1
|
Tian X, Wang H, Liu S, Liu W, Zhang K, Gao X, Li Q, Zhao H, Zhang L, Liu P, Liu M, Wang Y, Zhu X, Cui R, Zhou J. Melanocortin 1 receptor mediates melanin production by interacting with the BBSome in primary cilia. PLoS Biol 2024; 22:e3002940. [PMID: 39621784 PMCID: PMC11637432 DOI: 10.1371/journal.pbio.3002940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/12/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Production of melanin pigments is a protective mechanism of the skin against ultraviolet (UV)-induced damage and carcinogenesis. However, the molecular basis for melanogenesis is still poorly understood. Herein, we demonstrate a critical interplay between the primary cilium and the melanocortin 1 receptor (MC1R) signaling. Our data show that UV and α-melanocyte-stimulating hormone (α-MSH) trigger cilium formation in human melanocytes and melanoma cells. Deficiency of MC1R or the presence of its red hair color (RHC) variations significantly attenuates the UV/α-MSH-induced ciliogenesis. Further investigation reveals that MC1R enters the cilium upon UV/α-MSH stimulation, which is facilitated by the interaction of MC1R with the BBSome and the palmitoylation of MC1R. MC1R interacts with the BBSome through the second and third intercellular loops, which contain the common RHC variant alleles (R151C and R160W). These RHC variants of MC1R exhibit attenuated ciliary localization, and enforced ciliary localization of these variants elevates melanogenesis. Ciliary MC1R triggers a sustained cAMP signaling and selectively stimulates Sox9, which appears to up-regulate melanogenesis-related genes as the transcriptional cofactor for MITF. These findings reveal a previously unrecognized nexus between MC1R and cilia and suggest an important mechanism for RHC variant-related pigmentary defects.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hanyu Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Song Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Kaiyue Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiaohan Gao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Liangran Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Peiwei Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Youjun Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University, Hangzhou, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Brinzer RA, Winter AD, Page AP. The relationship between intraflagellar transport and upstream protein trafficking pathways and macrocyclic lactone resistance in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2024; 14:jkae009. [PMID: 38227795 PMCID: PMC10917524 DOI: 10.1093/g3journal/jkae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Parasitic nematodes are globally important and place a heavy disease burden on infected humans, crops, and livestock, while commonly administered anthelmintics used for treatment are being rendered ineffective by increasing levels of resistance. It has recently been shown in the model nematode Caenorhabditis elegans that the sensory cilia of the amphid neurons play an important role in resistance toward macrocyclic lactones such as ivermectin (an avermectin) and moxidectin (a milbemycin) either through reduced uptake or intertissue signaling pathways. This study interrogated the extent to which ciliary defects relate to macrocyclic lactone resistance and dye-filling defects using a combination of forward genetics and targeted resistance screening approaches and confirmed the importance of intraflagellar transport in this process. This approach also identified the protein trafficking pathways used by the downstream effectors and the components of the ciliary basal body that are required for effector entry into these nonmotile structures. In total, 24 novel C. elegans anthelmintic survival-associated genes were identified in this study. When combined with previously known resistance genes, there are now 46 resistance-associated genes that are directly involved in amphid, cilia, and intraflagellar transport function.
Collapse
Affiliation(s)
- Robert A Brinzer
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland G61 1QH, UK
| | - Alan D Winter
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland G61 1QH, UK
| | - Antony P Page
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland G61 1QH, UK
| |
Collapse
|
3
|
Liu Z, Wang J, Xie S, Zhang B, Yuan Y, Fu H, Hao H, Sun L, Yuan S, Ding J, Yu H, Yang M. Lasiokaurin Regulates PLK1 to Induce Breast Cancer Cell G2/M Phase Block and Apoptosis. J Cancer 2024; 15:2318-2328. [PMID: 38495493 PMCID: PMC10937283 DOI: 10.7150/jca.93621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Aim of the study: To investigate the anti-tumor effects of Lasiokaurin on breast cancer and explore its underlying molecular mechanism. Materials and methods: In this study, MTT assay, plate colony formation assays, soft agar assay, and EdU assay were employed to evaluate the anti-proliferation effects of LAS. Apoptosis and cell cycle distribution were detected by flow cytometry. The molecular mechanism was predicted by performing RNA sequencing and verified by using immunoblotting assays. Breast cancer organiods derived from patient-derived xenografts model and MDA-MB-231 xenograft mouse model were established to assess the effect of LAS. Results: Our study showed that LAS treatment significantly suppressed cell viability of 5 breast cancer cell lines, with the IC50 value of approximately 1-5 μM. LAS also inhibitied the clonogenic ability and DNA synthesis of breast cancer cells, Moreover, LAS induced apoptosis and G2/M cell cycle arrest in SK-BR-3 and MDA-MB-231 cells. Notably, transcriptomic analysis predicted the mechanistic involvement of PLK1 in LAS-suppressed breast cancer progression. Our experiment data further verified that LAS reduced PLK1 mRNA and protein expression in breast cancer, accompanied by downregulating CDC25C and AKT phosphorylation. Ultimately, we confirmed that LAS inhibit breast cancer growth via inhibiting PLK1 pathway in vivo. Conclusions: Collectively, our findings revealed that LAS inhibits breast cancer progression via regulating PLK1 pathway, which provids scientific evidence for the use of traditional Chinese medicine in cancer therapy.
Collapse
Affiliation(s)
- Zhengrui Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| | - Jia Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| | - Siman Xie
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| | - Benteng Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| | - Yan Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| | - Huaizi Fu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| | - Hongyun Hao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| | - Jian Ding
- Chinese Academy of Sciences Shanghai Institute of Materia Medica, Shanghai, China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Mei Yang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Tian X, Zhao H, Zhou J. Organization, functions, and mechanisms of the BBSome in development, ciliopathies, and beyond. eLife 2023; 12:e87623. [PMID: 37466224 DOI: 10.7554/elife.87623] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
The BBSome is an octameric protein complex that regulates ciliary transport and signaling. Mutations in BBSome subunits are closely associated with ciliary defects and lead to ciliopathies, notably Bardet-Biedl syndrome. Over the past few years, there has been significant progress in elucidating the molecular organization and functions of the BBSome complex. An improved understanding of BBSome-mediated biological events and molecular mechanisms is expected to help advance the development of diagnostic and therapeutic approaches for BBSome-related diseases. Here, we review the current literature on the structural assembly, transport regulation, and molecular functions of the BBSome, emphasizing its roles in cilium-related processes. We also provide perspectives on the pathological role of the BBSome in ciliopathies as well as how these can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Wang J, Wang W, Shen L, Zheng A, Meng Q, Li H, Yang S. Clinical detection, diagnosis and treatment of morphological abnormalities of sperm flagella: A review of literature. Front Genet 2022; 13:1034951. [PMID: 36425067 PMCID: PMC9679630 DOI: 10.3389/fgene.2022.1034951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2023] Open
Abstract
Sperm carries male genetic information, and flagella help move the sperm to reach oocytes. When the ultrastructure of the flagella is abnormal, the sperm is unable to reach the oocyte and achieve insemination. Multiple morphological abnormalities of sperm flagella (MMAF) is a relatively rare idiopathic condition that is mainly characterized by multiple defects in sperm flagella. In the last decade, with the development of high-throughput DNA sequencing approaches, many genes have been revealed to be related to MMAF. However, the differences in sperm phenotypes and reproductive outcomes in many cases are attributed to different pathogenic genes or different pathogenic mutations in the same gene. Here, we will review information about the various phenotypes resulting from different pathogenic genes, including sperm ultrastructure and encoding proteins with their location and functions as well as assisted reproductive technology (ART) outcomes. We will share our clinical detection and diagnosis experience to provide additional clinical views and broaden the understanding of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shenmin Yang
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
6
|
Wang W, Meng L, He J, Su L, Li Y, Tan C, Xu X, Nie H, Zhang H, Du J, Lu G, Luo M, Lin G, Tu C, Tan YQ. Bi-allelic variants in SHOC1 cause non-obstructive azoospermia with meiosis arrest in humans and mice. Mol Hum Reprod 2022; 28:6575911. [PMID: 35485979 DOI: 10.1093/molehr/gaac015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/08/2022] [Indexed: 11/14/2022] Open
Abstract
Meiosis is pivotal to gametogenesis and fertility. Meiotic recombination is a mandatory process that ensures faithful chromosome segregation and generates genetic diversity in gametes. Non-obstructive azoospermia (NOA) caused by meiotic arrest is a common cause of male infertility and has many genetic origins, including chromosome abnormalities, Y chromosome microdeletion and monogenic mutations. However, the genetic causes of the majority of NOA cases remain to be elucidated. Here, we report our findings of three Shortage in chiasmata 1 (SHOC1) bi-allelic variants in three NOA patients, of which two are homozygous for the same loss-of-function variant (c.231_232del: p. L78Sfs*9), and one is heterozygous for two different missense variants (c.1978G>A: p.A660T; c.4274G>A: p.R1425H). Testicular biopsy of one patient revealed impairment of spermatocyte maturation. Both germ-cell-specific and general Shoc1-knockout mice exhibited similar male infertility phenotypes. Subsequent analysis revealed comprehensive defects in homologous pairing and synapsis along with abnormal expression of DMC1, RAD51 and RPA2 in Shoc1-defective spermatocyte spreads. These findings imply that SHOC1 may have a presynaptic function during meiotic recombination apart from its previously identified role in crossover formation. Overall, our results provide strong evidence for the clinical relevance of SHOC1 mutations in patients with NOA and contribute to a deeper mechanistic understanding of the role of SHOC1 during meiotic recombination.
Collapse
Affiliation(s)
- Weili Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain
| | - Jiaxin He
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lilan Su
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yong Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Xilin Xu
- Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hongchuan Nie
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain
| | - Huan Zhang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Mengcheng Luo
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain.,College of Life Sciences, Hunan Normal University, Changsha, China.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha, China
| |
Collapse
|
7
|
Nandamuri SP, Lusk S, Kwan KM. Loss of zebrafish dzip1 results in inappropriate recruitment of periocular mesenchyme to the optic fissure and ocular coloboma. PLoS One 2022; 17:e0265327. [PMID: 35286359 PMCID: PMC8920261 DOI: 10.1371/journal.pone.0265327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 01/13/2023] Open
Abstract
Cilia are essential for the development and function of many different tissues. Although cilia machinery is crucial in the eye for photoreceptor development and function, a role for cilia in early eye development and morphogenesis is still somewhat unclear: many zebrafish cilia mutants retain cilia at early stages due to maternal deposition of cilia components. An eye phenotype has been described in the mouse Arl13 mutant, however, zebrafish arl13b is maternally deposited, and an early role for cilia proteins has not been tested in zebrafish eye development. Here we use the zebrafish dzip1 mutant, which exhibits a loss of cilia throughout stages of early eye development, to examine eye development and morphogenesis. We find that in dzip1 mutants, initial formation of the optic cup proceeds normally, however, the optic fissure subsequently fails to close and embryos develop the structural eye malformation ocular coloboma. Further, neural crest cells, which are implicated in optic fissure closure, do not populate the optic fissure correctly, suggesting that their inappropriate localization may be the underlying cause of coloboma. Overall, our results indicate a role for dzip1 in proper neural crest localization in the optic fissure and optic fissure closure.
Collapse
Affiliation(s)
- Sri Pratima Nandamuri
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States of America
| | - Sarah Lusk
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States of America
| | - Kristen M. Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
8
|
Lee M, Nagashima K, Yoon J, Sun J, Wang Z, Carpenter C, Lee HK, Hwang YS, Westlake CJ, Daar IO. CEP97 phosphorylation by Dyrk1a is critical for centriole separation during multiciliogenesis. J Cell Biol 2022; 221:e202102110. [PMID: 34787650 PMCID: PMC8719716 DOI: 10.1083/jcb.202102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022] Open
Abstract
Proper cilia formation in multiciliated cells (MCCs) is necessary for appropriate embryonic development and homeostasis. Multicilia share many structural characteristics with monocilia and primary cilia, but there are still significant gaps in our understanding of the regulation of multiciliogenesis. Using the Xenopus embryo, we show that CEP97, which is known as a negative regulator of primary cilia formation, interacts with dual specificity tyrosine phosphorylation regulated kinase 1A (Dyrk1a) to modulate multiciliogenesis. We show that Dyrk1a phosphorylates CEP97, which in turn promotes the recruitment of Polo-like kinase 1 (Plk1), which is a critical regulator of MCC maturation that functions to enhance centriole disengagement in cooperation with the enzyme Separase. Knockdown of either CEP97 or Dyrk1a disrupts cilia formation and centriole disengagement in MCCs, but this defect is rescued by overexpression of Separase. Thus, our study reveals that Dyrk1a and CEP97 coordinate with Plk1 to promote Separase function to properly form multicilia in vertebrate MCCs.
Collapse
Affiliation(s)
| | - Kunio Nagashima
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jaeho Yoon
- National Cancer Institute, Frederick, MD
| | - Jian Sun
- National Cancer Institute, Frederick, MD
| | - Ziqiu Wang
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Christina Carpenter
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | | | - Christopher J. Westlake
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | | |
Collapse
|
9
|
Iliaki S, Beyaert R, Afonina IS. Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochem Pharmacol 2021; 193:114747. [PMID: 34454931 DOI: 10.1016/j.bcp.2021.114747] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
PLK1 is an evolutionary conserved Ser/Thr kinase that is best known for its role in cell cycle regulation and is expressed predominantly during the G2/S and M phase of the cell cycle. PLK1-mediated phosphorylation of specific substrates controls cell entry into mitosis, centrosome maturation, spindle assembly, sister chromatid cohesion and cytokinesis. In addition, a growing body of evidence describes additional roles of PLK1 beyond the cell cycle, more specifically in the DNA damage response, autophagy, apoptosis and cytokine signaling. PLK1 has an indisputable role in cancer as it controls several key transcription factors and promotes cell proliferation, transformation and epithelial-to-mesenchymal transition. Furthermore, deregulation of PLK1 results in chromosome instability and aneuploidy. PLK1 is overexpressed in many cancers, which is associated with poor prognosis, making PLK1 an attractive target for cancer treatment. Additionally, PLK1 is involved in immune and neurological disorders including Graft versus Host Disease, Huntington's disease and Alzheimer's disease. Unfortunately, newly developed small compound PLK1 inhibitors have only had limited success so far, due to low therapeutic response rates and toxicity. In this review we will highlight the current knowledge about the established roles of PLK1 in mitosis regulation and beyond. In addition, we will discuss its tumor promoting but also tumor suppressing capacities, as well as the available PLK1 inhibitors, elaborating on their efficacy and limitations.
Collapse
Affiliation(s)
- Styliani Iliaki
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Inna S Afonina
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
10
|
Liu YJ, Li JP, Zeng SH, Han M, Liu SL, Zou X. DZIP1 Expression as a Prognostic Marker in Gastric Cancer: A Bioinformatics-Based Analysis. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1151-1168. [PMID: 34557018 PMCID: PMC8453447 DOI: 10.2147/pgpm.s325701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Purpose Gastric cancer (GC) is a common type of cancer worldwide. It can relapse and metastasize even after standard treatment; therefore, it has a poor prognosis. Moreover, sensitive biomarkers for prognosis prediction in GC are lacking. In this study, using a bioinformatics approach, we aimed to examine the value of DAZ Interacting Protein 1 (DZIP1) as a prognostic predictor and therapeutic target in GC. Methods We explored the clinical relevance, function, and molecular role of DZIP1 in GC using MethSurv, cBioPortal, TIMER, Gene Expression Profiling Interactive Analysis, IMEx, ONCOMINE, MEXPRESS, and EWAS Atlas databases. The GSE118919 dataset was used to plot receiver operating characteristic curves. Using The Cancer Genome Atlas, we developed a Cox regression model and assessed the clinical significance of DZIPs. In addition, we used the "xCELL" algorithm to make reliable immune infiltration estimations. Western blot and immunohistochemistry were used to examine protein expression. The results were visualized with the 'ggplot2' and "circlize" packages. Results In GC patients, DZIP1 was over-expressed at both the mRNA and protein levels. High levels of DZIP1 were found to be associated with poor survival in patients with GC. Our results indicated that DZIP1 could be involved in multiple cancer-related pathways such as the PI3K-Akt signaling pathway, WNT signaling pathway, and RAS signaling pathway, and its expression was correlated with the infiltration of activated myeloid dendritic cells, naive CD4+ T cells, and naive CD8+ T cells. Furthermore, we found that mutations in DZIP1 were correlated with a good prognosis in GC patients. Finally, we demonstrated a correlation between hypomethylation of the DZIP1 gene promoter and a poor prognosis in GC. Conclusion This study is the first to demonstrate a significant correlation between high levels of DZIP1 and a poor prognosis in GC patients. Our results clarify multiple potential mechanisms that could contribute to this correlation and may thus provide novel insights into the clinical diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Yuan-Jie Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,Department of No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Jie-Pin Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,Department of No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China.,Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, People's Republic of China
| | - Shu-Hong Zeng
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,Department of No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Mei Han
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Shen-Lin Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,Department of No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Xi Zou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| |
Collapse
|
11
|
Qi F, Zhou J. Multifaceted roles of centrosomes in development, health, and disease. J Mol Cell Biol 2021; 13:611-621. [PMID: 34264337 PMCID: PMC8648388 DOI: 10.1093/jmcb/mjab041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
The centrosome is a membrane-less organelle consisting of a pair of barrel-shaped centrioles and pericentriolar material and functions as the major microtubule-organizing center and signaling hub in animal cells. The past decades have witnessed the functional complexity and importance of centrosomes in various cellular processes such as cell shaping, division, and migration. In addition, centrosome abnormalities are linked to a wide range of human diseases and pathological states, such as cancer, reproductive disorder, brain disease, and ciliopathies. Herein, we discuss various functions of centrosomes in development and health, with an emphasis on their roles in germ cells, stem cells, and immune responses. We also discuss how centrosome dysfunctions are involved in diseases. A better understanding of the mechanisms regulating centrosome functions may lead the way to potential therapeutic targeting of this organelle in disease treatment.
Collapse
Affiliation(s)
- Feifei Qi
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence to: Feifei Qi, E-mail: ; Jun Zhou, E-mail:
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- Correspondence to: Feifei Qi, E-mail: ; Jun Zhou, E-mail:
| |
Collapse
|
12
|
Sufu negatively regulates both initiations of centrosome duplication and DNA replication. Proc Natl Acad Sci U S A 2021; 118:2026421118. [PMID: 34260378 DOI: 10.1073/pnas.2026421118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centrosome duplication and DNA replication are two pivotal events that higher eukaryotic cells use to initiate proliferation. While DNA replication is initiated through origin licensing, centrosome duplication starts with cartwheel assembly and is partly controlled by CP110. However, the upstream coordinator for both events has been, until now, a mystery. Here, we report that suppressor of fused protein (Sufu), a negative regulator of the Hedgehog (Hh) pathway playing a significant role in restricting the trafficking and function of glioma-related (Gli) proteins, acts as an upstream switch by facilitating CP110 phosphorylation by CDK2, promoting intranuclear Cdt1 degradation and excluding prereplication complex (pre-RC) components from chromosomes, independent of its canonical function in the Hh pathway. We found that Sufu localizes to both the centrosome and the nucleus and that knockout of Sufu induces abnormalities including centrosome amplification, increased nuclear size, multipolar spindle formation, and polyploidy. Serum stimulation promotes the elimination of Sufu from the centrosome by vesicle release at the ciliary tip and from the nucleus via protein degradation, which allows centrosome duplication and DNA replication to proceed. Collectively, this work reveals a mechanism through which Sufu negatively regulates the G1-S transition.
Collapse
|
13
|
Role of DZIP1-CBY-FAM92 transition zone complex in the basal body to membrane attachment and ciliary budding. Biochem Soc Trans 2021; 48:1067-1075. [PMID: 32491167 DOI: 10.1042/bst20191007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Cilia play important signaling or motile functions in various organisms. In Human, cilia dysfunctions are responsible for a wide range of diseases, called ciliopathies. Cilia assembly is a tightly controlled process, which starts with the conversion of the centriole into a basal body, leading to the formation of the ciliary bud that protrudes inside a ciliary vesicle and/or ultimately at the cell surface. Ciliary bud formation is associated with the assembly of the transition zone (TZ), a complex architecture of proteins of the ciliary base which plays critical functions in gating proteins in and out of the ciliary compartment. Many proteins are involved in the assembly of the TZ, which shows structural and functional variations in different cell types or organisms. In this review, we discuss how a particular complex, composed of members of the DZIP1, CBY and FAM92 families of proteins, is required for the initial stages of cilia assembly leading to ciliary bud formation and how their functional hierarchy contributes to TZ assembly. Moreover, we summarize how evidences in Drosophila reveal functional differences of the DZIP1-CBY-FAM92 complex in the different ciliated tissues of this organism. Whereas it is essential for proper TZ assembly in the two types of ciliated tissues, it is involved in stable anchoring of basal bodies to the plasma membrane in male germ cells. Overall, the DZIP1-CBY-FAM92 complex reveals a molecular assembly pathway required for the initial stages of ciliary bud formation and that is conserved from Drosophila to Human.
Collapse
|
14
|
Kolapalli SP, Sahu R, Chauhan NR, Jena KK, Mehto S, Das SK, Jain A, Rout M, Dash R, Swain RK, Lee DY, Rusten TE, Chauhan S, Chauhan S. RNA-Binding RING E3-Ligase DZIP3/hRUL138 Stabilizes Cyclin D1 to Drive Cell-Cycle and Cancer Progression. Cancer Res 2021; 81:315-331. [PMID: 33067265 PMCID: PMC7116596 DOI: 10.1158/0008-5472.can-20-1871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/02/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022]
Abstract
DZIP3/hRUL138 is a poorly characterized RNA-binding RING E3-ubiquitin ligase with functions in embryonic development. Here we demonstrate that DZIP3 is a crucial driver of cancer cell growth, migration, and invasion. In mice and zebrafish cancer models, DZIP3 promoted tumor growth and metastasis. In line with these results, DZIP3 was frequently overexpressed in several cancer types. Depletion of DZIP3 from cells resulted in reduced expression of Cyclin D1 and a subsequent G1 arrest and defect in cell growth. Mechanistically, DZIP3 utilized its two different domains to interact and stabilize Cyclin D1 both at mRNA and protein levels. Using an RNA-binding lysine-rich region, DZIP3 interacted with the AU-rich region in 3' untranslated region of Cyclin D1 mRNA and stabilized it. Using a RING E3-ligase domain, DZIP3 interacted and increased K63-linked ubiquitination of Cyclin D1 protein to stabilize it. Remarkably, DZIP3 interacted with, ubiquitinated, and stabilized Cyclin D1 predominantly in the G1 phase of the cell cycle, where it is needed for cell-cycle progression. In agreement with this, a strong positive correlation of mRNA expression between DZIP3 and Cyclin D1 in different cancer types was observed. Additionally, DZIP3 regulated several cell cycle proteins by modulating the Cyclin D1-E2F axes. Taken together, this study demonstrates for the first time that DZIP3 uses a unique two-pronged mechanism in its stabilization of Cyclin D1 to drive cell-cycle and cancer progression. SIGNIFICANCE: These findings show that DZIP3 is a novel driver of cell-cycle and cancer progression via its control of Cyclin D1 mRNA and protein stability in a cell-cycle phase-dependent manner. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/2/315/F1.large.jpg.
Collapse
Affiliation(s)
| | - Rinku Sahu
- Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Nishant R Chauhan
- Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Kautilya K Jena
- Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Subhash Mehto
- Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Saroj K Das
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ashish Jain
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Manaswini Rout
- Vascular Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Rupesh Dash
- Gene Therapy and Cancer Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Rajeeb K Swain
- Vascular Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - David Y Lee
- Department of Internal Medicine, Radiation Oncology, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Tor Erik Rusten
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Santosh Chauhan
- Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Swati Chauhan
- Gene Therapy and Cancer Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
15
|
Avidor-Reiss T, Carr A, Fishman EL. The sperm centrioles. Mol Cell Endocrinol 2020; 518:110987. [PMID: 32810575 PMCID: PMC7606549 DOI: 10.1016/j.mce.2020.110987] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Centrioles are eukaryotic subcellular structures that produce and regulate massive cytoskeleton superstructures. They form centrosomes and cilia, regulate new centriole formation, anchor cilia to the cell, and regulate cilia function. These basic centriolar functions are executed in sperm cells during their amplification from spermatogonial stem cells during their differentiation to spermatozoa, and finally, after fertilization, when the sperm fuses with the egg. However, sperm centrioles exhibit many unique characteristics not commonly observed in other cell types, including structural remodeling, centriole-flagellum transition zone migration, and cell membrane association during meiosis. Here, we discuss five roles of sperm centrioles: orchestrating early spermatogenic cell divisions, forming the spermatozoon flagella, linking the spermatozoon head and tail, controlling sperm tail beating, and organizing the cytoskeleton of the zygote post-fertilization. We present the historic discovery of the centriole as a sperm factor that initiates embryogenesis, and recent genetic studies in humans and other mammals evaluating the current evidence for the five functions of sperm centrioles. We also examine information connecting the various sperm centriole functions to distinct clinical phenotypes. The emerging picture is that centrioles are essential sperm components with remarkable functional diversity and specialization that will require extensive and in-depth future studies.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, USA; Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| | - Alexa Carr
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, USA
| | | |
Collapse
|
16
|
Lv M, Liu W, Chi W, Ni X, Wang J, Cheng H, Li WY, Yang S, Wu H, Zhang J, Gao Y, Liu C, Li C, Yang C, Tan Q, Tang D, Zhang J, Song B, Chen YJ, Li Q, Zhong Y, Zhang Z, Saiyin H, Jin L, Xu Y, Zhou P, Wei Z, Zhang C, He X, Zhang F, Cao Y. Homozygous mutations in DZIP1 can induce asthenoteratospermia with severe MMAF. J Med Genet 2020; 57:445-453. [PMID: 32051257 PMCID: PMC7361034 DOI: 10.1136/jmedgenet-2019-106479] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/02/2019] [Accepted: 12/21/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Asthenoteratospermia, one of the most common causes for male infertility, often presents with defective sperm heads and/or flagella. Multiple morphological abnormalities of the sperm flagella (MMAF) is one of the common clinical manifestations of asthenoteratospermia. Variants in several genes including DNAH1, CEP135, CATSPER2 and SUN5 are involved in the genetic pathogenesis of asthenoteratospermia. However, more than half of the asthenoteratospermia cases cannot be explained by the known pathogenic genes. METHODS AND RESULTS Two asthenoteratospermia-affected men with severe MMAF (absent flagella in >90% spermatozoa) from consanguineous families were subjected to whole-exome sequencing. The first proband had a homozygous missense mutation c.188G>A (p.Arg63Gln) of DZIP1 and the second proband had a homozygous stop-gain mutation c.690T>G (p.Tyr230*). Both of the mutations were neither detected in the human population genome data (1000 Genomes Project, Exome Aggregation Consortium) nor in our own data of a cohort of 875 Han Chinese control populations. DZIP1 encodes a DAZ (a protein deleted in azoospermia) interacting protein, which was associated with centrosomes in mammalian cells. Immunofluorescence staining of the centriolar protein Centrin1 indicated that the spermatozoa of the proband presented with abnormal centrosomes, including no concentrated centriolar dot or more than two centriolar dots. HEK293T cells transfected with two DZIP1-mutated constructs showed reduced DZIP1 level or truncated DZIP1. The Dzip1-knockout mice, generated by the CRSIPR-Cas9, revealed consistent phenotypes of severe MMAF. CONCLUSION Our study strongly suggests that homozygous DZIP1 mutations can induce asthenoteratospermia with severe MMAF. The deficiency of DZIP1 induces sperm centrioles dysfunction and causes the absence of flagella.
Collapse
Affiliation(s)
- Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Wangjie Liu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wangfei Chi
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xiaoqing Ni
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Jiajia Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Huiru Cheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Wei-Yu Li
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shenmin Yang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Junqiang Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Caihua Li
- Genesky Biotechnologies Inc, Shanghai, Shanghai, China
| | - Chenyu Yang
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, China
| | - Qing Tan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Jingjing Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Bing Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Yu-Jie Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Qiang Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Yading Zhong
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Hexige Saiyin
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Chuanmao Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China .,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China .,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| |
Collapse
|
17
|
Prosser SL, Pelletier L. Centriolar satellite biogenesis and function in vertebrate cells. J Cell Sci 2020; 133:133/1/jcs239566. [PMID: 31896603 DOI: 10.1242/jcs.239566] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Centriolar satellites are non-membranous cytoplasmic granules that concentrate in the vicinity of the centrosome, the major microtubule-organizing centre (MTOC) in animal cells. Originally assigned as conduits for the transport of proteins towards the centrosome and primary cilium, the complexity of satellites is starting to become apparent. Recent studies defined the satellite proteome and interactomes, placing hundreds of proteins from diverse pathways in association with satellites. In addition, studies on cells lacking satellites have revealed that the centrosome can assemble in their absence, whereas studies on acentriolar cells have demonstrated that satellite assembly is independent from an intact MTOC. A role for satellites in ciliogenesis is well established; however, their contribution to other cellular functions is poorly understood. In this Review, we discuss the developments in our understanding of centriolar satellite assembly and function, and why satellites are rapidly becoming established as governors of multiple cellular processes. We highlight the composition and biogenesis of satellites and what is known about the regulation of these aspects. Furthermore, we discuss the evolution from thinking of satellites as mere facilitators of protein trafficking to the centrosome to thinking of them being key regulators of protein localization and cellular proteostasis for a diverse set of pathways, making them of broader interest to fields beyond those focused on centrosomes and ciliogenesis.
Collapse
Affiliation(s)
- Suzanna L Prosser
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
18
|
Abstract
AbstractCentrosome is the main microtubule-organizing center in most animal cells. Its core structure, centriole, also assembles cilia and flagella that have important sensing and motility functions. Centrosome has long been recognized as a highly conserved organelle in eukaryotic species. Through electron microscopy, its ultrastructure was revealed to contain a beautiful nine-symmetrical core 60 years ago, yet its molecular basis has only been unraveled in the past two decades. The emergence of super-resolution microscopy allows us to explore the insides of a centrosome, which is smaller than the diffraction limit of light. Super-resolution microscopy also enables the compartmentation of centrosome proteins into different zones and the identification of their molecular interactions and functions. This paper compiles the centrosome architecture knowledge that has been revealed in recent years and highlights the power of several super-resolution techniques.
Collapse
|
19
|
Quarantotti V, Chen J, Tischer J, Gonzalez Tejedo C, Papachristou EK, D'Santos CS, Kilmartin JV, Miller ML, Gergely F. Centriolar satellites are acentriolar assemblies of centrosomal proteins. EMBO J 2019; 38:e101082. [PMID: 31304626 PMCID: PMC6627235 DOI: 10.15252/embj.2018101082] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 12/02/2022] Open
Abstract
Centrioles are core structural elements of both centrosomes and cilia. Although cytoplasmic granules called centriolar satellites have been observed around these structures, lack of a comprehensive inventory of satellite proteins impedes our understanding of their ancestry. To address this, we performed mass spectrometry (MS)-based proteome profiling of centriolar satellites obtained by affinity purification of their key constituent, PCM1, from sucrose gradient fractions. We defined an interactome consisting of 223 proteins, which showed striking enrichment in centrosome components. The proteome also contained new structural and regulatory factors with roles in ciliogenesis. Quantitative MS on whole-cell and centriolar satellite proteomes of acentriolar cells was performed to reveal dependencies of satellite composition on intact centrosomes. Although most components remained associated with PCM1 in acentriolar cells, reduced cytoplasmic and satellite levels were observed for a subset of centrosomal proteins. These results demonstrate that centriolar satellites and centrosomes form independently but share a substantial fraction of their proteomes. Dynamic exchange of proteins between these organelles could facilitate their adaptation to changing cellular environments during development, stress response and tissue homeostasis.
Collapse
Affiliation(s)
- Valentina Quarantotti
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - Jia‐Xuan Chen
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - Julia Tischer
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - Carmen Gonzalez Tejedo
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | | | - Clive S D'Santos
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - John V Kilmartin
- MRC Laboratory of Molecular BiologyCambridge Biomedical CampusCambridgeUK
| | - Martin L Miller
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - Fanni Gergely
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| |
Collapse
|
20
|
Zhang T, Xin G, Jia M, Zhuang T, Zhu S, Zhang B, Wang G, Jiang Q, Zhang C. The Plk1 kinase negatively regulates the Hedgehog signaling pathway by phosphorylating Gli1. J Cell Sci 2019; 132:jcs220384. [PMID: 30578313 DOI: 10.1242/jcs.220384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
Hedgehog (Hh) signaling is a highly conserved cell signaling pathway important for cell life, development and tumorigenesis. Increasing evidence suggests that the Hh signaling pathway functions in certain phases of the cell cycle. However, the coordination between Hh signaling and cell cycle control remains poorly understood. Here, we show that polo-like kinase-1 (Plk1), a critical protein kinase regulating many processes during the cell cycle, also regulates Hh signaling by phosphorylating and inhibiting Gli1, a downstream transcription factor of the Hh signaling pathway. Gli1 expression increases along with Hh signaling activation, leading to upregulation of Hh target genes, including cyclin E, during the G1 and S phases. Gli1 is phosphorylated at S481 by Plk1, and this phosphorylation facilitates the nuclear export and binding of Gli1 with its negative regulator Sufu, leading to a reduction in Hh signaling activity. Inhibition of Plk1 kinase activity led to Gli1 maintaining is role in promoting downstream gene expression. Collectively, our data reveal a novel mechanism regarding the crosstalk between Hh signaling and cell cycle control.
Collapse
Affiliation(s)
- Tingting Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guangwei Xin
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Tenghan Zhuang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shicong Zhu
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Boyan Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Gang Wang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Han KJ, Wu Z, Pearson CG, Peng J, Song K, Liu CW. Deubiquitylase USP9X maintains centriolar satellite integrity by stabilizing pericentriolar material 1 protein. J Cell Sci 2019; 132:jcs.221663. [PMID: 30584065 DOI: 10.1242/jcs.221663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Centriolar satellites are small cytoplasmic granules that play important roles in regulating the formation of centrosomes and primary cilia. Ubiquitylation of satellite proteins, including the core satellite scaffold protein pericentriolar material 1 (PCM1), regulates centriolar satellite integrity. Currently, deubiquitylases that control centriolar satellite integrity have not been identified. In this study, we find that the deubiquitylase USP9X binds PCM1, and antagonizes PCM1 ubiquitylation to protect it from proteasomal degradation. Knockdown of USP9X in human cell lines reduces PCM1 protein levels, disrupts centriolar satellite particles and causes localization of satellite proteins, such as CEP290, to centrosomes. Interestingly, knockdown of mindbomb 1 (MIB1), a ubiquitin ligase that promotes PCM1 ubiquitylation and degradation, in USP9X-depleted cells largely restores PCM1 protein levels and corrects defects caused by the loss of USP9X. Overall, our study reveals that USP9X is a constituent of centriolar satellites and functions to maintain centriolar satellite integrity by stabilizing PCM1.
Collapse
Affiliation(s)
- Ke-Jun Han
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zhiping Wu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chang-Wei Liu
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
22
|
Patched1-ArhGAP36-PKA-Inversin axis determines the ciliary translocation of Smoothened for Sonic Hedgehog pathway activation. Proc Natl Acad Sci U S A 2018; 116:874-879. [PMID: 30598432 DOI: 10.1073/pnas.1804042116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Sonic Hedgehog (Shh) pathway conducts primarily in the primary cilium and plays important roles in cell proliferation, individual development, and tumorigenesis. Shh ligand binding with its ciliary membrane-localized transmembrane receptor Patched1 results in the removal of Patched1 from and the translocation of the transmembrane oncoprotein Smoothened into the cilium, leading to Shh signaling activation. However, how these processes are coupled remains unknown. Here, we show that the Patched1-ArhGAP36-PKA-Inversin axis determines the ciliary translocation of Smoothened. We find that Patched1 interacts with and stabilizes the PKA negative regulator ArhGAP36 to the centrosome. Activating the Shh pathway results in the removal of ArhGAP36 from the mother centriole and the centrosomal PKA accumulation. This PKA then phosphorylates Inversin and promotes its interaction with and the ciliary translocation of Smoothened. Knockdown of Inversin disrupts the ciliary translocation of Smoothened and Shh pathway activation. These findings reveal a regulatory molecular mechanism for the initial step of Shh pathway activation.
Collapse
|
23
|
Colicino EG, Hehnly H. Regulating a key mitotic regulator, polo-like kinase 1 (PLK1). Cytoskeleton (Hoboken) 2018; 75:481-494. [PMID: 30414309 PMCID: PMC7113694 DOI: 10.1002/cm.21504] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
During cell division, duplicated genetic material is separated into two distinct daughter cells. This process is essential for initial tissue formation during development and to maintain tissue integrity throughout an organism's lifetime. To ensure the efficacy and efficiency of this process, the cell employs a variety of regulatory and signaling proteins that function as mitotic regulators and checkpoint proteins. One vital mitotic regulator is polo-like kinase 1 (PLK1), a highly conserved member of the polo-like kinase family. Unique from its paralogues, it functions specifically during mitosis as a regulator of cell division. PLK1 is spatially and temporally enriched at three distinct subcellular locales; the mitotic centrosomes, kinetochores, and the cytokinetic midbody. These localization patterns allow PLK1 to phosphorylate specific downstream targets to regulate mitosis. In this review, we will explore how polo-like kinases were originally discovered and diverged into the five paralogues (PLK1-5) in mammals. We will then focus specifically on the most conserved, PLK1, where we will discuss what is known about how its activity is modulated, its role during the cell cycle, and new, innovative tools that have been developed to examine its function and interactions in cells.
Collapse
Affiliation(s)
- Erica G. Colicino
- Department of Cell and Developmental BiologyUpstate Medical UniversitySyracuseNew York
| | - Heidi Hehnly
- Department of Cell and Developmental BiologyUpstate Medical UniversitySyracuseNew York
- Department of BiologySyracuse UniversitySyracuseNew York
| |
Collapse
|
24
|
Hoff S, Epting D, Falk N, Schroda S, Braun DA, Halbritter J, Hildebrandt F, Kramer-Zucker A, Bergmann C, Walz G, Lienkamp SS. The nucleoside-diphosphate kinase NME3 associates with nephronophthisis proteins and is required for ciliary function during renal development. J Biol Chem 2018; 293:15243-15255. [PMID: 30111592 PMCID: PMC6166740 DOI: 10.1074/jbc.ra117.000847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 08/07/2018] [Indexed: 01/12/2023] Open
Abstract
Nephronophthisis (NPH) is an autosomal recessive renal disease leading to kidney failure in children and young adults. The protein products of the corresponding genes (NPHPs) are localized in primary cilia or their appendages. Only about 70% of affected individuals have a mutation in one of 100 renal ciliopathy genes, and no unifying pathogenic mechanism has been identified. Recently, some NPHPs, including NIMA-related kinase 8 (NEK8) and centrosomal protein 164 (CEP164), have been found to act in the DNA-damage response pathway and to contribute to genome stability. Here, we show that NME/NM23 nucleoside-diphosphate kinase 3 (NME3) that has recently been found to facilitate DNA-repair mechanisms binds to several NPHPs, including NEK8, CEP164, and ankyrin repeat and sterile α motif domain-containing 6 (ANKS6). Depletion of nme3 in zebrafish and Xenopus resulted in typical ciliopathy-associated phenotypes, such as renal malformations and left-right asymmetry defects. We further found that endogenous NME3 localizes to the basal body and that it associates also with centrosomal proteins, such as NEK6, which regulates cell cycle arrest after DNA damage. The ciliopathy-typical manifestations of NME3 depletion in two vertebrate in vivo models, the biochemical association of NME3 with validated NPHPs, and its localization to the basal body reveal a role for NME3 in ciliary function. We conclude that mutations in the NME3 gene may aggravate the ciliopathy phenotypes observed in humans.
Collapse
Affiliation(s)
- Sylvia Hoff
- From the Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daniel Epting
- From the Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Nathalie Falk
- From the Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sophie Schroda
- From the Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daniela A Braun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jan Halbritter
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Albrecht Kramer-Zucker
- From the Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Carsten Bergmann
- From the Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Human Genetics, Bioscientia, 55218 Ingelheim, Germany, and
| | - Gerd Walz
- From the Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), 79104 Freiburg, Germany
| | - Soeren S Lienkamp
- From the Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany,
- Center for Biological Signaling Studies (BIOSS), 79104 Freiburg, Germany
| |
Collapse
|
25
|
McKenzie CW, Preston CC, Finn R, Eyster KM, Faustino RS, Lee L. Strain-specific differences in brain gene expression in a hydrocephalic mouse model with motile cilia dysfunction. Sci Rep 2018; 8:13370. [PMID: 30190587 PMCID: PMC6127338 DOI: 10.1038/s41598-018-31743-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/22/2018] [Indexed: 01/10/2023] Open
Abstract
Congenital hydrocephalus results from cerebrospinal fluid accumulation in the ventricles of the brain and causes severe neurological damage, but the underlying causes are not well understood. It is associated with several syndromes, including primary ciliary dyskinesia (PCD), which is caused by dysfunction of motile cilia. We previously demonstrated that mouse models of PCD lacking ciliary proteins CFAP221, CFAP54 and SPEF2 all have hydrocephalus with a strain-dependent severity. While morphological defects are more severe on the C57BL/6J (B6) background than 129S6/SvEvTac (129), cerebrospinal fluid flow is perturbed on both backgrounds, suggesting that abnormal cilia-driven flow is not the only factor underlying the hydrocephalus phenotype. Here, we performed a microarray analysis on brains from wild type and nm1054 mice lacking CFAP221 on the B6 and 129 backgrounds. Expression differences were observed for a number of genes that cluster into distinct groups based on expression pattern and biological function, many of them implicated in cellular and biochemical processes essential for proper brain development. These include genes known to be functionally relevant to congenital hydrocephalus, as well as formation and function of both motile and sensory cilia. Identification of these genes provides important clues to mechanisms underlying congenital hydrocephalus severity.
Collapse
Affiliation(s)
- Casey W McKenzie
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
| | - Claudia C Preston
- Genetics and Genomics Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
| | - Rozzy Finn
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
| | - Kathleen M Eyster
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, 57069, USA
| | - Randolph S Faustino
- Genetics and Genomics Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA.,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, 1400 W. 22nd Street, Sioux Falls, SD, 57105, USA
| | - Lance Lee
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA. .,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, 1400 W. 22nd Street, Sioux Falls, SD, 57105, USA.
| |
Collapse
|