1
|
Xie J, Zheng Z, Wang B, Zhang J, Jiang J, Wu F, Zhong X, Chen J. LncRNA HOTAIR promotes aerobic glycolysis by recruiting Lin28 to induce inflammation and apoptosis in acute lung injury. RNA Biol 2025; 22:1-12. [PMID: 40052944 PMCID: PMC11901367 DOI: 10.1080/15476286.2025.2475255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Acute lung injury (ALI) is a life-threatening condition with high rates of morbidity and mortality. Recently, there has been growing evidence suggesting a link between lncRNA HOTAIR and ALI. Nonetheless, the precise role and mechanism of lncRNA HOTAIR in ALI remain to be fully elucidated. siHOTAIR transfection, qPCR detection (HOTAIR), ELISA (TNF-α, IL-6, and IL-1β), Lactate detection, Glucose uptake experiment, Cell Apoptosis Analysis, Fluorescence in situ hybridization (FISH) assay. Through siHOTAIR transfection, we discovered that HOTAIR plays a role in the secretion of inflammatory factors in ALI and further regulates glucose uptake and metabolism in lung epithelial cells. Moreover, a comparison between HOTAIR knockdown cells and HOTAIR overexpression cells revealed that HOTAIR promotes cellular aerobic sugar metabolism, leading to increased secretion of inflammatory factors and cell apoptosis. Our in-depth research also identified an interaction between HOTAIR and the LIN28 protein. Knocking down HOTAIR resulted in the downregulation of LIN28 protein expression, which subsequently inhibited the expression of the glucose transporter GLUT1. This indicates that HOTAIR facilitates glucose uptake and boosts cellular aerobic glycolysis by modulating the LIN28 protein, thereby promoting inflammation and apoptosis in acute lung injury. The research findings presented in this article offer significant insights into the function of HOTAIR in ALI and suggest a potential therapeutic target for the treatment of this condition.
Collapse
Affiliation(s)
- Junjie Xie
- Department of Pediatrics, Maternal and Child Health Hospital of Sanshui District, Foshan, China
| | - Zhicong Zheng
- Department of Pediatrics, Maternal and Child Health Hospital of Sanshui District, Foshan, China
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianfang Zhang
- Department of Pediatrics, Maternal and Child Health Hospital of Sanshui District, Foshan, China
| | - Junqi Jiang
- Department of Pediatrics, Maternal and Child Health Hospital of Sanshui District, Foshan, China
| | - Fengde Wu
- Department of Pediatrics, Maternal and Child Health Hospital of Sanshui District, Foshan, China
| | - Xiangming Zhong
- Department of Pediatrics, Maternal and Child Health Hospital of Sanshui District, Foshan, China
| | - Jianfeng Chen
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Nazari M, Babakhanzadeh E, Mollazadeh A, Ahmadzade M, Mohammadi Soleimani E, Hajimaqsoudi E. HOTAIR in cancer: diagnostic, prognostic, and therapeutic perspectives. Cancer Cell Int 2024; 24:415. [PMID: 39702144 DOI: 10.1186/s12935-024-03612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
The long non-coding RNA HOTAIR is overexpressed in many cancers and is associated with several cancer-promoting effects, including increased cell proliferation, migration and treatment resistance. HOTAIR levels correlate with tumor stage, lymph node metastasis and overall survival in patients with various types of cancer. This highlights the potential uses of HOTAIR, including early cancer detection, predicting patient outcome, identifying high-risk individuals and assisting in therapy selection and monitoring. The aim of this review is to provide a comprehensive summary of the research progress, molecular mechanisms and clinical significance of HOTAIR in various human cancers. In addition, the clinical applications of HOTAIR, such as targeted therapy, radiotherapy, chemotherapy and immunotherapy, are discussed, and relevant information on the potential future advances of HOTAIR in cancer research is provided.
Collapse
Affiliation(s)
- Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, P.O. Box 64155-65117, Tehran, Yazd, Iran.
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arghavan Mollazadeh
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Mohadese Ahmadzade
- Department of Urology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elnaz Hajimaqsoudi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
3
|
Belfrage H, Kuuliala K, Kuuliala A, Mustonen H, Puolakkainen P, Kylänpää L, Seppänen H, Louhimo J. Circulating necroptosis markers in chronic pancreatitis and pancreatic cancer: Associations with diagnosis and prognostic factors. Pancreatology 2024; 24:1229-1236. [PMID: 39613683 DOI: 10.1016/j.pan.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVES Necroptosis, a programmed inflammatory cell death, is implicated in the pathogenesis of pancreatitis and its potential progression to pancreatic ductal adenocarcinoma (PDAC), but its role remains unclear. We compared plasma levels of necroptosis-related markers - mixed lineage kinase domain-like protein (MLKL), interleukin (IL)-33, and its soluble receptor (sST2)- in patients with chronic pancreatitis (CP), PDAC, and healthy controls (HC), to explore their diagnostic and prognostic significance. METHODS Plasma was collected from patients pre-procedurally (PDAC, n = 82; CP, n = 25) and from HC (n = 39), and studied by ELISA. Clinical and routine laboratory data were collected, and pancreas was defined as soft or non-soft based on intraoperative or imaging findings. Mann-Whitney U test, Spearman correlation coefficients, ROC analysis were used for statistical analysis. RESULTS Plasma MLKL was lower in patients with CP than in other groups (p < 0.001) and PDAC patients treated with upfront surgery (PDACUS, n = 65) had lower MLKL than HC (p = 0.035). MLKL differentiated CP from PDACUS (AUC 0.83, p < 0.001). sST2 levels were significantly lower in HC than in other groups (p < 0.001) and in PDAC patients with a soft pancreas compared with non-soft (p < 0.005). In Lewis antigen positive PDACUS (n = 59), sST2 had positive correlations with CA19-9 measured concurrently and after 1 month, and with CEA measured after 1 or 6 months. CONCLUSIONS Circulating levels of MLKL are lower in patients with CP than PDAC. Elevated sST2 levels are associated with pancreatic diseases. Further studies are required to show whether MLKL and sST2 could be useful biomarkers in evaluating pancreatic diseases.
Collapse
Affiliation(s)
- Hanna Belfrage
- Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Krista Kuuliala
- Department of Bacteriology and Immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Antti Kuuliala
- Department of Bacteriology and Immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Harri Mustonen
- Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Translational Cancer Medicine Program and ICAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Pauli Puolakkainen
- Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Translational Cancer Medicine Program and ICAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Leena Kylänpää
- Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Hanna Seppänen
- Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Translational Cancer Medicine Program and ICAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Johanna Louhimo
- Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Sun X, Yuan Y, Li S, Gan L, Xu M, Li Q, Liu M, Hu K, Nan K, Zhang J, Dong Y, Lin Y, Zhang X, Hou P, Liu T. Prostate cancer-associated transcript 6 (PCAT6) promotes epithelial-mesenchymal transition and stemness and worsens prognosis in patients with colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 2024; 56:866-878. [PMID: 38606479 PMCID: PMC11214952 DOI: 10.3724/abbs.2024031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 04/13/2024] Open
Abstract
Approximately 20% of colorectal cancer (CRC) patients are first diagnosed with metastatic colorectal cancer (mCRC) because they develop symptoms at an advanced stage. Despite advancements in treatment, patients with metastatic disease still experience inferior survival rates. Our objective is to investigate the association between long noncoding RNAs (lncRNAs) and prognosis and to explore their role in mCRC. In this study, we find that elevated expression of PCAT6 is independently linked to unfavourable survival outcomes in The Cancer Genome Atlas (TCGA) data, and this finding is further confirmed in CRC samples obtained from Fudan University Shanghai Cancer Center. Cell lines and xenograft mouse models are used to examine the impact of PCAT6 on tumor metastasis. Knockdown of PCAT6 is observed to impede the metastatic phenotype of CRC, as evidenced by functional assays, demonstrating the suppression of epithelial-mesenchymal transition (EMT) and stemness. Our findings show the significance of PCAT6 in mCRC and its potential use as a prognostic biomarker.
Collapse
Affiliation(s)
- Xun Sun
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Yitao Yuan
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Suyao Li
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Lu Gan
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
- Fudan Zhangjiang InstituteShanghai201203China
| | - Midie Xu
- Department of Pathology and Tissue BankFudan University Shanghai Cancer CenterShanghai200032China
| | - Qingguo Li
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Mengling Liu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Keshu Hu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Ke Nan
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Jiayu Zhang
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Yu Dong
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Yufu Lin
- Department of OncologyZhongshan Hospital (Xiamen)Fudan UniversityXiamen361015China
| | - Xiuping Zhang
- Xiamen Clinical Research Center for Cancer TherapyXiamen BranchZhongshan HospitalFudan UniversityXiamen361015China
| | - Pengcong Hou
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
- Shanghai Institute of Precision MedicineShanghai Ninth People’s HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Tianshu Liu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
5
|
Chen P, Liu Z, Xiao H, Yang X, Li T, Huang W, Zhou H. Effect of tumor exosome-derived Lnc RNA HOTAIR on the growth and metastasis of gastric cancer. Clin Transl Oncol 2023; 25:3447-3459. [PMID: 37199906 DOI: 10.1007/s12094-023-03208-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE HOX transcribed antisense RNA (HOTAIR) is a long noncoding RNA (LncRNA) that promotes tumor progression. Exosomes are critically involved in cancer progression. The presence of HOTAIR in the circulating exosomes and the roles of exosomal HOTAIR in gastric cancer (GC) remains unknown. This study aimed to investigate the role of HOTAIR in exosomes in promoting the growth and metastasis of GC. METHODS Serum exosomes from GC patients were captured by CD63 immunoliposome magnetic spheres (CD63-IMS), and the biological characteristics of the exosomes were identified. The expression levels of HOTAIR in GC cells, tissues, serum and serum exosomes were detected by fluorescence quantitative PCR (qRT-PCR), and the clinicopathological correlation was statistically analyzed. The growth and metastasis abilities of GC cells with HOTAIR knockdown in vitro were evaluated by cell experiment. The effects of HOTAIR highly-expressed NCI-N87 cell-derived exosomes were used to treat HOTAIR lowly-expressed MKN45 cells on GC growth and metastasis were also evaluated. RESULTS The exosomes isolated by CD63-IMS had a particle size of 89.78 ± 4.8 nm and were oval membranous particles. The expression of HOTAIR in tumor tissues and serum of GC patients was increased (P < 0.05), and the expression of HOTAIR in serum exosomes was significantly increased (P < 0.01). The in NCI-N87 and MKN45 cell experiment demonstrated that HOTAIR knockdown by RNA interference suppressed cell growth and metastasis in NCI-N87 cells. Coculture of exosomes secreted by NCI-N87 cells with MKN45 cells significantly increased the expression of HOTAIR, and enhanced cell growth and metastasis. CONCLUSION LncRNA HOTAIR can be used as a potential biomarker which provides a new way for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Pan Chen
- The Animal Laboratory Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhenyang Liu
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Hua Xiao
- Hepatobiliary Surgery Department, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xiaolin Yang
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ting Li
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Wei Huang
- Department of Radiation Oncology, Research Center of Carcinogenesis and Targeted Therapy/National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huijun Zhou
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
6
|
Roy L, Chatterjee O, Bose D, Roy A, Chatterjee S. Noncoding RNA as an influential epigenetic modulator with promising roles in cancer therapeutics. Drug Discov Today 2023; 28:103690. [PMID: 37379906 DOI: 10.1016/j.drudis.2023.103690] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/11/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
The epigenetic landscape has an important role in cellular homeostasis and its deregulation leads to cancer. Noncoding (nc)RNA networks function as major regulators of cellular epigenetic hallmarks via regulation of vital processes, such as histone modification and DNA methylation. They are integral intracellular components affecting multiple oncogenic pathways. Thus, it is important to elucidate the effects of ncRNA networks on epigenetic programming that lead to the initiation and progression of cancer. In this review, we summarize the effects of epigenetic modification influenced by ncRNA networks and crosstalk between diverse classes of ncRNA, which could aid the development of patient-specific cancer therapeutics targeting ncRNAs, thereby altering cellular epigenetics.
Collapse
Affiliation(s)
- Laboni Roy
- Department of Biophysics, Bose Institute, Kolkata 700091, India
| | | | - Debopriya Bose
- Department of Biophysics, Bose Institute, Kolkata 700091, India
| | - Ananya Roy
- Department of Biophysics, Bose Institute, Kolkata 700091, India
| | | |
Collapse
|
7
|
Wei L, Sun J, Wang X, Huang Y, Huang L, Han L, Zheng Y, Xu Y, Zhang N, Yang M. Noncoding RNAs: an emerging modulator of drug resistance in pancreatic cancer. Front Cell Dev Biol 2023; 11:1226639. [PMID: 37560164 PMCID: PMC10407809 DOI: 10.3389/fcell.2023.1226639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
Pancreatic cancer is the eighth leading cause of cancer-related deaths worldwide. Chemotherapy including gemcitabine, 5-fluorouracil, adriamycin and cisplatin, immunotherapy with immune checkpoint inhibitors and targeted therapy have been demonstrated to significantly improve prognosis of pancreatic cancer patients with advanced diseases. However, most patients developed drug resistance to these therapeutic agents, which leading to shortened patient survival. The detailed molecular mechanisms contributing to pancreatic cancer drug resistance remain largely unclear. The growing evidences have shown that noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are involved in pancreatic cancer pathogenesis and development of drug resistance. In the present review, we systematically summarized the new insight on of various miRNAs, lncRNAs and circRNAs on drug resistance of pancreatic cancer. These results demonstrated that targeting the tumor-specific ncRNA may provide novel options for pancreatic cancer treatments.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yizhou Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Linying Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yanxiu Zheng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuan Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Chu DX, Jin Y, Wang BR, Jiao Y, Zhang CK, Guo ZH, Hu SZ, Li N. LncRNA HOTAIR Enhances Epithelial-to-mesenchymal Transition to Promote the Migration and Invasion of Liver Cancer by Regulating NUAK1 via Epigenetic Inhibition miR-145-5p Expression. J Cancer 2023; 14:2329-2343. [PMID: 37576402 PMCID: PMC10414040 DOI: 10.7150/jca.85335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/19/2023] [Indexed: 08/15/2023] Open
Abstract
LncRNA HOTAIR play important roles in the epigenetic regulation of carcinogenesis and progression in liver cancer. Previous studies suggest that the overexpression of HOTAIR predicts poor prognosis. In this study, through transcriptome sequencing data and in vitro experiments, we found that HOTAIR were more highly expressed and there is significantly positive relationship between HOTAIR and NUAK1 in liver cancer tissues and cell lines. miR-145-5p was downregulated and showed negative correlation with HOTAIR and NUAK1. Transfect Sh-HOTAIR, LZRS-HOTAIR, miR-145 mimic, miR-145 inhibitor to change the expression of HOTAIR and miR-145-5p. The addition of HTH-01-015 inhibits the expression of NUAK1. HOTAIR knockdown, miR-145-5p upregulation and NUAK1 inhibition all repressed migration, invasion and metastasis and reversed the epithelial-to-mesenchymal transition in SNU-387 and HepG2 cells. We also showed that HOTAIR recruiting and binding PRC2 (EZH2) epigenetically represses miR-145-5p, which controls the target NUAK1, thus contributing to liver cancer cell-EMT process and accelerating tumor metastasis. Moreover, it is demonstrated that HOTAIR crosstalk with miR-145-5p/NUAK1 during epigenetic regulation. Our findings indicate that HOTAIR/miR-145-5p/NUAK1 axis acts as an EMT regulator and may be candidate prognostic biomarker and targets for new therapies in liver cancer.
Collapse
Affiliation(s)
- Dong-xia Chu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Yu Jin
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Bing-rong Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Chao-ke Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Zi-han Guo
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Shao-zhuo Hu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Na Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| |
Collapse
|
9
|
Bhoopathi P, Mannangatti P, Das SK, Fisher PB, Emdad L. Chemoresistance in pancreatic ductal adenocarcinoma: Overcoming resistance to therapy. Adv Cancer Res 2023; 159:285-341. [PMID: 37268399 DOI: 10.1016/bs.acr.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a prominent cause of cancer deaths worldwide, is a highly aggressive cancer most frequently detected at an advanced stage that limits treatment options to systemic chemotherapy, which has provided only marginal positive clinical outcomes. More than 90% of patients with PDAC die within a year of being diagnosed. PDAC is increasing at a rate of 0.5-1.0% per year, and it is expected to be the second leading cause of cancer-related mortality by 2030. The resistance of tumor cells to chemotherapeutic drugs, which can be innate or acquired, is the primary factor contributing to the ineffectiveness of cancer treatments. Although many PDAC patients initially responds to standard of care (SOC) drugs they soon develop resistance caused partly by the substantial cellular heterogeneity seen in PDAC tissue and the tumor microenvironment (TME), which are considered key factors contributing to resistance to therapy. A deeper understanding of molecular mechanisms involved in PDAC progression and metastasis development, and the interplay of the TME in all these processes is essential to better comprehend the etiology and pathobiology of chemoresistance observed in PDAC. Recent research has recognized new therapeutic targets ushering in the development of innovative combinatorial therapies as well as enhancing our comprehension of several different cell death pathways. These approaches facilitate the lowering of the therapeutic threshold; however, the possibility of subsequent resistance development still remains a key issue and concern. Discoveries, that can target PDAC resistance, either alone or in combination, have the potential to serve as the foundation for future treatments that are effective without posing undue health risks. In this chapter, we discuss potential causes of PDAC chemoresistance and approaches for combating chemoresistance by targeting different pathways and different cellular functions associated with and mediating resistance.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
10
|
Bayraktar E, Bayraktar R, Oztatlici H, Lopez-Berestein G, Amero P, Rodriguez-Aguayo C. Targeting miRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update. Noncoding RNA 2023; 9:27. [PMID: 37104009 PMCID: PMC10145226 DOI: 10.3390/ncrna9020027] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Since the discovery of the first microRNAs (miRNAs, miRs), the understanding of miRNA biology has expanded substantially. miRNAs are involved and described as master regulators of the major hallmarks of cancer, including cell differentiation, proliferation, survival, the cell cycle, invasion, and metastasis. Experimental data indicate that cancer phenotypes can be modified by targeting miRNA expression, and because miRNAs act as tumor suppressors or oncogenes (oncomiRs), they have emerged as attractive tools and, more importantly, as a new class of targets for drug development in cancer therapeutics. With the use of miRNA mimics or molecules targeting miRNAs (i.e., small-molecule inhibitors such as anti-miRS), these therapeutics have shown promise in preclinical settings. Some miRNA-targeted therapeutics have been extended to clinical development, such as the mimic of miRNA-34 for treating cancer. Here, we discuss insights into the role of miRNAs and other non-coding RNAs in tumorigenesis and resistance and summarize some recent successful systemic delivery approaches and recent developments in miRNAs as targets for anticancer drug development. Furthermore, we provide a comprehensive overview of mimics and inhibitors that are in clinical trials and finally a list of clinical trials based on miRNAs.
Collapse
Affiliation(s)
- Emine Bayraktar
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hulya Oztatlici
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Histology and Embryology, Gaziantep University, Gaziantep 27310, Turkey
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Jiang XY, Zhu QC, Zhang XJ, Duan T, Feng J, Sui XB, Sun XN, Mou YP. Roles of lncRNAs in pancreatic ductal adenocarcinoma: Diagnosis, treatment, and the development of drug resistance. Hepatobiliary Pancreat Dis Int 2023; 22:128-139. [PMID: 36543619 DOI: 10.1016/j.hbpd.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, primarily due to its late diagnosis, high propensity to metastasis, and the development of resistance to chemo-/radiotherapy. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are intimately involved in the treatment resistance of pancreatic cancer cells via interacting with critical signaling pathways and may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. DATA SOURCES We carried out a systematic review on lncRNAs-based research in the context of pancreatic cancer and presented an overview of the updated information regarding the molecular mechanisms underlying lncRNAs-modulated pancreatic cancer progression and drug resistance, together with their potential value in diagnosis, prognosis, and treatment of PDAC. Literature mining was performed in PubMed with the following keywords: long non-coding RNA, pancreatic ductal adenocarcinoma, pancreatic cancer up to January 2022. Publications relevant to the roles of lncRNAs in diagnosis, prognosis, drug resistance, and therapy of PDAC were collected and systematically reviewed. RESULTS LncRNAs, such as HOTAIR, HOTTIP, and PVT1, play essential roles in regulating pancreatic cancer cell proliferation, invasion, migration, and drug resistance, thus may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. They participate in tumorigenesis mainly by targeting miRNAs, interacting with signaling molecules, and involving in the epithelial-mesenchymal transition process. CONCLUSIONS The functional lncRNAs play essential roles in pancreatic cancer cell proliferation, invasion, migration, and drug resistance and have potential values in diagnosis, prognostic prediction, and treatment of PDAC.
Collapse
Affiliation(s)
- Xiao-Yin Jiang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China; Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China; School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Qi-Cong Zhu
- Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Xiao-Jian Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ting Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiao Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin-Bing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xue-Ni Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yi-Ping Mou
- Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
12
|
Pandey S, Gupta VK, Lavania SP. Role of epigenetics in pancreatic ductal adenocarcinoma. Epigenomics 2023; 15:89-110. [PMID: 36647796 DOI: 10.2217/epi-2022-0177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, associated with poor survival outcomes. Lack of early diagnosis, resistance to conventional therapeutic treatments (including immunotherapy) and recurrence are some of the major hurdles in PDAC and contribute to its poor survival rate. While the risk of genetic predisposition to cancers is widely acknowledged and understood, recent advances in whole-genome and next-generation sequencing techniques have led to the acknowledgment of the role played by epigenetics, especially in PDAC. Epigenetic changes are heritable genetic modifications that influence gene expression without altering the DNA sequence. Epigenetic mechanisms (e.g., DNA methylation, post-translational modification of histone complexes and ncRNA) that result in reversible changes in gene expression are increasingly understood to be responsible for tumor initiation, development and even escape from immune surveillance. Our review seeks to highlight the various components of the epigenetic machinery that are known to be implicated in PDAC initiation and development and the feasibility of targeting these components to identify novel pharmacological strategies that could potentially lead to breakthroughs in PDAC treatment.
Collapse
Affiliation(s)
- Somnath Pandey
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Vineet K Gupta
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Shweta P Lavania
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
13
|
Akbari A, Abbasi S, Borumandnia N, Eshkiki ZS, Sedaghat M, Tabaeian SP, Kashani AF, Talebi A. Epigenetic regulation of gastrointestinal cancers mediated by long non-coding RNAs. Cancer Biomark 2022; 35:359-377. [PMID: 36404536 DOI: 10.3233/cbm-220142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Long noncoding RNAs (lncRNAs), as well-known modulator of the epigenetic processes, have been shown to contribute to normal cellular physiological and pathological conditions such as cancer. Through the interaction with epigenetic regulators, an aberrant regulation of gene expression can be resulted due to their dysregulation, which in turn, can be involved in tumorigenesis. In the present study, we reviewed the lncRNAs' function and mechanisms that contributed to aberrant epigenetic regulation, which is directly related to gastrointestinal cancer (GI) development and progression. Findings indicated that epigenetic alterations may involve in tumorigenesis and are valuable biomarkers in case of diagnosing, assessing of risk factors, and predicting of GI cancers. This review summarized the accumulated evidence for biological and clinical application to use lncRNAs in GI cancers, including colorectal, gastric, oral, liver, pancreatic and oesophageal cancer.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.,Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Abbasi
- Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Nasrin Borumandnia
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Meghdad Sedaghat
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Atefeh Talebi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Wang J, Liu X, Li P, Wang J, Shu Y, Zhong X, Gao Z, Yang J, Jiang Y, Zhou X, Yang G. Long noncoding RNA HOTAIR regulates the stemness of breast cancer cells via activation of the NF-κB signaling pathway. J Biol Chem 2022; 298:102630. [PMID: 36273585 PMCID: PMC9691943 DOI: 10.1016/j.jbc.2022.102630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Breast cancer is the most prevalent cancer among women, and it is characterized by a high rate of tumor development and heterogeneity. Breast cancer stem cells (CSCs) may well contribute to these pathological properties, but the mechanisms underlying their self-renewal and maintenance are still elusive. Here, we found that the long noncoding RNA HOTAIR is highly expressed in breast CSCs. HOTAIR is required for breast CSC self-renewal and tumor propagation. Mechanistically, we demonstrate that HOTAIR recruits the PRC2 protein complex to the promoter of IκBα to inhibit its expression, leading to activation of the NF-κB signaling pathway. The activated NF-κB signaling promotes downstream c-Myc and Cyclin D1 expression. Furthermore, our analysis of clinical samples from the GEPIA database indicated that the IκBα level, as well as the survival rate of patients, with high HOTAIR expression was significantly lower than that of patients with relatively low HOTAIR expression. Our data suggest that HOTAIR-mediated NF-κB signaling primes breast CSC self-renewal and tumor propagation. In sum, we have identified HOTAIR-based NF-κB signaling regulatory circuit that promotes tumorigenic activity in breast CSCs, further indicating that HOTAIR could be a promising target for clinical treatment of breast cancers.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China; Core Facilities, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xingzhu Liu
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China; School of Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Ping Li
- School of Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Junrong Wang
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Yu Shu
- School of Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Xinyu Zhong
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Zhen Gao
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Jingyi Yang
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Yashuang Jiang
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Xile Zhou
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China; Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Geng Yang
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China.
| |
Collapse
|
15
|
Jia M, Feng S, Cao F, Deng J, Li W, Zhou W, Liu X, Bai W. Identification of EGFR-Related LINC00460/mir-338-3p/MCM4 Regulatory Axis as Diagnostic and Prognostic Biomarker of Lung Adenocarcinoma Based on Comprehensive Bioinformatics Analysis and Experimental Validation. Cancers (Basel) 2022; 14:5073. [PMID: 36291859 PMCID: PMC9600278 DOI: 10.3390/cancers14205073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 09/23/2023] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is one of the most aggressive and lethal tumor types and requires effective diagnostic and therapeutic targets. Though the epidermal growth factor receptor (EGFR) is an important target for LUAD therapy, acquired resistance is still inevitable. In recent years, the regulation of the EGFR by competing endogenous RNAs (ceRNAs) has been extensively studied and significant progress has been made. Therefore, we aim to find new targets for the diagnosis and treatment of LUAD by analyzing the EGFR-related ceRNA network in LUAD and expect to address the problem of EGFR resistance. Methods: We identified differentially expressed lncRNAs, miRNAs and mRNAs closely associated with the EGFR by analyzing transcriptome data from LUAD samples. Comprehensive bioinformatics analysis strongly suggests that the LINC00460-mir-338-3p-MCM4 ceRNA network plays an important role in the diagnosis and prognosis of LUAD. The effects of different patterns of the LINC00460/MCM4 axis on the overall survival of patients with LUAD were analyzed by a polygene regulation model. We also verified the expression of these genes in LUAD cell lines and tumor tissues by RT-PCR and immunohistochemistry. The functional enrichment analysis and targeted drug prediction of the MCM4 gene were performed. Results: Survival analysis indicated that high expressions of LINC00460 and MCM4 predict a shorter survival period for patients. Univariate and multivariate regression analyses demonstrated that higher expressions of LINC00460 and MCM4 were significantly associated with tumor size, lymph node metastasis, distant metastasis and TNM stage. A multi-gene regulation model analysis revealed that the LINC00460 (downregulation)-mir-338-3p (upregulation)-MCM4 (downregulation) pattern significantly improved the overall survival of LUAD patients (p = 0.0093). RT-PCR and immunohistochemical experiments confirmed our analytical results. In addition, the functional enrichment analysis indicated that MCM4-related genes were mainly enriched in the cell cycle and cell division. A functional association network analysis showed that MCM4 was closely related to the EGFR. Finally, the possible targeted drugs of MCM4 were queried through the drug database platform, hoping to solve its drug resistance problem by targeting EGFR-related genes. Conclusions: In summary, the LINC00460/MCM4 axis can be used as a potential new perspective for targeting EGFR genes in precision medicine and is expected to serve as a diagnostic, prognostic and drug target for LUAD.
Collapse
Affiliation(s)
- Mingxi Jia
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Shanshan Feng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Fengxi Cao
- Second Affiliated Hospital of Luohe Medical College, Luohe Medical College, Luohe 462000, China
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wangyan Zhou
- Department of Medical Record, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Xiang Liu
- Department of Thoracic Surgery, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
16
|
Zhang L, Ye B, Chen Z, Chen ZS. Progress in the studies on the molecular mechanisms associated with multidrug resistance in cancers. Acta Pharm Sin B 2022; 13:982-997. [PMID: 36970215 PMCID: PMC10031261 DOI: 10.1016/j.apsb.2022.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/01/2022] Open
Abstract
Chemotherapy is one of the important methods to treat cancer, and the emergence of multidrug resistance (MDR) is one major cause for the failure of cancer chemotherapy. Almost all anti-tumor drugs develop drug resistance over a period of time of application in cancer patients, reducing their effects on killing cancer cells. Chemoresistance can lead to a rapid recurrence of cancers and ultimately patient death. MDR may be induced by multiple mechanisms, which are associated with a complex process of multiple genes, factors, pathways, and multiple steps, and today the MDR-associated mechanisms are largely unknown. In this paper, from the aspects of protein-protein interactions, alternative splicing (AS) in pre-mRNA, non-coding RNA (ncRNA) mediation, genome mutations, variance in cell functions, and influence from the tumor microenvironment, we summarize the molecular mechanisms associated with MDR in cancers. In the end, prospects for the exploration of antitumor drugs that can reverse MDR are briefly discussed from the angle of drug systems with improved targeting properties, biocompatibility, availability, and other advantages.
Collapse
|
17
|
Functions and underlying mechanisms of lncRNA HOTAIR in cancer chemotherapy resistance. Cell Death Dis 2022; 8:383. [PMID: 36100611 PMCID: PMC9470550 DOI: 10.1038/s41420-022-01174-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
Chemotherapy has been one of the most important treatments for advanced cancer in recent decades. Although the sensitivity rate of initial chemotherapy is high, patients with chemotherapy resistant tumors, experience tumor recurrence. In recent years, many studies have shown that homeobox transcript antisense intergenic RNA (HOTAIR) is involved in many pathological processes including carcinogenesis. The abnormal regulation of a variety of cell functions by HOTAIR, such as apoptosis, the cell cycle, epithelial-mesenchymal transition, autophagy, self-renewal, and metabolism, is associated with chemotherapy resistance. Therefore, there is an urgent need to understand the biology and mechanism underlying the role of HOTAIR in tumor behavior and its potential as a biomarker for predicting the effect of chemotherapy. In this manuscript, we review the mechanisms underlying HOTAIR-related drug resistance and discuss the limitations of current knowledge and propose potential future directions.
Collapse
|
18
|
Zhang Y, Yang M, Yang S, Hong F. Role of noncoding RNAs and untranslated regions in cancer: A review. Medicine (Baltimore) 2022; 101:e30045. [PMID: 35984196 PMCID: PMC9388041 DOI: 10.1097/md.0000000000030045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most prevalent diseases worldwide, and poses a threat to human health. Noncoding RNAs (ncRNAs) constitute most transcripts, but they cannot be translated into proteins. Studies have shown that ncRNAs can act as tumor suppressors or oncogenes. This review describes the role of several ncRNAs in various cancers, including microRNAs (miRNAs) such as the miR-34 family, let-7, miR-17-92 cluster, miR-210, and long noncoding RNAs (lncRNAs) such as HOX transcript antisense intergenic RNA (HOTAIR), Metastasis associated lung adenocarcinoma transcript 1 (MALAT1), H19, NF-κB-interacting lncRNA (NKILA), as well as circular RNAs (circRNAs) and untranslated regions (UTRs), highlighting their effects on cancer growth, invasion, metastasis, angiogenesis, and apoptosis. They function as tumor suppressors or oncogenes that interfere with different axes and pathways, including p53 and IL-6, which are involved in the progression of cancer. The characteristic expression of some ncRNAs in cancer also allows them to be used as biomarkers for early diagnosis and therapeutic candidates. There is a complex network of interactions between ncRNAs, with some lncRNAs and circRNAs acting as competitive endogenous RNAs (ceRNAs) to decoy miRNAs and repress their expression. The ceRNA network is a part of the ncRNA network and numerous ncRNAs work as nodes or hubs in the network, and disruption of their interactions can cause cancer development. Therefore, the balance and stabilization of this network are important for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yiping Zhang
- Experimental Centre of Pathogen Biology, Nanchang University, Nanchang, China
- Queen Mary College, School of Medicine, Nanchang University, Nanchang, China
| | - Meiwen Yang
- Department of Surgery, Fuzhou Medical College, Nanchang University, Fuzhou, China
| | - Shulong Yang
- Department of Physiology, Key Research Laboratory of Chronic Diseases, Fuzhou Medical College, Nanchang University, Fuzhou, China
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Fenfang Hong
- Experimental Centre of Pathogen Biology, Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Xie W, Chu M, Song G, Zuo Z, Han Z, Chen C, Li Y, Wang ZW. Emerging roles of long noncoding RNAs in chemoresistance of pancreatic cancer. Semin Cancer Biol 2022; 83:303-318. [PMID: 33207266 DOI: 10.1016/j.semcancer.2020.11.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is one of the most common causes of cancer death in the world due to the lack of early symptoms, metastasis occurrence and chemoresistance. Therefore, early diagnosis by detection of biomarkers, blockade of metastasis, and overcoming chemoresistance are the effective strategies to improve the survival of pancreatic cancer patients. Accumulating evidence has revealed that long noncoding RNA (lncRNA) and circular RNAs (circRNAs) play essential roles in modulating chemosensitivity in pancreatic cancer. In this review article, we will summarize the role of lncRNAs in drug resistance of pancreatic cancer cells, including HOTTIP, HOTAIR, PVT1, linc-ROR, GAS5, UCA1, DYNC2H1-4, MEG3, TUG1, HOST2, HCP5, SLC7A11-AS1 and CASC2. We also highlight the function of circRNAs, such as circHIPK3 and circ_0000284, in regulation of drug sensitivity of pancreatic cancer cells. Moreover, we describe a number of compounds, including curcumin, genistein, resveratrol, quercetin, and salinomycin, which may modulate the expression of lncRNAs and enhance chemosensitivity in pancreatic cancers. Therefore, targeting specific lncRNAs and cicrRNAs could contribute to reverse chemoresistance of pancreatic cancer cells. We hope this review might stimulate the studies of lncRNAs and cicrRNAs, and develop the new therapeutic strategy via modulating these noncoding RNAs to promote chemosensitivity of pancreatic cancer cells.
Collapse
Affiliation(s)
- Wangkai Xie
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Man Chu
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Gendi Song
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Ziyi Zuo
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zheng Han
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Chenbin Chen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yuyun Li
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Zhi-Wei Wang
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
20
|
Liu X, Jin Y, Wan X, Liang X, Wang K, Liu J, Jiang J, Meng B, Han S, Zhou L, Cai S, Zou F. SALIS transcriptionally represses IGFBP3/Caspase-7-mediated apoptosis by associating with STAT5A to promote hepatocellular carcinoma. Cell Death Dis 2022; 13:642. [PMID: 35871161 PMCID: PMC9308799 DOI: 10.1038/s41419-022-05094-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer and the second most fatal cancer in the world despite the great therapeutic advances in the past two decades, which reminds us of the gap in fully understanding the oncogenic mechanism of HCC. To explore the key factors contributing to the progression of HCC, we identified a LncRNA, termed SALIS (Suppression of Apoptosis by LINC01186 Interacting with STAT5A), functions in promoting the proliferation, colony formation, migration and invasion while suppressing apoptosis in HCC cells. Mechanistic study indicated SALIS physically associates with transcription factor STAT5A and binds to the promoter regions of IGFBP3 and Caspase-7 to transcriptionally repress their expression and further inhibit apoptosis. Our findings identified SALIS as an oncogene to promote HCC by physically binding with STAT5A to inhibit the expression of pro-apoptotic IGFBP3 and Caspase-7, which suggests novel therapeutic targets for HCC treatments.
Collapse
Affiliation(s)
- Xingyuan Liu
- grid.284723.80000 0000 8877 7471Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yi Jin
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xuan Wan
- grid.284723.80000 0000 8877 7471Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoting Liang
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ke Wang
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jieyu Liu
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiale Jiang
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Bingyao Meng
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shuo Han
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Liang Zhou
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- grid.284723.80000 0000 8877 7471Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fei Zou
- grid.284723.80000 0000 8877 7471Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Farooqi AA, Attar R, Yulaevna IM, Berardi R. Interaction of long non-coding RNAs and circular RNAs with microRNAs for the regulation of immunological responses in human cancers. Semin Cell Dev Biol 2022; 124:63-71. [PMID: 34090752 DOI: 10.1016/j.semcdb.2021.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
Advancements in single-cell RNA sequencing technologies have enabled us to deconvolve immune system heterogeneity by identification of functionally distinct immune cell subsets in disease and health. Discovery of non-coding RNAs has opened new horizons for re-interpretation of regulatory roles of myriad of cell signaling pathways in immunology and oncology. Role of miRNAs, circular RNAs and long non-coding RNAs (lncRNAs) in the context of immunomodulation has just begun to be uncovered and future studies may further expand the repertoire of non-coding RNAs implicated in the regulatory circuits. One of the most recent and exciting aspect in molecular immunology is the delivery of non-coding RNAs through exosomes to the recipient cells which results in the re-wiring of different pathways and protein networks in recipient cells. Broader understanding of all of the layers of regulation in this system can provide useful information that could be harnessed to rationally translate laboratory findings into clinically effective therapeutics.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Turkey
| | | | - Rossana Berardi
- Università Politecnica delle Marche - Ospedali Riuniti Ancona, Italy
| |
Collapse
|
22
|
Dehghanian F, Azhir Z, Khalilian S, Grüning B. Non-coding RNAs underlying the pathophysiological links between type 2 diabetes and pancreatic cancer: A systematic review. J Diabetes Investig 2022; 13:405-428. [PMID: 34859606 PMCID: PMC8902405 DOI: 10.1111/jdi.13727] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes is known as a risk factor for pancreatic cancer (PC). Various genetic and environmental factors cause both these global chronic diseases. The mechanisms that define their relationships are complex and poorly understood. Recent studies have implicated that metabolic abnormalities, including hyperglycemia and hyperinsulinemia, could lead to cell damage responses, cell transformation, and increased cancer risk. Hence, these kinds of abnormalities following molecular events could be essential to develop our understanding of this complicated link. Among different molecular events, focusing on shared signaling pathways including metabolic (PI3K/Akt/mTOR) and mitogenic (MAPK) pathways in addition to regulatory mechanisms of gene expression such as those involved in non-coding RNAs (miRNAs, circRNAs, and lncRNAs) could be considered as powerful tools to describe this association. A better understanding of the molecular mechanisms involved in the development of type 2 diabetes and pancreatic cancer would help us to find a new research area for developing therapeutic and preventive strategies. For this purpose, in this review, we focused on the shared molecular events resulting in type 2 diabetes and pancreatic cancer. First, a comprehensive literature review was performed to determine similar molecular pathways and non-coding RNAs; then, the final results were discussed in more detail.
Collapse
Affiliation(s)
- Fariba Dehghanian
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Zahra Azhir
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Sheyda Khalilian
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Björn Grüning
- Department of Computer ScienceBioinformatics GroupUniversity of FreiburgFreiburgGermany
| |
Collapse
|
23
|
A diagnostic and prognostic value of blood-based circulating long non-coding RNAs in Thyroid, Pancreatic and Ovarian Cancer. Crit Rev Oncol Hematol 2022; 171:103598. [PMID: 35033662 DOI: 10.1016/j.critrevonc.2022.103598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated the potential of circulating long non-coding RNAs (lncRNAs) as promising cancer biomarkers. Herein, we addressed the regulatory role of circulating lncRNAs and their potential value as diagnostic/prognostic markers for thyroid, pancreatic and ovarian cancers. Furthermore, we analyzed and measured the clinical implications and association of lncRNAs with sensitivity, specificity, and area under the ROC curve (AUC). Based on our meta-analysis, we found that GAS8-AS1 could discriminate thyroid cancer from non-cancer and other cancers with higher accuracy (AUC = 0.746; sensitivity = 61.70%, and specificity = 90.00%). Similarly, for ovarian cancer, lncRNA RP5-837J1.2 was found to have ideal diagnostic potential with critical clinical specifications of AUC = 0.996; sensitivity = 97.30% and specificity = 94.60%. Whereas we could not find any lncRNA having high diagnostic/prognostic efficiency in pancreatic cancer. We believe that lncRNAs mentioned above may explore clinical settings for the diagnosis and prognosis of cancer patients.
Collapse
|
24
|
Ketkar M, Dutt S. Epigenetic Regulation Towards Acquired Drug Resistance in Cancer. Subcell Biochem 2022; 100:473-502. [PMID: 36301503 DOI: 10.1007/978-3-031-07634-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Therapy resistance remains the most challenging obstacle in cancer treatment. Substantial efforts and evidences have accumulated over decades suggesting not only genetic but non-genomic mechanisms underlying this adaptation of tumor cells. Alterations in epigenome can have a fundamental effect on cellular functions and response to stresses like anticancer therapy. This chapter discusses the principal mechanisms by which epigenetic modifications in the genome and transcriptome aid tumor cells toward acquisition of resistance to chemotherapy.
Collapse
Affiliation(s)
- Madhura Ketkar
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India.
| |
Collapse
|
25
|
TÜNCEL Ö, KARA M, YAYLAK B, ERDOĞAN İ, AKGÜL B. Noncoding RNAs in apoptosis: identification and function. Turk J Biol 2021; 46:1-40. [PMID: 37533667 PMCID: PMC10393110 DOI: 10.3906/biy-2109-35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/08/2022] [Accepted: 11/14/2021] [Indexed: 08/04/2023] Open
Abstract
Apoptosis is a vital cellular process that is critical for the maintenance of homeostasis in health and disease. The derailment of apoptotic mechanisms has severe consequences such as abnormal development, cancer, and neurodegenerative diseases. Thus, there exist complex regulatory mechanisms in eukaryotes to preserve the balance between cell growth and cell death. Initially, protein-coding genes were prioritized in the search for such regulatory macromolecules involved in the regulation of apoptosis. However, recent genome annotations and transcriptomics studies have uncovered a plethora of regulatory noncoding RNAs that have the ability to modulate not only apoptosis but also many other biochemical processes in eukaryotes. In this review article, we will cover a brief summary of apoptosis and detection methods followed by an extensive discussion on microRNAs, circular RNAs, and long noncoding RNAs in apoptosis.
Collapse
Affiliation(s)
- Özge TÜNCEL
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Merve KARA
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Bilge YAYLAK
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - İpek ERDOĞAN
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Bünyamin AKGÜL
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| |
Collapse
|
26
|
Non-Coding RNAs in Pancreatic Cancer Diagnostics and Therapy: Focus on lncRNAs, circRNAs, and piRNAs. Cancers (Basel) 2021; 13:cancers13164161. [PMID: 34439315 PMCID: PMC8392713 DOI: 10.3390/cancers13164161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Pancreatic cancer is the seventh leading cause of cancer related death worldwide. In the United States, pancreatic cancer remains the fourth leading cause of cancer related death. The lack of early diagnosis and effective therapy contributes to the high mortality of pancreatic cancer. Therefore, there is an urgent need to find novel and effective biomarkers for the diagnosis and treatment of pancreatic cancer. Long noncoding RNA, circular RNAs and piwi-interacting RNA are non-coding RNAs and could become new biomarkers for the diagnosis, prognosis, and treatment of pancreatic cancer. We summarize the new findings on the roles of these non-coding RNAs in pancreatic cancer diagnosis, prognosis and targeted therapy. Abstract Pancreatic cancer is an aggressive malignance with high mortality. The lack of early diagnosis and effective therapy contributes to the high mortality of this deadly disease. For a long time being, the alterations in coding RNAs have been considered as major targets for diagnosis and treatment of pancreatic cancer. However, with the advances in high-throughput next generation of sequencing more alterations in non-coding RNAs (ncRNAs) have been discovered in different cancers. Further mechanistic studies have demonstrated that ncRNAs such as long noncoding RNAs (lncRNA), circular RNAs (circRNA) and piwi-interacting RNA (piRNA) play vital roles in the regulation of tumorigenesis, tumor progression and prognosis. In recent years, increasing studies have focused on the roles of ncRNAs in the development and progression of pancreatic cancer. Novel findings have demonstrated that lncRNA, circRNA, and piRNA are critically involved in the regulation of gene expression and cellular signal transduction in pancreatic cancer. In this review, we summarize the current knowledge of roles of lncRNA, circRNA, and piRNA in the diagnosis and prognosis of pancreatic cancer, and molecular mechanisms underlying the regulation of these ncRNAs and related signaling in pancreatic cancer therapy. The information provided here will help to find new strategies for better treatment of pancreatic cancer.
Collapse
|
27
|
Zhou Y, Wang Y, Lin M, Wu D, Zhao M. LncRNA HOTAIR promotes proliferation and inhibits apoptosis by sponging miR-214-3p in HPV16 positive cervical cancer cells. Cancer Cell Int 2021; 21:400. [PMID: 34320988 PMCID: PMC8317292 DOI: 10.1186/s12935-021-02103-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cervical cancer (CC) is one of the most common gynaecological malignancies all around the world. The mechanisms of cervical carcinoma formation remain under close scrutiny. The long non-coding RNAs (lncRNA) and microRNAs (miRNAs) play important roles in controlling gene expression and promoting the development and progression of cervical cancer by acting as competitive endogenous RNA (ceRNA). However, the roles of lncRNA associated with ceRNAs in cervical carcinogenesis remains unknown. In this study, the expression of long non-coding RNA HOTAIR was investigated in HPV16 positive cervical cancer cells, the candidate miRNAs and target genes were identified to clarify putative ceRNAs of HOTAIR/miRNA in cervical cancer cells. Methods The proliferation ability of cells was measured by CCK8 and EdU incorporation assays and cell apoptosis was analyzed by flow cytometry. The expression of HOTAIR, miR-214-3p, HPV16 E7 mRNA were detected by qRT-PCR. As for searching for the interaction between miR-214-3p and HOTAIR, the binding sites for miR-214-3p on HOTAIR was predicted by starbase v2.0 database, then dual-luciferase assay was used to verify the binding sites. In addition, Gene Ontology (GO) and protein–protein interaction (PPI) network analysis of target genes of miR-214-3p were performed with bioinformatics analysis. The potential signal pathway regulated by HOTAIR/miR-214-3p was predicted by KEGG enrichment analysis and confirmed by qPCR and WB analysis in cervical cancer cells. Results Our results showed that expression of HOTAIR was up-regulated, while that of miR-214-3p was down-regulated in HPV16-positive cervical cancer cells. The expression status of HPV16 E7 played an important role in regulating expression of HOTAIR or miR-214-3p in cervical cancer cells. HOTAIR knockdown could significantly inhibited cell proliferate ability and promote cellular apoptosis, whereas the inhibition of miR-214-3p expression partially reversed such results. Bioinformatics analysis identified 1451 genes as target genes of miR-214-3p. The Gene ontology (GO) and KEGG Pathway enrichment analysis showed that these target genes were mainly related to regulation of cell communication, protein binding, enzyme binding and transferase activity, and Wnt ligand biogenesis. Pathway enrichment analysis results showed that the predicted target genes were significantly enriched in Wnt/β-catenin signaling pathway. Finally, our results confirmed that miR-214-3p could significantly inhibit β-catenin expression in HPV16 positive cancer cells by qPCR and WB analysis. Conclusion HOTAIR could act as a ceRNA through binding to miR-214-3p, promote cell proliferation and inhibit the apoptosis of HPV16 positive cervical cancer. HOTAIR/miR-214-3p/Wnt/β-catenin signal pathway might played important regulated roles in HPV16 positive cervical cancer. Our results provided new insight into defining novel biomarkers for cervical cancer.
Collapse
Affiliation(s)
- Yu Zhou
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Yuqing Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Mingying Lin
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Daiqian Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Min Zhao
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
28
|
Xin X, Li Q, Fang J, Zhao T. LncRNA HOTAIR: A Potential Prognostic Factor and Therapeutic Target in Human Cancers. Front Oncol 2021; 11:679244. [PMID: 34367966 PMCID: PMC8340021 DOI: 10.3389/fonc.2021.679244] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of gene expression and physiological processes. LncRNAs are a class of ncRNAs of 200 nucleotides in length. HOX transcript antisense RNA (HOTAIR), a trans-acting lncRNA with regulatory function on transcription, can repress gene expression by recruiting chromatin modifiers. HOTAIR is an oncogenic lncRNA, and numerous studies have determined that HOTAIR is highly upregulated in a wide variety of human cancers. In this review, we briefly summarize the impact of lncRNA HOTAIR expression and functions on different human solid tumors, and emphasize the potential of HOTAIR on tumor prognosis and therapy. Here, we review the recent studies that highlight the prognostic potential of HOTAIR in drug resistance and survival, and the progress of therapies developed to target HOTAIR to date. Furthermore, targeting HOTAIR results in the suppression of HOTAIR expression or function. Thus, HOTAIR knockdown exhibits great therapeutic potential in various cancers, indicating that targeting lncRNA HOTAIR may serve as a promising strategy for cancer therapy. We also propose that preclinical studies involving HOTAIR are required to provide a better understanding of the exact molecular mechanisms underlying the dysregulation of its expression and function in different human cancers and to explore effective methods of targeting HOTAIR and engineering efficient and targeted drug delivery methods in vivo.
Collapse
Affiliation(s)
- Xiaoru Xin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Qianan Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jinyong Fang
- Department of Science and Education, Jinhua Guangfu Oncology Hospital, Jinhua, China
| | - Tiejun Zhao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
29
|
Wang LF, Wu LP, Wen JD. LncRNA AC079630.4 expression associated with the progression and prognosis in lung cancer. Aging (Albany NY) 2021; 13:18658-18668. [PMID: 34282054 PMCID: PMC8351710 DOI: 10.18632/aging.203310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
Mounting evidence has demonstrated the important role of long non-coding RNAs (lncRNAs) in the development and progression of lung cancer. In this study, we combined the methods of bioinformatics analysis and experimental validation, and aim to investigate the clinical significance and underlying mechanism of the novel lncRNA AC079630.4 in lung cancer. Finally, we found that AC079630.4 was significantly down-regulated in lung cancer tissues, including in its subtypes. Samples with low AC079630.4 expression had a more advanced pathological stage and a worse prognosis than those with high expression. In functional prediction, the KEGG pathway of apoptosis and the TRAIL signaling pathway were enriched in the samples with high AC079630.4 expression. In experimental validation, AC079630.4 over-expression could significantly inhibit the proliferation and clonality, and up-regulated the receptors of TRAIL (TRAIL-R1 and TRAIL-R2) in lung cancer cells. In conclusion, we adopted the methods of bioinformatics analysis and experimental validation, and identified a novel lncRNA of AC079630.4 as a tumor suppressor in lung cancer.
Collapse
Affiliation(s)
- Li-Fang Wang
- Drug Clinical Trial Office, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Li-Ping Wu
- Drug Clinical Trial Office, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Jian-Dong Wen
- Drug Clinical Trial Office, Ganzhou People's Hospital, Ganzhou 341000, China
| |
Collapse
|
30
|
Mortoglou M, Tabin ZK, Arisan ED, Kocher HM, Uysal-Onganer P. Non-coding RNAs in pancreatic ductal adenocarcinoma: New approaches for better diagnosis and therapy. Transl Oncol 2021; 14:101090. [PMID: 33831655 PMCID: PMC8042452 DOI: 10.1016/j.tranon.2021.101090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/14/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with a 5-year survival rate less than 8%, which has remained unchanged over the last 50 years. Early detection is particularly difficult due to the lack of disease-specific symptoms and a reliable biomarker. Multimodality treatment including chemotherapy, radiotherapy (used sparingly) and surgery has become the standard of care for patients with PDAC. Carbohydrate antigen 19-9 (CA 19-9) is the most common diagnostic biomarker; however, it is not specific enough especially for asymptomatic patients. Non-coding RNAs are often deregulated in human malignancies and shown to be involved in cancer-related mechanisms such as cell growth, differentiation, and cell death. Several micro, long non-coding and circular RNAs have been reported to date which are involved in PDAC. Aim of this review is to discuss the roles and functions of non-coding RNAs in diagnosis and treatments of PDAC.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Zoey Kathleen Tabin
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - E Damla Arisan
- Institution of Biotechnology, Gebze Technical University, Gebze, Turkey.
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University London, London EC1M 6BQ, UK.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
31
|
Farooqi AA, Nayyab S, Martinelli C, Berardi R, Katifelis H, Gazouli M, Cho WC. Regulation of Hippo, TGFβ/SMAD, Wnt/ β-Catenin, JAK/STAT, and NOTCH by Long Non-Coding RNAs in Pancreatic Cancer. Front Oncol 2021; 11:657965. [PMID: 34178644 PMCID: PMC8220219 DOI: 10.3389/fonc.2021.657965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Rapidly evolving and ever-increasing knowledge of the molecular pathophysiology of pancreatic cancer has leveraged our understanding altogether to a next level. Compared to the exciting ground-breaking discoveries related to underlying mechanisms of pancreatic cancer onset and progression, however, there had been relatively few advances in the therapeutic options available for the treatment. Since the discovery of the DNA structure as a helix which replicates semi-conservatively to pass the genetic material to the progeny, there has been conceptual refinement and continuous addition of missing pieces to complete the landscape of central dogma. Starting from transcription to translation, modern era has witnessed non-coding RNA discovery and central role of these versatile regulators in onset and progression of pancreatic cancer. Long non-coding RNAs (lncRNAs) have been shown to act as competitive endogenous RNAs through sequestration and competitive binding to myriad of microRNAs in different cancers. In this article, we set spotlight on emerging evidence of regulation of different signaling pathways (Hippo, TGFβ/SMAD, Wnt/β-Catenin, JAK/STAT and NOTCH) by lncRNAs. Conceptual refinements have enabled us to understand how lncRNAs play central role in post-translational modifications of various proteins and how lncRNAs work with epigenetic-associated machinery to transcriptionally regulate gene network in pancreatic cancer.
Collapse
Affiliation(s)
| | - Sawera Nayyab
- Department of Biotechnology, Faculty of Science, University of Sialkot, Sialkot, Pakistan
| | | | - Rossana Berardi
- Università Politecnica delle Marche-Ospedali Riuniti Ancona, Ancona, Italy
| | - Hector Katifelis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
32
|
Ramya Devi KT, Karthik D, Mahendran T, Jaganathan MK, Hemdev SP. Long noncoding RNAs: role and contribution in pancreatic cancer. Transcription 2021; 12:12-27. [PMID: 34036896 DOI: 10.1080/21541264.2021.1922071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Noncoding RNAs are proclaimed to be expressed in various cancer types and one such type is found to be pancreatic ductal adenocarcinoma (PDAC). The long noncoding RNAs (LncRNAs) affect the migration, invasion, and growth of tumor cells by playing important roles in the process of epigenesis, post-transcription, and transcriptional regulation along with the maintenance of apoptosis and cell cycle. It is quite subtle whether the alterations in lncRNAs would impact PDAC progression and development. This review throws a spotlight on the lncRNAs associated with tumor functions: MALAT-1, HOTAIR, HOXA13, H19, LINC01559, LINC00460, SNHG14, SNHG16, DLX6-AS1, MSC-AS1, ABHD11-AS1, DUXAP8, DANCR, XIST, DLEU2, etc. are upregulated lncRNAs whereas GAS5, HMlincRNA717, MIAT, LINC01111, lncRNA KCNK15-AS1, etc. are downregulated lncRNAs inhibiting the invasion and progression of PDAC. These data provided helps in the assessment of lncRNAs in the development, metastasis, and occurrence of PDAC and also play a vital role in the evolution of biomarkers and therapeutic agents for the treatment of PDAC.
Collapse
Affiliation(s)
- K T Ramya Devi
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Dharshene Karthik
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India.,Department of Industrial Biotechnology, Sri Venkateswara College of Engineering, Chennai, India
| | - TharunSelvam Mahendran
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - M K Jaganathan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Sanjana Prakash Hemdev
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
33
|
Tang Y, Song G, Liu H, Yang S, Yu X, Shi L. Silencing of Long Non-Coding RNA HOTAIR Alleviates Epithelial-Mesenchymal Transition in Pancreatic Cancer via the Wnt/β-Catenin Signaling Pathway. Cancer Manag Res 2021; 13:3247-3257. [PMID: 33883938 PMCID: PMC8053715 DOI: 10.2147/cmar.s265578] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose Pancreatic cancer (PC) is a malignancy with poor prognosis and controversial treatment options. Long non-coding RNA (lncRNA) is a significant factor in the development of PC. In the current study, the possible effects of HOTAIR on the epithelial-mesenchymal transition (EMT) of PC and the related mechanisms were investigated. Methods The PC models were induced by 10 mg/100 g dimethylbenzoanthracene (DMBA) in pancreas. Mice were injected with the HOTAIR mimic and HOTAIR shRNA to determine the role of HOTAIR in PC. Subsequently, the expression of HOTAIR in PC cells was assayed. To determine the mechanism of HOTAIR in PC, human PC cell line PANC-1, Miapaca-2 and human normal pancreatic ductal epithelial cell line HPDE6-C7 were transfected with the HOTAIR mimic, the shRNA against HOTAIR, the Wnt/b-catenin activator (LiCl), and the Wnt/b-catenin inhibitor (XAV939), respectively. Moreover, the expressions of the Wnt/β-catenin signaling pathway-related genes (β-catenin, cyclinD1, c-myc, LEF-1 and c-Jun) and the levels of the EMT markers (E-cadherin, N-cadherin and Vimentin) were determined. Finally, the cell biological processes were evaluated by functional experiments. Results HOTAIR was found to be highly expressed in the PC cells in mice. The expression of β-catenin, cyclinD1, c-myc, LEF-1 and c-Jun, N-cadherin and Vimentin was found to be decreased, while the expression of E-cadherin was found to be increased subsequent to the silencing of HOTAIR in human PC cell lines PANC-1 and Miapaca-2. Additionally, it was observed that the silencing of HOTAIR could inhibit the Wnt/β-catenin signaling pathway to alleviate EMT of tumor cells and inhibit the capacities of cell proliferation, migration, and invasion. Conclusion The key finding of the present study is that the silencing of HOTAIR could potentially inhibit EMT and growth of PC through the Wnt/β-catenin signaling pathway, providing a novel therapy for PC.
Collapse
Affiliation(s)
- Yinhua Tang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Guang Song
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Hongcheng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Shuang Yang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xiaoyi Yu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Lijun Shi
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| |
Collapse
|
34
|
Huang M, Yi C, Huang XZ, Yan J, Wei LJ, Tang WJ, Chen SC, Huang Y. Recombinant protein TRAIL-Mu3 enhances the antitumor effects in pancreatic cancer cells by strengthening the apoptotic signaling pathway. Oncol Lett 2021; 21:438. [PMID: 33868476 PMCID: PMC8045166 DOI: 10.3892/ol.2021.12699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer is a highly malignant type of cancer and its treatment remains a major challenge. The novel recombinant protein TNF-related apoptosis-inducing ligand (TRAIL)-Mu3 has been shown to exert stronger tumor inhibitory effects in colon cancer in vitro and in vivo compared with TRAIL. The present study investigated the antitumor effects of TRAIL-Mu3 on pancreatic cancer cells, and the possible mechanisms were further examined. Compared with TRAIL, TRAIL-Mu3 exhibited significantly higher cytotoxic effects on pancreatic cancer cell lines. The inhibitory effect of TRAIL-Mu3 on the viability of PANC-1 cells was shown to be a caspase-dependent process. The affinity of TRAIL-Mu3 to PANC-1 cell membranes was significantly enhanced compared with TRAIL. In addition, TRAIL-Mu3 upregulated death receptor (DR) expression in PANC-1 cells and promoted the redistribution of DR5 in lipid rafts. Western blotting results demonstrated that TRAIL-Mu3 activated the caspase cascade in a faster and more efficient manner compared with TRAIL in PANC-1 cells. Therefore, TRAIL-Mu3 enhanced the antitumor effects in pancreatic cancer cells by strengthening the apoptotic signaling pathway. The present study indicated the potential of TRAIL-Mu3 for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Min Huang
- Department of Physiology, Chengdu Medical College, Chengdu, Sichuan 610000, P.R. China
| | - Cheng Yi
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Xian-Zhou Huang
- Chengdu Huachuang Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Juan Yan
- Chengdu Huachuang Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Li-Jia Wei
- Chengdu Huachuang Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Wei-Ju Tang
- Department of Neurology, The First People's Hospital of Longquanyi District, Chengdu, Sichuan 610000, P.R. China
| | - Shou-Chun Chen
- Chengdu Huachuang Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Ying Huang
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
35
|
Ni SY, Xu WT, Liao GY, Wang YL, Li J. LncRNA HOTAIR Promotes LPS-Induced Inflammation and Apoptosis of Cardiomyocytes via Lin28-Mediated PDCD4 Stability. Inflammation 2021; 44:1452-1463. [PMID: 33665757 DOI: 10.1007/s10753-021-01431-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/06/2021] [Accepted: 02/01/2021] [Indexed: 02/05/2023]
Abstract
Sepsis is one of the primary causes of death in intensive care units. Recently, increasing evidence has identified lncRNA HOTAIR is involved in septic cardiomyopathy. However, the potential mechanism underlying HOTAIR on septic cardiomyopathy is still unknown. H9C2 cells were treated with lipopolysaccharide (LPS) after transfection with sh-HOTAIR, sh-Lin28, pcDNA3.1-HOTAIR, and pcDNA3.1-PDCD4. qRT-PCR was used to examine the level of HOTAIR, Lin28, PDCD4, and sepsis-related inflammatory cytokines. Flow cytometric analysis was applied to detect cell apoptosis. The interaction between Lin28 and HOTAIR or PDCD4 was verified by RNA pull-down and RIP assay. HOTAIR levels were interfered by AAV9-sh-HOTAIR in LPS-induced septic cardiomyopathy mice. ELISA analysis was used to evaluate TNF-α, IL-6, and IL-1β level. Western blot was used to detect the expression of LIN28 and PDCD4 in mouse cardiomyocytes. Echocardiography was used to evaluate the cardiac function. In our study, knockdown of HOTAIR inhibited LPS-induced inflammation and H9C2 cells apoptosis. HOTAIR promoted LPS-induced inflammatory response and apoptosis of H9C2 cells by enhancing PDCD4 stability. RNA pull-down and RIP assay exhibited that Lin28, a highly conserved RNA-binding protein, was combined with HOTAIR and PDCD4. The in vivo experiments verified that the HOTAIR knockdown alleviated the cardiac function injury and secretion of inflammatory factors caused by sepsis. In conclusion, our findings supported that the HOTAIR/Lin28/PDCD4 axis serves as a critical regulator of sepsis, which may open a new direction for the development of sepsis therapeutic.
Collapse
Affiliation(s)
- Shu-Yuan Ni
- Department of Intensive Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong Province, People's Republic of China.
| | - Wen-Ting Xu
- Department of Intensive Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong Province, People's Republic of China
| | - Guang-Yuan Liao
- Department of Intensive Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong Province, People's Republic of China
| | - Yin-Ling Wang
- Department of Intensive Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong Province, People's Republic of China
| | - Jing Li
- Department of Intensive Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong Province, People's Republic of China
| |
Collapse
|
36
|
Ghafouri-Fard S, Dashti S, Farsi M, Taheri M. HOX transcript antisense RNA: An oncogenic lncRNA in diverse malignancies. Exp Mol Pathol 2020; 118:104578. [PMID: 33238156 DOI: 10.1016/j.yexmp.2020.104578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/11/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
HOX transcript antisense RNA (HOTAIR) is a transcript produced from the antisense strand of the HOXC gene cluster and influencing expression of genes from the HOXD locus. HOTAIR has prominent roles in different aspects of carcinogenic process from cancer initiation to metastasis. A number of in vitro, in vivo and human investigations have confirmed the oncogenic impacts of HOTAIR. The diagnostic power of HOTAIR in distinguishing cancer status from healthy status has been optimal in gastric cancer, pancreatic adenocarcinoma and colorectal cancer. The most important achievement in this regard has been provided by studies that verified diagnostic value of this lncRNA in the serum samples, potentiating its application in non-invasive diagnosis of cancer. Moreover, HOTAIR has a crucial role in determination of response of cancer cells to therapeutic modalities. The current review aims to explain the outlines of these studies to emphasize its potential as a biomarker and therapeutic target for these conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Molood Farsi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Non-coding RNA biomarkers in pancreatic ductal adenocarcinoma. Semin Cancer Biol 2020; 75:153-168. [PMID: 33049362 DOI: 10.1016/j.semcancer.2020.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, which is usually diagnosed at an advanced stage. The late disease diagnosis, the limited availability of effective therapeutic interventions and lack of robust diagnostic biomarkers, are some of the primary reasons for the dismal 5-year survival rates (∼8%) in patients with PDAC. The pancreatic cancer develops through accumulation of a series of genomic and epigenomic alterations which lead to the transformation of normal pancreatic epithelium into an invasive carcinoma - a process that can take up to 15-20 years to develop, from the occurrence of first initiating mutational event. These facts highlight a unique window of opportunity for the earlier detection of PDAC, which could allow timely disease interception and improvement in the overall survival outcomes in patients suffering from this fatal malignancy. Non-coding RNAs (ncRNAs) have been recognized to play a central role in PDAC pathogenesis and are emerging as attractive candidates for biomarker development in various cancers, including PDAC. More specifically, the ncRNAs play a pivotal role in PDAC biology as they affect tumor growth, migration, and invasion by regulating cellular processes including cell cycle, apoptosis, and epithelial-mesenchymal transition. In this review, we focus on three types of well-established ncRNAs - microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) - and discuss their potential as diagnostic, prognostic and predictive biomarkers in PDAC.
Collapse
|
38
|
Zhou Y, Sun W, Qin Z, Guo S, Kang Y, Zeng S, Yu L. LncRNA regulation: New frontiers in epigenetic solutions to drug chemoresistance. Biochem Pharmacol 2020; 189:114228. [PMID: 32976832 DOI: 10.1016/j.bcp.2020.114228] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/09/2023]
Abstract
Long-noncoding RNAs (lncRNAs) have been shown to participate in sensitizing or de-sensitizing cancer cells to chemical drugs during cancer therapeutics. Notably, a plethora of lncRNAs have been confirmed to be associated with epigenetic controllers and regulate histone protein modification or DNA methylation states in the process of gene transcription. This correlation between lncRNAs and epigenetic regulators can induce the expression of core genes to trigger drug resistance. In addition, epigenetic signatures are considered to be effective and attractive biomarkers for monitoring drug therapeutic effects because they are inheritable, dynamic, and reversible. Therefore, the regulatory mechanism between lncRNAs and epigenetic machinery can serve as a novel indicator and target to overcome or reverse drug resistance in cancer therapy. In this review, we also presented a curated selection of computational tools (including online databases and network analysis) in the area of epigenetics. A classic workflow for lncRNA expression network analysis is presented, providing guidance for non-bioinformaticians to identify significant correlation between lncRNAs and other biomolecules.
Collapse
Affiliation(s)
- Ying Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wen Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhiyuan Qin
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Suhang Guo
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu Kang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
39
|
Research progress on long non-coding RNAs and their roles as potential biomarkers for diagnosis and prognosis in pancreatic cancer. Cancer Cell Int 2020; 20:457. [PMID: 32973402 PMCID: PMC7493950 DOI: 10.1186/s12935-020-01550-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the main causes of tumor-related deaths worldwide because of its low morbidity but extremely high mortality, and is therefore colloquially known as the "king of cancer." Sudden onset and lack of early diagnostic biomarkers directly contribute to the extremely high mortality rate of pancreatic cancer patients, and also make it indistinguishable from benign pancreatic diseases and precancerous pancreatic lesions. Additionally, the lack of effective prognostic biomarkers makes it difficult for clinicians to formulate precise follow-up strategies based on the postoperative characteristics of the patients, which results in missed early diagnosis of recurrent pancreatic cancer. Long non-coding RNAs (lncRNAs) can influence cell proliferation, invasion/migration, apoptosis, and even chemoresistance via regulation of various signaling pathways, leading to pro- or anti-cancer outcomes. Given the versatile effects of lncRNAs on tumor progression, using a single lncRNA or combination of several lncRNAs may be an effective method for tumor diagnosis and prognostic predictions. This review will give a comprehensive overview of the most recent research related to lncRNAs in pancreatic cancer progression, as targeted therapies, and as biomarkers for the diagnosis and prognosis of pancreatic cancer.
Collapse
|
40
|
Pandya G, Kirtonia A, Sethi G, Pandey AK, Garg M. The implication of long non-coding RNAs in the diagnosis, pathogenesis and drug resistance of pancreatic ductal adenocarcinoma and their possible therapeutic potential. Biochim Biophys Acta Rev Cancer 2020; 1874:188423. [PMID: 32871244 DOI: 10.1016/j.bbcan.2020.188423] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the lethal malignancies with the lowest median and overall survival rate among all human malignancies. The major problems with the PDAC are the late diagnosis, metastasis, and acquired resistance to chemotherapeutic agents in the clinic. Over the last decade, the long non-coding RNAs (lncRNAs) have been discovered and occupies a significantly large proportion of the human genome. Recent studies have proved that lncRNAs can play a crucial role in the majority of key cellular processes involved in the maintenance of cellular homeostasis by regulating various molecular mechanisms. The deregulation of lncRNAs has been associated with various chronic diseases including human malignancies. Several lncRNAs have tumor-specific expression making them an ideal and excellent target for designing the novel therapeutic strategies against human malignancies. We have discussed how lncRNA expression can be used for the diagnosis and prognosis of PDAC. The current review discusses the potential role and molecular mechanism of lncRNA in regulating the prominent hallmarks of cancer including abnormal growth, survival, metastasis, and drug-resistance in PDAC. Importantly, we also highlight the possible application of various therapeutic strategies including small interfering RNA, CRISPR-Cas9, antisense oligonucleotides, locked nucleic acid Gapmers, small molecules, aptamers, lncRNA promoter to target the lncRNA as a novel and viable options for treatment of PDAC.
Collapse
Affiliation(s)
- Gouri Pandya
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India
| | - Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India.
| |
Collapse
|
41
|
The role of histone methylation in the development of digestive cancers: a potential direction for cancer management. Signal Transduct Target Ther 2020; 5:143. [PMID: 32747629 PMCID: PMC7398912 DOI: 10.1038/s41392-020-00252-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/22/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Digestive cancers are the leading cause of cancer-related death worldwide and have high risks of morbidity and mortality. Histone methylation, which is mediated mainly by lysine methyltransferases, lysine demethylases, and protein arginine methyltransferases, has emerged as an essential mechanism regulating pathological processes in digestive cancers. Under certain conditions, aberrant expression of these modifiers leads to abnormal histone methylation or demethylation in the corresponding cancer-related genes, which contributes to different processes and phenotypes, such as carcinogenesis, proliferation, metabolic reprogramming, epithelial–mesenchymal transition, invasion, and migration, during digestive cancer development. In this review, we focus on the association between histone methylation regulation and the development of digestive cancers, including gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer, as well as on its clinical application prospects, aiming to provide a new perspective on the management of digestive cancers.
Collapse
|
42
|
Singh AK, Verma A, Singh A, Arya RK, Maheshwari S, Chaturvedi P, Nengroo MA, Saini KK, Vishwakarma AL, Singh K, Sarkar J, Datta D. Salinomycin inhibits epigenetic modulator EZH2 to enhance death receptors in colon cancer stem cells. Epigenetics 2020; 16:144-161. [PMID: 32635858 DOI: 10.1080/15592294.2020.1789270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Drug resistance is one of the trademark features of Cancer Stem Cells (CSCs). We and others have recently shown that paucity of functional death receptors (DR4/5) on the cell surface of tumour cells is one of the major reasons for drug resistance, but their involvement in the context of in CSCs is poorly understood. By harnessing CSC specific cytotoxic function of salinomycin, we discovered a critical role of epigenetic modulator EZH2 in regulating the expression of DRs in colon CSCs. Our unbiased proteome profiler array approach followed by ChIP analysis of salinomycin treated cells indicated that the expression of DRs, especially DR4 is epigenetically repressed in colon CSCs. Concurrently, EZH2 knockdown demonstrated increased expression of DR4/DR5, significant reduction of CSC phenotypes such as spheroid formation in-vitro and tumorigenic potential in-vivo in colon cancer. TCGA data analysis of human colon cancer clinical samples shows strong inverse correlation between EZH2 and DR4. Taken together, this study provides an insight about epigenetic regulation of DR4 in colon CSCs and advocates that drug-resistant colon cancer can be therapeutically targeted by combining TRAIL and small molecule EZH2 inhibitors.
Collapse
Affiliation(s)
- Anup Kumar Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India
| | - Ayushi Verma
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India
| | - Akhilesh Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India
| | - Rakesh Kumar Arya
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India
| | - Shrankhla Maheshwari
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India.,Academy of Scientific and Innovative Research , New Delhi, India
| | - Priyank Chaturvedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India
| | - Mushtaq Ahmad Nengroo
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India
| | - Krishan Kumar Saini
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India.,Academy of Scientific and Innovative Research , New Delhi, India
| | | | - Kavita Singh
- Electron Microscopy Unit, CSIR-CDRI , Lucknow, India
| | | | - Dipak Datta
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India.,Academy of Scientific and Innovative Research , New Delhi, India
| |
Collapse
|
43
|
Regulation of pancreatic cancer TRAIL resistance by protein O-GlcNAcylation. J Transl Med 2020; 100:777-785. [PMID: 31896813 PMCID: PMC7183418 DOI: 10.1038/s41374-019-0365-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/26/2019] [Accepted: 12/07/2019] [Indexed: 12/11/2022] Open
Abstract
TRAIL-activating therapy is promising in treating various cancers, including pancreatic cancer, a highly malignant neoplasm with poor prognosis. However, many pancreatic cancer cells are resistant to TRAIL-induced apoptosis despite their expression of intact death receptors (DRs). Protein O-GlcNAcylation is a versatile posttranslational modification that regulates various biological processes. Elevated protein O-GlcNAcylation has been recently linked to cancer cell growth and survival. In this study, we evaluated the role of protein O-GlcNAcylation in pancreatic cancer TRAIL resistance, and identified higher levels of O-GlcNAcylation in TRAIL-resistant pancreatic cancer cells. With gain- and loss-of-function of the O-GlcNAc-adding enzyme, O-GlcNActransferase (OGT), we determined that increasing O-GlcNAcylation rendered TRAIL-sensitive cells more resistant to TRA-8-induced apoptosis, while inhibiting O-GlcNAcylation promoted TRA-8-induced apoptosis in TRAIL-resistance cells. Furthermore, we demonstrated that OGT knockdown sensitized TRAIL-resistant cells to TRA-8 therapy in a mouse model in vivo. Mechanistic studies revealed direct O-GlcNAc modifications of DR5, which regulated TRA-8-induced DR5 oligomerization. We further defined that DR5 O-GlcNAcylation was independent of FADD, the adapter protein for the downstream death-inducing signaling. These studies have demonstrated an important role of protein O-GlcNAcylation in regulating TRAIL resistance of pancreatic cancer cells; and uncovered the contribution of O-GlcNAcylation to DR5 oligomerization and thus mediating DR-inducing signaling.
Collapse
|
44
|
Knockdown of long non-coding RNA HOTAIR reverses cisplatin resistance of ovarian cancer cells through inhibiting miR-138-5p-regulated EZH2 and SIRT1. Biol Res 2020; 53:18. [PMID: 32349783 PMCID: PMC7191713 DOI: 10.1186/s40659-020-00286-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 04/17/2020] [Indexed: 02/08/2023] Open
Abstract
Background Cisplatin resistance (DDP-resistance) remains one of the major causes of poor prognosis in females with ovarian cancer. Long non-coding RNAs (lncRNAs) have been shown to participate in the regulation of cellular processes, including chemoresistance. The aim of this study was to explore the role of HOX transcript antisense RNA (HOTAIR) in DDP-resistant ovarian cancer cells. Methods DDP-resistant ovarian cancer cell lines (SKOV3/DDP and A2780/DDP) were established. Real-time PCR, western blot, dual-luciferase reporter assay, and flow cytometry were then used to evaluate the effect of HOTAIR/miR-138-5p axis on chemoresistance of DDP-resistant ovarian cancer cells to DDP. Results We found that HOTAIR was upregulated in DDP-resistant cells, while miR-138-5p was downregulated. Knockdown of HOTAIR increased the expression of miR-138-5p in DDP-resistant cells and miR-138-5p is directly bound to HOTAIR. Upregulation of miR-138-5p induced by HOTAIR siRNA or by its mimics enhanced the chemosensitivity of DDP-resistant cells and decreased the expression of EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) and SIRT1 (sirtuin 1). Furthermore, the HOTAIR silencing-induced chemosensitivity of DDP-resistant cells was weakened by miR-138-5p inhibitor. Conclusions These data demonstrate that HOTAIR acts as a sponge of miR-138-5p to prevent its binding to EZH2 and SIRT1, thereby promoting DDP-resistance of ovarian cancer cells. Our work will shed light on the development of therapeutic strategies for ovarian cancer treatment.
Collapse
|
45
|
Rajagopal T, Talluri S, Akshaya R, Dunna NR. HOTAIR LncRNA: A novel oncogenic propellant in human cancer. Clin Chim Acta 2020; 503:1-18. [DOI: 10.1016/j.cca.2019.12.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023]
|
46
|
Gong R, Jiang Y. Non-coding RNAs in Pancreatic Ductal Adenocarcinoma. Front Oncol 2020; 10:309. [PMID: 32257946 PMCID: PMC7089935 DOI: 10.3389/fonc.2020.00309] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are reported to be expressed in human cancers, including pancreatic ductal adenocarcinoma (PDAC). These ncRNAs affect the growth, migration and invasion of tumor cells by regulating cell cycle and apoptosis, as well as playing important roles in epigenetic processes, transcription and post-transcriptional regulation. It is still unclear whether alterations in ncRNAs influence PDAC development and progression. Because of this, analysis based on existing data on ncRNAs, which are crucial for modulating pancreatic tumorigenesis, will be important for future research on PDAC. Here, we summarize ncRNAs with tumor-promoting functions: HOTAIR, HOTTIP, MALAT1, lncRNA H19, lncRNA PVT1, circ-RNA ciRS-7, circ-0030235, circ-RNA_100782, circ-LDLRAD3, circ-0007534, circRHOT1, circZMYM2, circ-IARS, circ-RNA PDE8A, miR-21, miR-155, miR-221/222, miR-196b, miR-10a. While others including GAS5, MEG3, and lncRNA ENST00000480739, has_circ_0001649, miR-34a, miR-100, miR-217, miR-143 inhibit the proliferation and invasion of PDAC. Hence, we summarize the functions of ncRNAs in the occurrence, development and metastasis of PDAC, with the goal to provide guidance in the clinical diagnosis and treatment of PDAC.
Collapse
Affiliation(s)
- Ruining Gong
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yueping Jiang
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
47
|
Chen B, Zhang Q, Wang X, Wang Y, Cui J, Zhuang H, Tang J. The lncRNA ENSG00000254041.1 promotes cell invasiveness and associates with poor prognosis of pancreatic ductal adenocarcinoma. Aging (Albany NY) 2020; 12:3647-3661. [PMID: 32090981 PMCID: PMC7066894 DOI: 10.18632/aging.102835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/27/2020] [Indexed: 01/02/2023]
Abstract
Pancreatic cancer (PC) mainly occurs after 60 years of age, and its prognosis remains poor despite modest improvements in recent decades. Long non-coding RNAs (lncRNAs) are well known as a class of transcripts involved in cancer occurrence and progression. The process of epithelial to a mesenchymal (EMT) phenotype in tumor cell increases their migratory and invasive properties, resulting in facilitating metastasis. Here, we reanalyzed RNA-seq data from the TCGA PC database and identified that ENSG00000254041.1 increasingly expressed in samples with elevated EMT signature score. Then, the evaluated expression and prognostic significance of ENSG00000254041.1 were verified in our cohort. Meanwhile, multivariate analysis suggested that ENSG00000254041.1 was independent factors for predicting the prognosis of PC, apart from advanced stage (III/IV). Moreover, functional assay revealed that knock down of ENSG00000254041.1 significantly decreased proliferation, invasion and chemoresistance of PC cells (SW1990 and BxPC-3), while overexpression of ENSG00000254041.1 in PC cells (Panc-1) resulted in the opposite effects. Western blot showed that knockdown of ENSG00000254041.1 expression in PC cells caused a significant downregulation of vimentin, Snail and SOX4, and upregulation of E-cadherin; also, ENSG00000254041.1 overexpression in PC cells resulted in opposite effects. In conclusion, these findings indicated that ENSG00000254041.1 promotes PC progression, and might provide a potential biomarker for predicting the prognosis of PC.
Collapse
Affiliation(s)
- Bo Chen
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated to Tongji University, Shanghai 200123, China
| | - Qiqi Zhang
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated to Tongji University, Shanghai 200123, China
| | - Xujing Wang
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated to Tongji University, Shanghai 200123, China
| | - Yongkun Wang
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated to Tongji University, Shanghai 200123, China
| | - Jiaqu Cui
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated to Tongji University, Shanghai 200123, China
| | - Huiren Zhuang
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated to Tongji University, Shanghai 200123, China
| | - Jianying Tang
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated to Tongji University, Shanghai 200123, China
| |
Collapse
|
48
|
Naghizadeh S, Mansoori B, Mohammadi A, Sakhinia E, Baradaran B. Gene Silencing Strategies in Cancer Therapy: An Update for Drug Resistance. Curr Med Chem 2019; 26:6282-6303. [DOI: 10.2174/0929867325666180403141554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/10/2018] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
RNAi, post-transcriptional gene silencing mechanism, could be considered as one of the
most important breakthroughs and rapidly growing fields in science. Researchers are trying to use this
discovery in the treatment of various diseases and cancer is one of them although there are multiple
treatment procedures for treatment-resistant cancers, eradication of resistance remain as an unsolvable
problem yet. The current review summarizes both transcriptional and post-transcriptional gene silencing
mechanisms, and highlights mechanisms leading to drug-resistance such as, drug efflux, drug inactivation,
drug target alteration, DNA damages repair, and the epithelial-mesenchymal transition, as
well as the role of tumor cell heterogeneity and tumor microenvironment, involving genes in these
processes. It ultimately points out the obstacles of RNAi application for in vivo treatment of diseases
and progressions that have been achieved in this field.
Collapse
Affiliation(s)
- Sanaz Naghizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Zhang P, Wang H, Chen Y, Lodhi AF, Sun C, Sun F, Yan L, Deng Y, Ma H. DR5 related autophagy can promote apoptosis in gliomas after irradiation. Biochem Biophys Res Commun 2019; 522:910-916. [PMID: 31806377 DOI: 10.1016/j.bbrc.2019.11.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/24/2019] [Indexed: 12/17/2022]
Abstract
As a cancer treatment strategy, irradiation therapy is widely used that can cause DNA breakage and increase free radicals, which leads to different types of cell death. Among them, apoptosis and autophagy are the most important and the most studied cell death processes. Although the exploration of the relationship between apoptosis and autophagy has been a major area of focus, still the molecular mechanisms of autophagy on apoptosis remain unclear. Here, we have revealed that apoptosis was enhanced by the death receptor 5 (DR5) pathway, and the effect of autophagy on apoptosis was promoted by DR5 interacting with LC3B as well as Caspase8 in gliomas after irradiation. Interestingly, we observed that the addition of four different autophagy inducers, rapamycin (RAP), CCI779, ABT737 and temozolomide (TMZ), induced the differences of DR5 expression and cell apoptosis after irradiation. Unlike RAP and CCI779, ABT737 and TMZ were able to increase DR5 expression and further induce cell death. Therefore, we have concluded that DR5 plays a novel and indispensable role in promoting cell apoptosis under irradiation and suggest a potential therapeutic approach for glioblastoma treatment.
Collapse
Affiliation(s)
- Peng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hailong Wang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Chen
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Adil Farooq Lodhi
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China; Department of Microbiology, Faculty of Health Sciences, Hazara University, Mansehra, Pakistan
| | - Chunli Sun
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Feiyi Sun
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liben Yan
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
50
|
Li B, Chng WJ. EZH2 abnormalities in lymphoid malignancies: underlying mechanisms and therapeutic implications. J Hematol Oncol 2019; 12:118. [PMID: 31752930 PMCID: PMC6868783 DOI: 10.1186/s13045-019-0814-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/27/2019] [Indexed: 02/08/2023] Open
Abstract
EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2), which along with other PRC2 components mediates gene expression suppression via the methylation of Histone H3 at lysine 27. Recent studies have revealed a dichotomous role of EZH2 in physiology and in the pathogenesis of cancer. While it plays an essential role in the development of the lymphoid system, its deregulation, whether due to genetic or non-genetic causes, promotes B cell- and T cell-related lymphoma or leukemia. These findings triggered a boom in the development of therapeutic EZH2 inhibitors in recent years. Here, we discuss physiologic and pathogenic function of EZH2 in lymphoid context, various internal causes of EZH2 aberrance and how EZH2 modulates lymphomagenesis through epigenetic silencing, post-translational modifications (PTMs), orchestrating with surrounding tumor micro-environment and associating with RNA or viral partners. We also summarize different strategies to directly inhibit PRC2-EZH2 or to intervene EZH2 upstream signaling.
Collapse
Affiliation(s)
- Boheng Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore, Singapore. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|