1
|
Golubeva EA, Lavrov MI, Radchenko EV, Palyulin VA. Diversity of AMPA Receptor Ligands: Chemotypes, Binding Modes, Mechanisms of Action, and Therapeutic Effects. Biomolecules 2022; 13:biom13010056. [PMID: 36671441 PMCID: PMC9856200 DOI: 10.3390/biom13010056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
L-Glutamic acid is the main excitatory neurotransmitter in the central nervous system (CNS). Its associated receptors localized on neuronal and non-neuronal cells mediate rapid excitatory synaptic transmission in the CNS and regulate a wide range of processes in the brain, spinal cord, retina, and peripheral nervous system. In particular, the glutamate receptors selective to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) also play an important role in numerous neurological disorders and attract close attention as targets for the creation of new classes of drugs for the treatment or substantial correction of a number of serious neurodegenerative and neuropsychiatric diseases. For this reason, the search for various types of AMPA receptor ligands and studies of their properties are attracting considerable attention both in academic institutions and in pharmaceutical companies around the world. This review focuses mainly on the advances in this area published since 2017. Particular attention is paid to the structural diversity of new chemotypes of agonists, competitive AMPA receptor antagonists, positive and negative allosteric modulators, transmembrane AMPA regulatory protein (TARP) dependent allosteric modulators, ion channel blockers as well as their binding sites. This review also presents the studies of the mechanisms of action of AMPA receptor ligands that mediate their therapeutic effects.
Collapse
|
2
|
Huang Z, Niu L. RNA aptamers for AMPA receptors. Neuropharmacology 2021; 199:108761. [PMID: 34509496 DOI: 10.1016/j.neuropharm.2021.108761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
RNA aptamers are single-stranded RNA molecules, and they are selected against a target of interest so that they can bind to and modulate the activity of the target, such as inhibiting the target activity, with high potency and selectivity. Antagonists, such as RNA aptamers, acting on AMPA receptors, a major subtype of ionotropic glutamate receptors, are potential drug candidates for treatment of a number of CNS diseases that involve excessive receptor activation and/or elevated receptor expression. Here we review the approach to discover RNA aptamers targeting AMPA receptors from a random sequence library (∼1014 sequences) through a process called systematic evolution of ligands by exponential enrichment (SELEX). As compared with small-molecule compounds, RNA aptamers are a new class of regulatory agents with interesting and desirable pharmacological properties. Some AMPA receptor aptamers we have developed are presented in this review. The promises and challenges of translating RNA aptamers into potential drugs and treatment options are also discussed. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.
Collapse
Affiliation(s)
- Zhen Huang
- Chemistry Department, Center for Neuroscience Research, University at Albany, State University of New York (SUNY), Albany, NY, USA
| | - Li Niu
- Chemistry Department, Center for Neuroscience Research, University at Albany, State University of New York (SUNY), Albany, NY, USA.
| |
Collapse
|
3
|
Radchenko EV, Tarakanova AS, Karlov DS, Lavrov MI, Palyulin VA. [Ligands of the AMPA-subtype glutamate receptors: mechanisms of action and novel chemotypes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:187-200. [PMID: 34142526 DOI: 10.18097/pbmc20216703187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ionotropic glutamate receptors of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype play a key role in synaptic plasticity representing one of the mechanisms for learning and memory formation. They can also serve as targets for the development of novel classes of pharmaceuticals for the treatment or substantive correction of many serious neurodegenerative and psychoneurological disorders. The search and studies of various types of AMPA receptor ligands attract considerable attention from academic organizations and pharmaceutical companies all over the world. This review mainly focuses on recent advances in this field. The architecture and operational mechanism of the receptor as well as its major binding sites and ligand types are considered. Special attention is paid to the studies of mechanisms of action and novel chemotypes of AMPA receptor agonists and competitive antagonists, positive and negative allosteric modulators, auxiliary protein-dependent allosteric modulators, and ion channel blockers.
Collapse
Affiliation(s)
| | | | - D S Karlov
- Lomonosov Moscow State University, Moscow, Russia
| | - M I Lavrov
- Lomonosov Moscow State University, Moscow, Russia
| | - V A Palyulin
- Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Rijal S, Cho DH, Park SA, Jang SH, Ábrahám IM, Han SK. Melatonin Suppresses the Kainate Receptor-Mediated Excitation on Gonadotropin-Releasing Hormone Neurons in Female and Male Prepubertal Mice. Int J Mol Sci 2020; 21:ijms21175991. [PMID: 32825350 PMCID: PMC7504472 DOI: 10.3390/ijms21175991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Melatonin, a pineal gland secretion, is an amphiphilic neurohormone involved in the biological and physiologic regulation of bodily functions. Numerous studies have shown the effects of melatonin on the release of gonadotropins and their actions at one or several levels of the hypothalamic–pituitary–gonadal axis. However, direct melatonin action on gonadotropin-releasing hormone (GnRH) neurons and its mechanism of action remain unclear. Here, plasma melatonin levels were measured and the effect of melatonin on GnRH neurons was assessed using brain slice patch clamp techniques. The plasma melatonin levels in prepubertal mice were higher than those in the adults. Melatonin itself did not change the firing activity of GnRH neurons. Interestingly, the kainate receptor-mediated responses but not the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)- and N-methyl-D-aspartic acid (NMDA)-induced responses were suppressed by melatonin in both the voltage clamp and current clamp modes. The inhibitory effects of the kainate-induced response by melatonin tended to increase with higher melatonin concentrations and persisted in the presence of tetrodotoxin, a voltage-sensitive Na+ channel blocker, or luzindole, a non-selective melatonin receptor antagonist. However, the response was completely abolished by pretreatment with pertussis toxin. These results suggest that melatonin can regulate GnRH neuronal activities in prepubertal mice by partially suppressing the excitatory signaling mediated by kainate receptors through pertussis toxin-sensitive G-protein-coupled receptors.
Collapse
Affiliation(s)
- Santosh Rijal
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju 54896, Korea; (S.R.); (S.H.J.)
| | - Dong Hyu Cho
- Department of Obstetrics and Gynecology, Jeonbuk National University Medical School, Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute and Institute for Medical Sciences, Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - Seon-Ah Park
- Non-Clinical Evaluation Center, Biomedical Research Institute, 20 Geonji-ro, Deokjin-gu, Jeonju-si, Jeollabuk-do 54907, Korea;
| | - Seon Hui Jang
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju 54896, Korea; (S.R.); (S.H.J.)
| | - István M. Ábrahám
- PTE-NAP Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Center, University of Pécs, 7624 Pécs, Hungary;
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju 54896, Korea; (S.R.); (S.H.J.)
- PTE-NAP Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Center, University of Pécs, 7624 Pécs, Hungary;
- Correspondence: ; Tel.: +82-63-270-4030; Fax: +82-63-270-4004
| |
Collapse
|
5
|
Jaremko W, Huang Z, Karl N, Pierce VD, Lynch J, Niu L. A kainate receptor-selective RNA aptamer. J Biol Chem 2020; 295:6280-6288. [PMID: 32161119 PMCID: PMC7212664 DOI: 10.1074/jbc.ra119.011649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/21/2020] [Indexed: 11/06/2022] Open
Abstract
Kainate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are two major, closely related receptor subtypes in the glutamate ion channel family. Excessive activities of these receptors have been implicated in a number of central nervous system diseases. Designing potent and selective antagonists of these receptors, especially of kainate receptors, is useful for developing potential treatment strategies for these neurological diseases. Here, we report on two RNA aptamers designed to individually inhibit kainate and AMPA receptors. To improve the biostability of these aptamers, we also chemically modified these aptamers by substituting their 2'-OH group with 2'-fluorine. These 2'-fluoro aptamers, FB9s-b and FB9s-r, were markedly resistant to RNase-catalyzed degradation, with a half-life of ∼5 days in rat cerebrospinal fluid or serum-containing medium. Furthermore, FB9s-r blocked AMPA receptor activity. Aptamer FB9s-b selectively inhibited GluK1 and GluK2 kainate receptor subunits, and also GluK1/GluK5 and GluK2/GluK5 heteromeric kainate receptors with equal potency. This inhibitory profile makes FB9s-b a powerful template for developing tool molecules and drug candidates for treatment of neurological diseases involving excessive activities of the GluK1 and GluK2 subunits.
Collapse
Affiliation(s)
- William Jaremko
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Zhen Huang
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Nicholas Karl
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Vincen D Pierce
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Janet Lynch
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Li Niu
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| |
Collapse
|
6
|
Thevendran R, Navien TN, Meng X, Wen K, Lin Q, Sarah S, Tang TH, Citartan M. Mathematical approaches in estimating aptamer-target binding affinity. Anal Biochem 2020; 600:113742. [PMID: 32315616 DOI: 10.1016/j.ab.2020.113742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/25/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
The performance of aptamers as versatile tools in numerous analytical applications is critically dependent on their high target binding specificity and selectivity. However, only the technical or methodological aspects of measuring aptamer-target binding affinities are focused, ignoring the equally important mathematical components that play pivotal roles in affinity measurements. In this study, we aim to provide a comprehensive review regarding the utilization of different mathematical models and equations, along with a detailed description of the computational steps involved in mathematically deriving the binding affinity of aptamers against their specific target molecules. Mathematical models ranging from one-site binding to multiple aptameric binding site-based models are explained in detail. Models applied in several different approaches of affinity measurements such as thermodynamics and kinetic analysis, including cooperativity and competitive-assay based mathematical models have been elaborately discussed. Mathematical models incorporating factors that could potentially affect affinity measurements are also further scrutinized.
Collapse
Affiliation(s)
- Ramesh Thevendran
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Tholasi Nadhan Navien
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Xin Meng
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, United States
| | - Kechun Wen
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, United States
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, United States
| | - Shigdar Sarah
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria, 3216, Australia
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia; Department of Mechanical Engineering, Columbia University, New York, NY, 10027, United States.
| |
Collapse
|
7
|
Developing RNA aptamers for potential treatment of neurological diseases. Future Med Chem 2019; 11:551-565. [PMID: 30912676 DOI: 10.4155/fmc-2018-0364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AMPA receptor antagonists are drug candidates for potential treatment of a number of CNS diseases that involve excessive receptor activation. To date, small-molecule compounds are the dominating drug candidates in the field. However, lower potency, cross activity and poor water solubility are generally associated with these compounds. Here we show the potential of RNA-based antagonists or RNA aptamers as drug candidates and some strategies to discover these aptamers from a random sequence library (∼1014 sequences). As an alternative to small molecule compounds, our aptamers exhibit higher potency and selectivity toward AMPA receptors. Because aptamers are RNA molecules, they are naturally water soluble. We also discuss the major challenges of translating RNA aptamers as lead molecules into drugs/treatment options.
Collapse
|
8
|
Yoon S, Rossi JJ. Aptamers: Uptake mechanisms and intracellular applications. Adv Drug Deliv Rev 2018; 134:22-35. [PMID: 29981799 PMCID: PMC7126894 DOI: 10.1016/j.addr.2018.07.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/06/2018] [Accepted: 07/04/2018] [Indexed: 01/10/2023]
Abstract
The structural flexibility and small size of aptamers enable precise recognition of cellular elements for imaging and therapeutic applications. The process by which aptamers are taken into cells depends on their targets but is typically clathrin-mediated endocytosis or macropinocytosis. After internalization, most aptamers are transported to endosomes, lysosomes, endoplasmic reticulum, Golgi apparatus, and occasionally mitochondria and autophagosomes. Intracellular aptamers, or “intramers,” have versatile functions ranging from intracellular RNA imaging, gene regulation, and therapeutics to allosteric modulation, which we discuss in this review. Immune responses to therapeutic aptamers and the effects of G-quadruplex structure on aptamer function are also discussed.
Collapse
|
9
|
Huang Z, Wen W, Wu A, Niu L. Chemically Modified, α-Amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) Receptor RNA Aptamers Designed for in Vivo Use. ACS Chem Neurosci 2017; 8:2437-2445. [PMID: 28872832 DOI: 10.1021/acschemneuro.7b00211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate ion channels have three subtypes, that is, α-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA), kainate, and N-methyl-d-aspartate (NMDA) receptors. Excessive activity of these receptor subtypes either individually or collectively is involved in various neurological disorders. RNA aptamers as antagonists of these receptors are potential therapeutics. For developing aptamer therapeutics, the RNA aptamers must be chemically modified to become ribonuclease-resistant or stable in biological fluids. Using systematic evolution of ligands by exponential enrichment (SELEX) and a chemically modified library, prepared enzymatically (i.e., the library contains RNAs with 2'-fluoro modified nucleoside triphosphates or ATPs, CTPs and UTPs, but regular GTPs), we have isolated an aptamer. The short aptamer (69 nucleotides) FN1040s selectively inhibits the GluA1 and GluA2Qflip AMPA receptor subunits, whereas the full-length aptamer (101 nucleotides) FN1040 additionally inhibits GluK1, but not GluK2, kainate receptor, and GluN1a/2A and GluN1a/2B, the two major native NMDA receptors. The two aptamers show similar potency (2-4 μM) and are stable with a half-life of at least 2 days in serum-containing medium or cerebrospinal fluid. Therefore, these two aptamers are amenable for in vivo use.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| | - Wei Wen
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| | - Andrew Wu
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| | - Li Niu
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| |
Collapse
|
10
|
Jaremko WJ, Huang Z, Wen W, Wu A, Karl N, Niu L. One aptamer, two functions: the full-length aptamer inhibits AMPA receptors, while the short one inhibits both AMPA and kainate receptors. RNA & DISEASE 2017; 4:e1560. [PMID: 28804757 PMCID: PMC5553901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
AMPA and kainate receptors, along with NMDA receptors, are distinct subtypes of glutamate ion channels. Excessive activity of AMPA and kainate receptors has been implicated in neurological diseases, such as epilepsy and neuropathic pain. Antagonists that block their activities are therefore potential drug candidates. In a recent article in the Journal of Biological Chemistry by Jaremko et al. 2017, we have reported on the discovery and molecular characterization of an RNA aptamer of a dual functionality: the full-length RNA (101 nucleotide) inhibits AMPA receptors while the truncated or the short (55 nucleotide) RNA inhibits both the AMPA and kainate receptors. The full-length RNA aptamer was isolated through a specially designed, systematic evolution of ligands by exponential enrichment (SELEX) using only a single type of AMPA receptors expressed in HEK-293 cells. The design feature and the results of our recent article are highlighted here, as they demonstrate the utility of the SELEX approach and the potential of using a single AMPA receptor type to develop potent, novel RNA aptamers targeting multiple subunits and AMPA/kainate receptor subtypes with length-dependent functionalities.
Collapse
|