichtenegger S, Werzer O, Zangger K, Kungl AJ, Madl T, Meyer NH, Falsone SF. Increased Aggregation Tendency of Alpha-Synuclein in a Fully Disordered Protein Complex. J Mol Biol 2019; 431:2581-2598. [PMID: 31034892 DOI: 10.1016/j.jmb.2019.04.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/17/2023]
Abstract
The recent discovery of biologically active fully disordered, so called random fuzzy protein-protein interactions leads to the question of how the high flexibility of these protein complexes correlates to aggregation and pathologic misfolding. We identify the structural mechanism by which a random fuzzy protein complex composed of the intrinsically disordered proteins alpha-Synuclein and SERF1a is able to potentiate cytotoxic aggregation. A structural model derived from an integrated NMR/SAXS analysis of the reconstituted aSyn:SERF1a complex enabled us to observe the partial deprotection of one precise aSyn amyloid nucleation element in the fully unstructured ensemble. This minimal exposure was sufficient to increase the amyloidogenic tendency of SERF1a-bound aSyn. Our findings provide a structural explanation of the previously observed pro-amyloid activity of SERF1a. They further demonstrate that random fuzziness can trigger a structurally organized disease-associated reaction such as amyloid polymerization.
Collapse
Affiliation(s)
- David A Merle
- Institute of Chemistry, University of Graz, Heinrichstr. 28, 8010 Graz, Austria
| | - Anja Witternigg
- Institute of Chemistry, University of Graz, Heinrichstr. 28, 8010 Graz, Austria
| | - Carmen Tam-Amersdorfer
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstr, 31, 8010 Graz, Austria
| | - Christoph Hartlmüller
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr. 4, 87548, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Emil Spreitzer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Institute of Molecular Biology & Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Evelyne Schrank
- Institute of Chemistry, University of Graz, Heinrichstr. 28, 8010 Graz, Austria
| | - Sabine Wagner-Lichtenegger
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Oliver Werzer
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstr. 1, 8010 Graz, Austria
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, Heinrichstr. 28, 8010 Graz, Austria
| | - Andreas J Kungl
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstr. 1, 8010 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Institute of Molecular Biology & Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria.
| | - N Helge Meyer
- Division of Experimental Allergology and Immunodermatology, Department of Human Medicine, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany.
| | - S Fabio Falsone
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstr. 1, 8010 Graz, Austria.
| |
Collapse
|
33
|
The free energy landscape of the oncogene protein E7 of human papillomavirus type 16 reveals a complex interplay between ordered and disordered regions. Sci Rep 2019; 9:5822. [PMID: 30967564 PMCID: PMC6456579 DOI: 10.1038/s41598-019-41925-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/19/2019] [Indexed: 11/20/2022] Open
Abstract
When present, structural disorder makes it very challenging to characterise the conformational properties of proteins. This is particularly the case of proteins, such as the oncogene protein E7 of human papillomavirus type 16, which contain both ordered and disordered domains, and that can populate monomeric and oligomeric states under physiological conditions. Nuclear magnetic resonance (NMR) spectroscopy is emerging as a powerful method to study these complex systems, most notably in combination with molecular dynamics simulations. Here we use NMR chemical shifts and residual dipolar couplings as structural restraints in replica-averaged molecular dynamics simulations to determine the free energy landscape of E7. This landscape reveals a complex interplay between a folded but highly dynamical C-terminal domain and a disordered N-terminal domain that forms transient secondary and tertiary structures, as well as an equilibrium between a high-populated (98%) dimeric state and a low-populated (2%) monomeric state. These results provide compelling evidence of the complex conformational heterogeneity associated with the behaviour and interactions of this disordered protein associated with disease.
Collapse
|
34
|
Falke M, Victor J, Wördehoff MM, Peduzzo A, Zhang T, Schröder GF, Buell AK, Hoyer W, Etzkorn M. α-Synuclein-derived lipoparticles in the study of α-Synuclein amyloid fibril formation. Chem Phys Lipids 2019; 220:57-65. [PMID: 30826264 PMCID: PMC6451039 DOI: 10.1016/j.chemphyslip.2019.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/23/2022]
Abstract
Aggregation of the protein α-Synuclein (αSyn) is of great interest due to its involvement in the pathology of Parkinson’s disease. However, under in vitro conditions αSyn is very soluble and kinetically stable for extended time periods. As a result, most αSyn aggregation assays rely on conditions that artificially induce or enhance aggregation, often by introducing rather non-native conditions. It has been shown that αSyn interacts with membranes and conditions have been identified in which membranes can promote as well as inhibit αSyn aggregation. It has also been shown that αSyn has the intrinsic capability to assemble lipid-protein-particles, in a similar way as apolipoproteins can form lipid-bilayer nanodiscs. Here we show that these αSyn-lipid particles (αSyn-LiPs) can also effectively induce, accelerate or inhibit αSyn aggregation, depending on the applied conditions. αSyn-LiPs therefore provide a general platform and additional tool, complementary to other setups, to study various aspects of αSyn amyloid fibril formation.
Collapse
Affiliation(s)
- Marcel Falke
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Julian Victor
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Michael M Wördehoff
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Alessia Peduzzo
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Tao Zhang
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Gunnar F Schröder
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, Germany
| | - Alexander K Buell
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Manuel Etzkorn
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany; Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, Germany.
| |
Collapse
|
35
|
α-Synuclein interacts directly but reversibly with psychosine: implications for α-synucleinopathies. Sci Rep 2018; 8:12462. [PMID: 30127535 PMCID: PMC6102231 DOI: 10.1038/s41598-018-30808-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/01/2018] [Indexed: 12/27/2022] Open
Abstract
Aggregation of α-synuclein, the hallmark of α-synucleinopathies such as Parkinson’s disease, occurs in various glycosphingolipidoses. Although α-synuclein aggregation correlates with deficiencies in the lysosomal degradation of glycosphingolipids (GSL), the mechanism(s) involved in this aggregation remains unclear. We previously described the aggregation of α-synuclein in Krabbe’s disease (KD), a neurodegenerative glycosphingolipidosis caused by lysosomal deficiency of galactosyl-ceramidase (GALC) and the accumulation of the GSL psychosine. Here, we used a multi-pronged approach including genetic, biophysical and biochemical techniques to determine the pathogenic contribution, reversibility, and molecular mechanism of aggregation of α-synuclein in KD. While genetic knock-out of α-synuclein reduces, but does not completely prevent, neurological signs in a mouse model of KD, genetic correction of GALC deficiency completely prevents α-synuclein aggregation. We show that psychosine forms hydrophilic clusters and binds the C-terminus of α-synuclein through its amino group and sugar moiety, suggesting that psychosine promotes an open/aggregation-prone conformation of α-synuclein. Dopamine and carbidopa reverse the structural changes of psychosine by mediating a closed/aggregation-resistant conformation of α-synuclein. Our results underscore the therapeutic potential of lysosomal correction and small molecules to reduce neuronal burden in α-synucleinopathies, and provide a mechanistic understanding of α-synuclein aggregation in glycosphingolipidoses.
Collapse
|
36
|
Pandemic Avian Influenza and Intra/Interhaemagglutinin Subtype Electrostatic Variation among Viruses Isolated from Avian, Mammalian, and Human Hosts. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3870508. [PMID: 29888260 PMCID: PMC5985083 DOI: 10.1155/2018/3870508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/12/2018] [Accepted: 03/14/2018] [Indexed: 11/18/2022]
Abstract
Host jump can result in deadly pandemic events when avian influenza A viruses broaden their host specificity and become able to infect mammals, including humans. Haemagglutinin—the major capsid protein in influenza A viruses—is subjected to high rate mutations, of which several occur at its “head”: the receptor-binding domain that mediates specific binding to host cell receptors. Such surface-changing mutations may lead to antigenically novel influenza A viruses hence in pandemics by host jump and in vaccine escape by antigenic drift. Changes in haemagglutinin surface electrostatics have been recently associated with antigenic drift and with clades evolution and spreading in H5N1 and H9N2 viruses. We performed a comparative analysis of haemagglutinin surface electrostatics to investigate clustering and eventual fingerprints among representative pandemic (H5 and H7) and nonpandemic (H4 and H6) avian influenza viral subtypes. We observed preferential sorting of viruses isolated from mammalian/human hosts among these electrostatic clusters of a subtype; however, sorting was not “100% specific” to the different clusters. Therefore, electrostatic fingerprints can help in understanding, but they cannot explain alone the host jumping mechanism.
Collapse
|
37
|
Adrain C, Henis-Korenblit S, Domingos PM. Meeting Report - proteostasis in Ericeira. J Cell Sci 2018; 131:131/5/jcs216150. [PMID: 29496898 DOI: 10.1242/jcs.216150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was a sunny Ericeira, in Portugal, that received the participants of the EMBO Workshop on Proteostasis, from 17 to 21 November 2017. Most participants gave talks or presented posters concerning their most recent research results, and lively scientific discussions occurred against the backdrop of the beautiful Atlantic Ocean.Proteostasis is the portmanteau of the words protein and homeostasis, and it refers to the biological mechanisms controlling the biogenesis, folding, trafficking and degradation of proteins in cells. An imbalance in proteostasis can lead to the accumulation of misfolded proteins or excessive protein degradation, and is associated with many human diseases. A wide variety of research approaches are used to identify the mechanisms that regulate proteostasis, typically involving different model organisms (yeast, invertebrates or mammalian systems) and different methodologies (genetics, biochemistry, biophysics, structural biology, cell biology and organismal biology). Around 140 researchers in the proteostasis field met in the Hotel Vila Galé, Ericeira, Portugal for the EMBO Workshop in Proteostasis, organized by Pedro Domingos (ITQB-NOVA, Oeiras, Portugal) and Colin Adrain (IGC, Oeiras, Portugal). In this report, we attempt to review and integrate the ideas that emerged at the workshop. Owing to space restrictions, we could not cover all talks or posters and we apologize to the colleagues whose presentations could not be discussed.
Collapse
Affiliation(s)
- Colin Adrain
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Pedro M Domingos
- Instituto de Tecnologia Química e Biológica (ITQB-NOVA), Oeiras, Portugal
| |
Collapse
|