1
|
Lebensohn AM, Bazan JF, Rohatgi R. Receptor control by membrane-tethered ubiquitin ligases in development and tissue homeostasis. Curr Top Dev Biol 2022; 150:25-89. [PMID: 35817504 DOI: 10.1016/bs.ctdb.2022.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Paracrine cell-cell communication is central to all developmental processes, ranging from cell diversification to patterning and morphogenesis. Precise calibration of signaling strength is essential for the fidelity of tissue formation during embryogenesis and tissue maintenance in adults. Membrane-tethered ubiquitin ligases can control the sensitivity of target cells to secreted ligands by regulating the abundance of signaling receptors at the cell surface. We discuss two examples of this emerging concept in signaling: (1) the transmembrane ubiquitin ligases ZNRF3 and RNF43 that regulate WNT and bone morphogenetic protein receptor abundance in response to R-spondin ligands and (2) the membrane-recruited ubiquitin ligase MGRN1 that controls Hedgehog and melanocortin receptor abundance. We focus on the mechanistic logic of these systems, illustrated by structural and protein interaction models enabled by AlphaFold. We suggest that membrane-tethered ubiquitin ligases play a widespread role in remodeling the cell surface proteome to control responses to extracellular ligands in diverse biological processes.
Collapse
|
2
|
Gavrin A, Loughlin PC, Brear E, Griffith OW, Bedon F, Suter Grotemeyer M, Escudero V, Reguera M, Qu Y, Mohd-Noor SN, Chen C, Osorio MB, Rentsch D, González-Guerrero M, Day DA, Smith PMC. Soybean Yellow Stripe-like 7 is a symbiosome membrane peptide transporter important for nitrogen fixation. PLANT PHYSIOLOGY 2021; 186:581-598. [PMID: 33619553 PMCID: PMC8154080 DOI: 10.1093/plphys/kiab044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
Legumes form a symbiosis with rhizobia that convert atmospheric nitrogen (N2) to ammonia and provide it to the plant in return for a carbon and nutrient supply. Nodules, developed as part of the symbiosis, harbor rhizobia that are enclosed in a plant-derived symbiosome membrane (SM) to form an organelle-like structure called the symbiosome. In mature nodules exchanges between the symbionts occur across the SM. Here we characterize Yellow Stripe-like 7 (GmYSL7), a Yellow stripe-like family member localized on the SM in soybean (Glycine max) nodules. It is expressed specifically in infected cells with expression peaking soon after nitrogenase becomes active. Unlike most YSL family members, GmYSL7 does not transport metals complexed with phytosiderophores. Rather, it transports oligopeptides of between four and 12 amino acids. Silencing GmYSL7 reduces nitrogenase activity and blocks infected cell development so that symbiosomes contain only a single bacteroid. This indicates the substrate of YSL7 is required for proper nodule development, either by promoting symbiosome development directly or by preventing inhibition of development by the plant. RNAseq of nodules where GmYSL7 was silenced suggests that the plant initiates a defense response against rhizobia with genes encoding proteins involved in amino acid export downregulated and some transcripts associated with metal homeostasis altered. These changes may result from the decrease in nitrogen fixation upon GmYSL7 silencing and suggest that the peptide(s) transported by GmYSL7 monitor the functional state of the bacteroids and regulate nodule metabolism and transport processes accordingly. Further work to identify the physiological substrate for GmYSL7 will allow clarification of this role.
Collapse
Affiliation(s)
- Aleksandr Gavrin
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Patrick C Loughlin
- School of Life and Environmental Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ella Brear
- School of Life and Environmental Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Oliver W Griffith
- Department of Biological Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Frank Bedon
- School of Life Sciences, La Trobe University, Bundoora, Victoria 3083, Australia
| | | | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Maria Reguera
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Yihan Qu
- School of Life and Environmental Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Siti N Mohd-Noor
- School of Life and Environmental Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chi Chen
- School of Life and Environmental Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marina Borges Osorio
- School of Life Sciences, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Doris Rentsch
- IPS, Molecular Plant Physiology, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - David A Day
- College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, Australia
| | | |
Collapse
|
3
|
Bok R, Guerra DD, Lorca RA, Wennersten SA, Harris PS, Rauniyar AK, Stabler SP, MacLean KN, Roede JR, Brown LD, Hurt KJ. Cystathionine γ-lyase promotes estrogen-stimulated uterine artery blood flow via glutathione homeostasis. Redox Biol 2020; 40:101827. [PMID: 33485059 PMCID: PMC7823052 DOI: 10.1016/j.redox.2020.101827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/16/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
During pregnancy, estrogen (E2) stimulates uterine artery blood flow (UBF) by enhancing nitric oxide (NO)-dependent vasodilation. Cystathionine γ-lyase (CSE) promotes vascular NO signaling by producing hydrogen sulfide (H2S) and by maintaining the ratio of reduced-to-oxidized intracellular glutathione (GSH/GSSG) through l-cysteine production. Because redox homeostasis can influence NO signaling, we hypothesized that CSE mediates E2 stimulation of UBF by modulating local intracellular cysteine metabolism and GSH/GSSG levels to promote redox homeostasis. Using non-pregnant ovariectomized WT and CSE-null (CSE KO) mice, we performed micro-ultrasound of mouse uterine and renal arteries to assess changes in blood flow upon exogenous E2 stimulation. We quantified serum and uterine artery NO metabolites (NOx), serum amino acids, and uterine and renal artery GSH/GSSG. WT and CSE KO mice exhibited similar baseline uterine and renal blood flow. Unlike WT, CSE KO mice did not exhibit expected E2 stimulation of UBF. Renal blood flow was E2-insensitive for both genotypes. While serum and uterine artery NOx were similar between genotypes at baseline, E2 decreased NOx in CSE KO serum. Cysteine was also lower in CSE KO serum, while citrulline and homocysteine levels were elevated. E2 and CSE deletion additively decreased GSH/GSSG in uterine arteries. In contrast, renal artery GSH/GSSG was insensitive to E2 or CSE deletion. Together, these findings suggest that CSE maintenance of uterine artery GSH/GSSG facilitates nitrergic signaling in uterine arteries and is required for normal E2 stimulation of UBF. These data have implications for pregnancy pathophysiology and the selective hormone responses of specific vascular beds. CSE-null mice exhibit abnormal estrogen augmentation of uterine artery blood flow. Estrogen lowers uterine artery nitric oxide metabolites in CSE null mice. CSE loss and estrogen additively impair uterine artery glutathione homeostasis. Neither CSE loss nor estrogen influences renal artery blood flow or glutathione.
Collapse
Affiliation(s)
- Rachael Bok
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA
| | - Damian D Guerra
- Department of Biology, University of Louisville, 2301 S. 3rd Street, Louisville, KY, 40292, USA
| | - Ramón A Lorca
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA
| | - Sara A Wennersten
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA
| | - Peter S Harris
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd, Aurora, CO, 80045, USA
| | - Abhishek K Rauniyar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd, Aurora, CO, 80045, USA
| | - Sally P Stabler
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA
| | - Kenneth N MacLean
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd, Aurora, CO, 80045, USA
| | - Laura D Brown
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Perinatal Research Center, 13243 E. 23rd Avenue, Aurora, CO, 80045, USA
| | - K Joseph Hurt
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
4
|
The UBC27-AIRP3 ubiquitination complex modulates ABA signaling by promoting the degradation of ABI1 in Arabidopsis. Proc Natl Acad Sci U S A 2020; 117:27694-27702. [PMID: 33077597 DOI: 10.1073/pnas.2007366117] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abscisic acid (ABA) is the key phytohormone in plant drought tolerance and stress adaptation. The clade A protein phosphatase 2Cs (PP2Cs) like ABI1 (ABA-INSENSITIVE 1) work as coreceptors of ABA and regulate multiple ABA responses. Ubiquitination of ABI1 has been proven to play important regulatory roles in ABA signaling. However, the specific ubiquitin conjugating enzyme (E2) involved is unknown. Here, we report that UBC27 is an active E2 that positively regulates ABA signaling and drought tolerance. UBC27 forms the E2-E3 pair with the drought regulator RING E3 ligase AIRP3. Both UBC27 and AIRP3 interact with ABI1 and affect the ubiquitination and degradation of ABI1. ABA activates the expression of UBC27, inhibits the proteasome degradation of UBC27, and enhances the interaction between UBC27 and ABI1 to increase its activity. These findings uncover a regulatory mechanism in ABA signaling and drought response and provide a further understanding of the plant ubiquitination system and ABA signaling pathway.
Collapse
|
6
|
Riggs JW, Cavales PC, Chapiro SM, Callis J. Identification and biochemical characterization of the fructokinase gene family in Arabidopsis thaliana. BMC PLANT BIOLOGY 2017; 17:83. [PMID: 28441933 PMCID: PMC5405513 DOI: 10.1186/s12870-017-1031-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/12/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Fructose is an abundant sugar in plants as it is a breakdown product of both major sucrose-cleaving enzymes. To enter metabolism, fructose is phosphorylated by a fructokinase (FRK). Known FRKs are members of a diverse family of carbohydrate/purine kinases known as the phosphofructokinase B (pfkB) family. The complete complement of active fructokinases has not been reported for any plant species. RESULTS Protein sequence analysis of the 22 Arabidopsis thaliana pfkB members identified eight highly related predicted proteins, including one with previously demonstrated FRK activity. For one, At1g50390, the predicted open reading frame is half the size of active FRKs, and only incompletely spliced RNAs were identified, which led to a premature stop codon, both indicating that this gene does not produce active FRK. The remaining seven proteins were expressed in E. coli and phosphorylated fructose specifically in vitro leading us to propose a unifying nomenclature (FRK1-7). Substrate inhibition was observed for fructose in all FRKs except FRK1. Fructose binding was on the same order of magnitude for FRK1-6, between 260 and 480 μM. FRK7 was an outlier with a fructose Km of 12 μM. ATP binding was similar for all FRKs and ranged between 52 and 280 μM. YFP-tagged AtFRKs were cytosolic, except plastidic FRK3. T-DNA alleles with non-detectable wild-type RNAs in five of the seven active FRK genes produced no overt phenotype. We extended our sequence comparisons to include putative FRKs encoded in other plant sequenced genomes. We observed that different subgroups expanded subsequent to speciation. CONCLUSIONS Arabidopsis thaliana as well as all other plant species analyzed contain multiple copies of genes encoding FRK activity. Sequence comparisons among multiple species identified a minimal set of three distinct FRKs present on all species investigated including a plastid-localized form. The selective expansion of specific isozymes results in differences in FRK gene number among species. AtFRKs exhibit substrate inhibition, typical of their mammalian counterparts with the single AtFRK1 lacking this property, suggesting it may have a distinct in vivo role. Results presented here provide a starting point for the engineering of specific FRKs to affect biomass production.
Collapse
Affiliation(s)
- John W. Riggs
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, 1 Shields Ave, Davis, CA 95616 USA
| | - Philip C. Cavales
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, 1 Shields Ave, Davis, CA 95616 USA
| | - Sonia M. Chapiro
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, 1 Shields Ave, Davis, CA 95616 USA
- Present Address: Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
- Present Address: Joint Bioenergy Institute, Emeryville, CA 94608 USA
| | - Judy Callis
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, 1 Shields Ave, Davis, CA 95616 USA
| |
Collapse
|