1
|
Bora JR, Mahalakshmi R. Empowering canonical biochemicals with cross-linked novelty: Recursions in applications of protein cross-links. Proteins 2025; 93:11-25. [PMID: 37589191 PMCID: PMC7616502 DOI: 10.1002/prot.26571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
Diversity in the biochemical workhorses of the cell-that is, proteins-is achieved by the innumerable permutations offered primarily by the 20 canonical L-amino acids prevalent in all biological systems. Yet, proteins are known to additionally undergo unusual modifications for specialized functions. Of the various post-translational modifications known to occur in proteins, the recently identified non-disulfide cross-links are unique, residue-specific covalent modifications that confer additional structural stability and unique functional characteristics to these biomolecules. We review an exclusive class of amino acid cross-links encompassing aromatic and sulfur-containing side chains, which not only confer superior biochemical characteristics to the protein but also possess additional spectroscopic features that can be exploited as novel chromophores. Studies of their in vivo reaction mechanism have facilitated their specialized in vitro applications in hydrogels and protein anchoring in monolayer chips. Furthering the discovery of unique canonical cross-links through new chemical, structural, and bioinformatics tools will catalyze the development of protein-specific hyperstable nanostructures, superfoods, and biotherapeutics.
Collapse
Affiliation(s)
- Jinam Ravindra Bora
- Department of Biological Sciences, Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| | - Radhakrishnan Mahalakshmi
- Department of Biological Sciences, Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
2
|
Cheek LE, Zhu W. Structural features and substrate engagement in peptide-modifying radical SAM enzymes. Arch Biochem Biophys 2024; 756:110012. [PMID: 38663796 DOI: 10.1016/j.abb.2024.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
In recent years, the biological significance of ribosomally synthesized, post-translationally modified peptides (RiPPs) and the intriguing chemistry catalyzed by their tailoring enzymes has garnered significant attention. A subgroup of bacterial radical S-adenosylmethionine (rSAM) enzymes can activate C-H bonds in peptides, which leads to the production of a diverse range of RiPPs. The remarkable ability of these enzymes to facilitate various chemical processes, to generate and harbor high-energy radical species, and to accommodate large substrates with a high degree of flexibility is truly intriguing. The wide substrate scope and diversity of the chemistry performed by rSAM enzymes raise one question: how does the protein environment facilitate these distinct chemical conversions while sharing a similar structural fold? In this review, we discuss recent advances in the field of RiPP-rSAM enzymes, with a particular emphasis on domain architectures and substrate engagements identified by biophysical and structural characterizations. We provide readers with a comparative analysis of six examples of RiPP-rSAM enzymes with experimentally characterized structures. Linking the structural elements and the nature of rSAM-catalyzed RiPP production will provide insight into the functional engineering of enzyme activity to harness their catalytic power in broader applications.
Collapse
Affiliation(s)
- Lilly E Cheek
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Wen Zhu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
3
|
Suarez AFL, Nguyen TQN, Chang L, Tooh YW, Yong RHS, Leow LC, Koh IYF, Chen H, Koh JWH, Selvanayagam A, Lim V, Tan YE, Agatha I, Winnerdy FR, Morinaka BI. Functional and Promiscuity Studies of Three-Residue Cyclophane Forming Enzymes Show Nonnative C-C Cross-Linked Products and Leader-Dependent Cyclization. ACS Chem Biol 2024; 19:774-783. [PMID: 38417140 DOI: 10.1021/acschembio.3c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Enzymes catalyzing peptide macrocyclization are important biochemical tools in drug discovery. The three-residue cyclophane-forming enzymes (3-CyFEs) are an emerging family of post-translational modifying enzymes that catalyze the formation of three-residue peptide cyclophanes. In this report, we introduce three additional 3-CyFEs, including ChlB, WnsB, and FnnB, that catalyze cyclophane formation on Tyr, Trp, and Phe, respectively. To understand the promiscuity of these enzymes and those previously reported (MscB, HaaB, and YxdB), we tested single amino acid substitutions at the three-residue motif of modification (Ω1X2X3, Ω1 = aromatic). Collectively, we observe that substrate promiscuity is observed at the Ω1 and X2 positions, but a greater specificity is observed for the X3 residue. Two nonnative cyclophane products were characterized showing a Phe-C3 to Arg-Cβ and His-C2 to Pro-Cβ cross-links, respectively. We also tested the leader dependence of selected 3-CyFEs and show that a predicted helix region is important for cyclophane formation. These results demonstrate the biocatalytic potential of these maturases and allow rational design of substrates to obtain a diverse array of genetically encoded 3-residue cyclophanes.
Collapse
Affiliation(s)
| | - Thi Quynh Ngoc Nguyen
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Litao Chang
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Yi Wei Tooh
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Rubin How Sheng Yong
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Li Chuan Leow
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Ivan Yu Fan Koh
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Huiyi Chen
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Jeffery Wei Heng Koh
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | | | - Vernon Lim
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Yi En Tan
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Irene Agatha
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Fernaldo R Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Brandon I Morinaka
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| |
Collapse
|
4
|
Kubiak X, Polsinelli I, Chavas LMG, Fyfe CD, Guillot A, Fradale L, Brewee C, Grimaldi S, Gerbaud G, Thureau A, Legrand P, Berteau O, Benjdia A. Structural and mechanistic basis for RiPP epimerization by a radical SAM enzyme. Nat Chem Biol 2024; 20:382-391. [PMID: 38158457 DOI: 10.1038/s41589-023-01493-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
D-Amino acid residues, found in countless peptides and natural products including ribosomally synthesized and post-translationally modified peptides (RiPPs), are critical for the bioactivity of several antibiotics and toxins. Recently, radical S-adenosyl-L-methionine (SAM) enzymes have emerged as the only biocatalysts capable of installing direct and irreversible epimerization in RiPPs. However, the mechanism underpinning this biochemical process is ill-understood and the structural basis for this post-translational modification remains unknown. Here we report an atomic-resolution crystal structure of a RiPP-modifying radical SAM enzyme in complex with its substrate properly positioned in the active site. Crystallographic snapshots, size-exclusion chromatography-small-angle x-ray scattering, electron paramagnetic resonance spectroscopy and biochemical analyses reveal how epimerizations are installed in RiPPs and support an unprecedented enzyme mechanism for peptide epimerization. Collectively, our study brings unique perspectives on how radical SAM enzymes interact with RiPPs and catalyze post-translational modifications in natural products.
Collapse
Affiliation(s)
- Xavier Kubiak
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Ivan Polsinelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | | | - Cameron D Fyfe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Alain Guillot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Laura Fradale
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Clémence Brewee
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | | | | | - Aurélien Thureau
- Synchrotron SOLEIL, HelioBio Group, L'Orme des Merisiers, Saint-Aubin, France
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio Group, L'Orme des Merisiers, Saint-Aubin, France
| | - Olivier Berteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France.
| | - Alhosna Benjdia
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France.
| |
Collapse
|
5
|
Lien Y, Lachowicz JC, Mendauletova A, Zizola C, Ngendahimana T, Kostenko A, Eaton SS, Latham JA, Grove TL. Structural, Biochemical, and Bioinformatic Basis for Identifying Radical SAM Cyclopropyl Synthases. ACS Chem Biol 2024; 19:370-379. [PMID: 38295270 PMCID: PMC10878394 DOI: 10.1021/acschembio.3c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/29/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
The importance of radical S-adenosyl-l-methionine (RS) enzymes in the maturation of ribosomally synthesized and post-translationally modified peptides (RiPPs) continues to expand, specifically for the RS-SPASM subfamily. We recently discovered an RS-SPASM enzyme that installs a carbon-carbon bond between the geminal methyls of valine residues, resulting in the formation of cyclopropylglycine (CPG). Here, we sought to define the family of cyclopropyl (CP) synthases because of the importance of cyclopropane scaffolds in pharmaceutical development. Using RadicalSAM.org, we bioinformatically expanded the family of CP synthases and assigned unique peptide sequences to each subclade. We identified a unique RiPP biosynthetic pathway that encodes a precursor peptide, TigB, with a repeating TIGSVS motif. Using LCMS and NMR techniques, we show that the RS enzyme associated with the pathway, TigE, catalyzes the formation of a methyl-CPG from the conserved isoleucine residing in the repeating motif of TigB. Furthermore, we obtained a crystal structure of TigE, which reveals an unusual tyrosyl ligation to the auxiliary I [4Fe-4S] cluster, provided by a glycine-tyrosine-tryptophan motif unique to all CP synthases. Further, we show that this unique tyrosyl ligation is absolutely required for TigE activity. Together, our results provide insight into how CP synthases perform this unique reaction.
Collapse
Affiliation(s)
- Yi Lien
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - Jake C. Lachowicz
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Aigera Mendauletova
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - Cynthia Zizola
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Thacien Ngendahimana
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - Anastasiia Kostenko
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - Sandra S. Eaton
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - John A. Latham
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - Tyler L. Grove
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
6
|
Abstract
The past decade has seen impressive advances in understanding the biosynthesis of ribosomally synthesized and posttranslationally modified peptides (RiPPs). One of the most common modifications found in these natural products is macrocyclization, a strategy also used by medicinal chemists to improve metabolic stability and target affinity and specificity. Another tool of the peptide chemist, modification of the amides in a peptide backbone, has also been observed in RiPPs. This review discusses the molecular mechanisms of biosynthesis of a subset of macrocyclic RiPP families, chosen because of the unusual biochemistry involved: the five classes of lanthipeptides (thioether cyclization by Michael-type addition), sactipeptides and ranthipeptides (thioether cyclization by radical chemistry), thiopeptides (cyclization by [4+2] cycloaddition), and streptide (cyclization by radical C-C bond formation). In addition, the mechanisms of backbone amide methylation, backbone epimerization, and backbone thioamide formation are discussed, as well as an unusual route to small molecules by posttranslational modification.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Wilfred A van der Donk
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
7
|
Soualmia F, Guillot A, Sabat N, Brewee C, Kubiak X, Haumann M, Guinchard X, Benjdia A, Berteau O. Exploring the Biosynthetic Potential of TsrM, a B 12 -dependent Radical SAM Methyltransferase Catalyzing Non-radical Reactions. Chemistry 2022; 28:e202200627. [PMID: 35253932 DOI: 10.1002/chem.202200627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 12/20/2022]
Abstract
B12 -dependent radical SAM enzymes are an emerging enzyme family with approximately 200,000 proteins. These enzymes have been shown to catalyze chemically challenging reactions such as methyl transfer to sp2- and sp3-hybridized carbon atoms. However, to date we have little information regarding their complex mechanisms and their biosynthetic potential. Here we show, using X-ray absorption spectroscopy, mutagenesis and synthetic probes that the vitamin B12 -dependent radical SAM enzyme TsrM catalyzes not only C- but also N-methyl transfer reactions further expanding its synthetic versatility. We also demonstrate that TsrM has the unique ability to directly transfer a methyl group to the benzyl core of tryptophan, including the least reactive position C4. Collectively, our study supports that TsrM catalyzes non-radical reactions and establishes the usefulness of radical SAM enzymes for novel biosynthetic schemes including serial alkylation reactions at particularly inert C-H bonds.
Collapse
Affiliation(s)
- Feryel Soualmia
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Nazarii Sabat
- UPR 2301, Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, 91198, Gif-sur-Yvette, France
| | - Clémence Brewee
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Xavier Kubiak
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Xavier Guinchard
- UPR 2301, Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, 91198, Gif-sur-Yvette, France
| | - Alhosna Benjdia
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Olivier Berteau
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
8
|
Kostenko A, Lien Y, Mendauletova A, Ngendahimana T, Novitskiy IM, Eaton SS, Latham JA. Identification of a poly-cyclopropylglycine-containing peptide via bioinformatic mapping of radical S-adenosylmethionine enzymes. J Biol Chem 2022; 298:101881. [PMID: 35367210 PMCID: PMC9062424 DOI: 10.1016/j.jbc.2022.101881] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/28/2023] Open
Abstract
Peptide-derived natural products are a large class of bioactive molecules that often contain chemically challenging modifications. In the biosynthesis of ribosomally synthesized and posttranslationally modified peptides (RiPPs), radical-SAM (rSAM) enzymes have been shown to catalyze the formation of ether, thioether, and carbon-carbon bonds on the precursor peptide. The installation of these bonds typically establishes the skeleton of the mature RiPP. To facilitate the search for unexplored rSAM-dependent RiPPs for the community, we employed a bioinformatic strategy to screen a subfamily of peptide-modifying rSAM enzymes which are known to bind up to three [4Fe-4S] clusters. A sequence similarity network was used to partition related families of rSAM enzymes into >250 clusters. Using representative sequences, genome neighborhood diagrams were generated using the Genome Neighborhood Tool. Manual inspection of bacterial genomes yielded numerous putative rSAM-dependent RiPP pathways with unique features. From this analysis, we identified and experimentally characterized the rSAM enzyme, TvgB, from the tvg gene cluster from Halomonas anticariensis. In the tvg gene cluster, the precursor peptide, TvgA, is comprised of a repeating TVGG motif. Structural characterization of the TvgB product revealed the repeated formation of cyclopropylglycine, where a new bond is formed between the γ-carbons on the precursor valine. This novel RiPP modification broadens the functional potential of rSAM enzymes and validates the proposed bioinformatic approach as a practical broad search tool for the discovery of new RiPP topologies.
Collapse
Affiliation(s)
- Anastasiia Kostenko
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Yi Lien
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Aigera Mendauletova
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Thacien Ngendahimana
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Ivan M Novitskiy
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - John A Latham
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA.
| |
Collapse
|
9
|
Benjdia A, Berteau O. Radical SAM Enzymes and Ribosomally-Synthesized and Post-translationally Modified Peptides: A Growing Importance in the Microbiomes. Front Chem 2021; 9:678068. [PMID: 34350157 PMCID: PMC8326336 DOI: 10.3389/fchem.2021.678068] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
To face the current antibiotic resistance crisis, novel strategies are urgently required. Indeed, in the last 30 years, despite considerable efforts involving notably high-throughput screening and combinatorial libraries, only few antibiotics have been launched to the market. Natural products have markedly contributed to the discovery of novel antibiotics, chemistry and drug leads, with more than half anti-infective and anticancer drugs approved by the FDA being of natural origin or inspired by natural products. Among them, thanks to their modular structure and simple biosynthetic logic, ribosomally synthesized and posttranslationally modified peptides (RiPPs) are promising scaffolds. In addition, recent studies have highlighted the pivotal role of RiPPs in the human microbiota which remains an untapped source of natural products. In this review, we report on recent developments in radical SAM enzymology and how these unique biocatalysts have been shown to install complex and sometimes unprecedented posttranslational modifications in RiPPs with a special focus on microbiome derived enzymes.
Collapse
Affiliation(s)
- Alhosna Benjdia
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Olivier Berteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| |
Collapse
|
10
|
Abstract
Lanthipeptides are a class of ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products characterized by the presence of lanthionine and methyllanthionine. During the maturation of select lanthipeptides, five different alterations have been observed to the chemical structure of the peptide backbone. First, dehydratases generate dehydroalanine and dehydrobutyrine from Ser or Thr residues, respectively. A second example of introduction of unsaturation is the oxidative decarboxylation of C-terminal Cys residues catalyzed by the decarboxylase LanD. Both modifications result in loss of chirality at the α-carbon of the amino acid residues. Attack of a cysteine thiol onto a dehydrated amino acid results in thioether crosslink formation with either inversion or retention of the l-stereochemical configuration at the α-carbon of former Ser and Thr residues. A fourth modification of the protein backbone is the hydrogenation of dehydroamino acids to afford d-amino acids catalyzed by NAD(P)H-dependent reductases. A fifth modification is the conversion of Asp to isoAsp. Herein, the methods used to produce and characterize the lanthipeptide bicereucin will be described in detail along with a brief overview of other lanthipeptides.
Collapse
Affiliation(s)
- Richard S Ayikpoe
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
11
|
Balty C, Guillot A, Fradale L, Brewee C, Lefranc B, Herrero C, Sandström C, Leprince J, Berteau O, Benjdia A. Biosynthesis of the sactipeptide Ruminococcin C by the human microbiome: Mechanistic insights into thioether bond formation by radical SAM enzymes. J Biol Chem 2020; 295:16665-16677. [PMID: 32972973 PMCID: PMC8188230 DOI: 10.1074/jbc.ra120.015371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
Despite its major importance in human health, the metabolic potential of the human gut microbiota is still poorly understood. We have recently shown that biosynthesis of Ruminococcin C (RumC), a novel ribosomally synthesized and posttranslationally modified peptide (RiPP) produced by the commensal bacterium Ruminococcus gnavus, requires two radical SAM enzymes (RumMC1 and RumMC2) catalyzing the formation of four Cα-thioether bridges. These bridges, which are essential for RumC's antibiotic properties against human pathogens such as Clostridium perfringens, define two hairpin domains giving this sactipeptide (sulfur-to-α-carbon thioether-containing peptide) an unusual architecture among natural products. We report here the biochemical and spectroscopic characterizations of RumMC2. EPR spectroscopy and mutagenesis data support that RumMC2 is a member of the large family of SPASM domain radical SAM enzymes characterized by the presence of three [4Fe-4S] clusters. We also demonstrate that this enzyme initiates its reaction by Cα H-atom abstraction and is able to catalyze the formation of nonnatural thioether bonds in engineered peptide substrates. Unexpectedly, our data support the formation of a ketoimine rather than an α,β-dehydro-amino acid intermediate during Cα-thioether bridge LC-MS/MS fragmentation. Finally, we explored the roles of the leader peptide and of the RiPP precursor peptide recognition element, present in myriad RiPP-modifying enzymes. Collectively, our data support a more complex role for the peptide recognition element and the core peptide for the installation of posttranslational modifications in RiPPs than previously anticipated and suggest a possible reaction intermediate for thioether bond formation.
Collapse
Affiliation(s)
- Clémence Balty
- Micalis Institute, ChemSyBio, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, ChemSyBio, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Laura Fradale
- Micalis Institute, ChemSyBio, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Clémence Brewee
- Micalis Institute, ChemSyBio, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Benjamin Lefranc
- INSERM U1239, PRIMACEN, Université de Normandie-Rouen, Rouen, France
| | | | - Corine Sandström
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jérôme Leprince
- INSERM U1239, PRIMACEN, Université de Normandie-Rouen, Rouen, France
| | - Olivier Berteau
- Micalis Institute, ChemSyBio, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.
| | - Alhosna Benjdia
- Micalis Institute, ChemSyBio, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
12
|
Zhu W, Walker LM, Tao L, Iavarone AT, Wei X, Britt RD, Elliott SJ, Klinman JP. Structural Properties and Catalytic Implications of the SPASM Domain Iron-Sulfur Clusters in Methylorubrum extorquens PqqE. J Am Chem Soc 2020; 142:12620-12634. [PMID: 32643933 DOI: 10.1021/jacs.0c02044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Understanding the relationship between the metallocofactor and its protein environment is the key to uncovering the mechanism of metalloenzymes. PqqE, a radical S-adenosylmethionine enzyme in pyrroloquinoline quinone (PQQ) biosynthesis, contains three iron-sulfur cluster binding sites. Two auxiliary iron-sulfur cluster binding sites, designated as AuxI and AuxII, use distinctive ligands compared to other proteins in the family while their functions remain unclear. Here, we investigate the electronic properties of these iron-sulfur clusters and compare the catalytic efficiency of wild-type (WT) Methylorubrum extorquens AM1 PqqE to a range of mutated constructs. Using native mass spectrometry, protein film electrochemistry, and electron paramagnetic resonance spectroscopy, we confirm the previously proposed incorporation of a mixture of [2Fe-2S] and [4Fe-4S] clusters at the AuxI site and are able to assign redox potentials to each of the three iron-sulfur clusters. Significantly, a conservative mutation at AuxI, C268H, shown to selectively incorporate a [4Fe-4S] cluster, catalyzes an enhancement of uncoupled S-adenosylmethionine cleavage relative to WT, together with the elimination of detectable peptide cross-linked product. While a [4Fe-4S] cluster can be tolerated at the AuxI site, the aggregate findings suggest a functional [2Fe-2S] configuration within the AuxI site. PqqE variants with nondestructive ligand replacements at AuxII also show that the reduction potential at this site can be manipulated by changing the electronegativity of the unique aspartate ligand. A number of novel mechanistic features are proposed based on the kinetic and spectroscopic data. Additionally, bioinformatic analyses suggest that the unique ligand environment of PqqE may be relevant to its role in PQQ biosynthesis within an oxygen-dependent biosynthetic pathway.
Collapse
Affiliation(s)
- Wen Zhu
- California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, California 94720, United States
| | - Lindsey M Walker
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Lizhi Tao
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Anthony T Iavarone
- California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, California 94720, United States
| | - Xuetong Wei
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, United States
| | - R David Britt
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Sean J Elliott
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Judith P Klinman
- California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, California 94720, United States.,Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, United States.,Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Kaur G, Burroughs AM, Iyer LM, Aravind L. Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. eLife 2020; 9:e52696. [PMID: 32101166 PMCID: PMC7159879 DOI: 10.7554/elife.52696] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Social cellular aggregation or multicellular organization pose increased risk of transmission of infections through the system upon infection of a single cell. The generality of the evolutionary responses to this outside of Metazoa remains unclear. We report the discovery of several thematically unified, remarkable biological conflict systems preponderantly present in multicellular prokaryotes. These combine thresholding mechanisms utilizing NTPase chaperones (the MoxR-vWA couple), GTPases and proteolytic cascades with hypervariable effectors, which vary either by using a reverse transcriptase-dependent diversity-generating system or through a system of acquisition of diverse protein modules, typically in inactive form, from various cellular subsystems. Conciliant lines of evidence indicate their deployment against invasive entities, like viruses, to limit their spread in multicellular/social contexts via physical containment, dominant-negative interactions or apoptosis. These findings argue for both a similar operational 'grammar' and shared protein domains in the sensing and limiting of infections during the multiple emergences of multicellularity.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
14
|
Balty C, Guillot A, Fradale L, Brewee C, Boulay M, Kubiak X, Benjdia A, Berteau O. Ruminococcin C, an anti-clostridial sactipeptide produced by a prominent member of the human microbiota Ruminococcus gnavus. J Biol Chem 2019; 294:14512-14525. [PMID: 31337708 PMCID: PMC6779426 DOI: 10.1074/jbc.ra119.009416] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/19/2019] [Indexed: 11/06/2022] Open
Abstract
The human microbiota plays a central role in human physiology. This complex ecosystem is a promising but untapped source of bioactive compounds and antibiotics that are critical for its homeostasis. However, we still have a very limited knowledge of its metabolic and biosynthetic capabilities. Here we investigated an enigmatic biosynthetic gene cluster identified previously in the human gut symbiont Ruminococcus gnavus. This gene cluster which encodes notably for peptide precursors and putative radical SAM enzymes, has been proposed to be responsible for the biosynthesis of ruminococcin C (RumC), a ribosomally synthesized and posttranslationally modified peptide (RiPP) with potent activity against the human pathogen Clostridium perfringens. By combining in vivo and in vitro approaches, including recombinant expression and purification of the respective peptides and proteins, enzymatic assays, and LC-MS analyses, we determined that RumC is a sulfur-to–α-carbon thioether-containing peptide (sactipeptide) with an unusual architecture. Moreover, our results support that formation of the thioether bridges follows a processive order, providing mechanistic insights into how radical SAM (AdoMet) enzymes install posttranslational modifications in RiPPs. We also found that the presence of thioether bridges and removal of the leader peptide are required for RumC's antimicrobial activity. In summary, our findings provide evidence that production of the anti-Clostridium peptide RumC depends on an R. gnavus operon encoding five potential RumC precursor peptides and two radical SAM enzymes, uncover key RumC structural features, and delineate the sequence of posttranslational modifications leading to its formation and antimicrobial activity.
Collapse
Affiliation(s)
- Clémence Balty
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Laura Fradale
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Clémence Brewee
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Mylène Boulay
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Xavier Kubiak
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Alhosna Benjdia
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Olivier Berteau
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
15
|
Kincannon WM, Bruender NA, Bandarian V. A Radical Clock Probe Uncouples H Atom Abstraction from Thioether Cross-Link Formation by the Radical S-Adenosyl-l-methionine Enzyme SkfB. Biochemistry 2018; 57:4816-4823. [PMID: 29965747 PMCID: PMC6094349 DOI: 10.1021/acs.biochem.8b00537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Sporulation
killing factor (SKF) is a ribosomally synthesized and
post-translationally modified peptide (RiPP) produced by Bacillus. SKF contains a thioether cross-link between the α-carbon
at position 40 and the thiol of Cys32, introduced by a member of the
radical S-adenosyl-l-methionine (SAM) superfamily,
SkfB. Radical SAM enzymes employ a 4Fe–4S cluster to bind and
reductively cleave SAM to generate a 5′-deoxyadenosyl radical.
SkfB utilizes this radical intermediate to abstract the α-H
atom at Met40 to initiate cross-linking. In addition to the cluster
that binds SAM, SkfB also has an auxiliary cluster, the function of
which is not known. We demonstrate that a substrate analogue with
a cyclopropylglycine (CPG) moiety replacing the wild-type Met40 side
chain forgoes thioether cross-linking for an alternative radical ring
opening of the CPG side chain. The ring opening reaction also takes
place with a catalytically inactive SkfB variant in which the auxiliary
Fe–S cluster is absent. Therefore, the CPG-containing peptide
uncouples H atom abstraction from thioether bond formation, limiting
the role of the auxiliary cluster to promoting thioether cross-link
formation. CPG proves to be a valuable tool for uncoupling H atom
abstraction from peptide modification in RiPP maturases and demonstrates
potential to leverage RS enzyme reactivity to create noncanonical
amino acids.
Collapse
Affiliation(s)
- William M Kincannon
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Nathan A Bruender
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Vahe Bandarian
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
16
|
Parent A, Benjdia A, Guillot A, Kubiak X, Balty C, Lefranc B, Leprince J, Berteau O. Mechanistic Investigations of PoyD, a Radical S-Adenosyl-l-methionine Enzyme Catalyzing Iterative and Directional Epimerizations in Polytheonamide A Biosynthesis. J Am Chem Soc 2018; 140:2469-2477. [PMID: 29253341 PMCID: PMC5824343 DOI: 10.1021/jacs.7b08402] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing family of bioactive peptides. Among RiPPs, the bacterial toxin polytheonamide A is characterized by a unique set of post-translational modifications catalyzed by novel radical S-adenosyl-l-methionine (SAM) enzymes. Here we show that the radical SAM enzyme PoyD catalyzes in vitro polytheonamide epimerization in a C-to-N directional manner. By combining mutagenesis experiments with labeling studies and investigating the enzyme substrate promiscuity, we deciphered in detail the mechanism of PoyD. We notably identified a critical cysteine residue as a likely key H atom donor and demonstrated that PoyD belongs to a distinct family of radical SAM peptidyl epimerases. In addition, our study shows that the core peptide directly influences the epimerization pattern allowing for production of peptides with unnatural epimerization patterns.
Collapse
Affiliation(s)
- Aubérie Parent
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , 78350 Jouy-en-Josas, France
| | - Alhosna Benjdia
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , 78350 Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , 78350 Jouy-en-Josas, France
| | - Xavier Kubiak
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , 78350 Jouy-en-Josas, France
| | - Clémence Balty
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , 78350 Jouy-en-Josas, France
| | - Benjamin Lefranc
- Inserm U1239, PRIMACEN, University of Rouen Normandy , 76000 Rouen, France
| | - Jérôme Leprince
- Inserm U1239, PRIMACEN, University of Rouen Normandy , 76000 Rouen, France
| | - Olivier Berteau
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , 78350 Jouy-en-Josas, France
| |
Collapse
|
17
|
Benjdia A, Balty C, Berteau O. Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs). Front Chem 2017; 5:87. [PMID: 29167789 PMCID: PMC5682303 DOI: 10.3389/fchem.2017.00087] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/11/2017] [Indexed: 11/13/2022] Open
Abstract
Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large and diverse family of natural products. They possess interesting biological properties such as antibiotic or anticancer activities, making them attractive for therapeutic applications. In contrast to polyketides and non-ribosomal peptides, RiPPs derive from ribosomal peptides and are post-translationally modified by diverse enzyme families. Among them, the emerging superfamily of radical SAM enzymes has been shown to play a major role. These enzymes catalyze the formation of a wide range of post-translational modifications some of them having no counterparts in living systems or synthetic chemistry. The investigation of radical SAM enzymes has not only illuminated unprecedented strategies used by living systems to tailor peptides into complex natural products but has also allowed to uncover novel RiPP families. In this review, we summarize the current knowledge on radical SAM enzymes catalyzing RiPP post-translational modifications and discuss their mechanisms and growing importance notably in the context of the human microbiota.
Collapse
Affiliation(s)
- Alhosna Benjdia
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Clémence Balty
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Olivier Berteau
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
18
|
Latham JA, Barr I, Klinman JP. At the confluence of ribosomally synthesized peptide modification and radical S-adenosylmethionine (SAM) enzymology. J Biol Chem 2017; 292:16397-16405. [PMID: 28830931 DOI: 10.1074/jbc.r117.797399] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Radical S-adenosylmethionine (RS) enzymology has emerged as a major biochemical strategy for the homolytic cleavage of unactivated C-H bonds. At the same time, the post-translational modification of ribosomally synthesized peptides is a rapidly expanding area of investigation. We discuss the functional cross-section of these two disciplines, highlighting the recently uncovered importance of protein-protein interactions, especially between the peptide substrate and its chaperone, which functions either as a stand-alone protein or as an N-terminal fusion to the respective RS enzyme. The need for further work on this class of enzymes is emphasized, given the poorly understood roles performed by multiple, auxiliary iron-sulfur clusters and the paucity of protein X-ray structural data.
Collapse
Affiliation(s)
- John A Latham
- From the Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208 and
| | - Ian Barr
- the California Institute of Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720
| | - Judith P Klinman
- the California Institute of Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720 .,the Departments of Chemistry and.,Molecular and Cell Biology and
| |
Collapse
|