1
|
Potomkin M, Kim O, Klymenko Y, Alber M, Aranson IS. Durotaxis and extracellular matrix degradation promote the clustering of cancer cells. iScience 2025; 28:111883. [PMID: 40104056 PMCID: PMC11914804 DOI: 10.1016/j.isci.2025.111883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/01/2024] [Accepted: 01/21/2025] [Indexed: 03/20/2025] Open
Abstract
Early stages of metastasis depend on the collective behavior of cancer cells and their interaction with the extracellular matrix (ECM). Cancer cell clusters are known to exhibit higher metastatic potential than single cells. To explore clustering dynamics, we developed a calibrated computational model describing how motile cancer cells biochemically and biomechanically interact with the ECM during the initial invasion phase, including ECM degradation and mechanical remodeling. The model reveals that cluster formation time, size, and shape are influenced by ECM degradation rates and cellular compliance to external stresses (durotaxis). The results align with experimental observations, demonstrating distinct cell trajectories and cluster morphologies shaped by biomechanical parameters. The simulations provide valuable insights into cancer invasion dynamics and may suggest potential therapeutic strategies targeting early-stage invasive cells.
Collapse
Affiliation(s)
- Mykhailo Potomkin
- Department of Mathematics, University of California, Riverside, Riverside, CA 92521, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, Riverside, CA, USA
| | - Oleg Kim
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuliya Klymenko
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark Alber
- Department of Mathematics, University of California, Riverside, Riverside, CA 92521, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, Riverside, CA, USA
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | - Igor S Aranson
- Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Wang Z, Liu Y, Safavisohi R, Asem M, Hu DD, Stack MS, Champion MM. Gender- and Age-Based Characterization and Comparison of the Murine Primary Peritoneal Mesothelial Cell Proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617441. [PMID: 39416176 PMCID: PMC11482775 DOI: 10.1101/2024.10.09.617441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Organs in the abdominal cavity are covered by a peritoneal membrane, which is comprised of a monolayer of mesothelial cells (MC). Diseases involving the peritoneal membrane include peritonitis, primary cancer (mesothelioma), and metastatic cancers (ovarian, pancreatic, colorectal). These diseases have gender- and/or age-related pathologies; however, the impact of gender and age on the peritoneal MC is not well evaluated. To address this, we identified and characterized gender- and age-related differences in the proteomes of murine primary peritoneal MC. Primary peritoneal MC were isolated from young female (FY) or male (MY) mice (3-6 months) and aged female (FA) or male (MA) mice (20-23 months), lysed, trypsin digested using S-Traps, then subjected to bottom-up proteomics using an LC-Orbitrap mass spectrometer. In each cohort, we identified >1000 protein groups. Proteins were categorized using Gene Ontology and pairwise comparisons between gender and age cohorts were conducted. This study establishes baseline information for studies on peritoneal MC in health and disease at two physiologic age/gender points. Segregation of the data by gender and age could reveal novel factors to specific disease states involving the peritoneum. [This in vitro primary cell model has utility for future studies on the interaction between the mesothelium and foreign materials.].
Collapse
Affiliation(s)
- Zhikun Wang
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame IN 46556
- Harper Cancer Research Institute, University of Notre Dame, South Bend IN 46617
| | - Yueying Liu
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame IN 46556
- Harper Cancer Research Institute, University of Notre Dame, South Bend IN 46617
| | - Reihaneh Safavisohi
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame IN 46556
- Harper Cancer Research Institute, University of Notre Dame, South Bend IN 46617
| | - Marwa Asem
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame IN 46556
- Harper Cancer Research Institute, University of Notre Dame, South Bend IN 46617
| | - Daniel D. Hu
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame IN 46556
| | - Mary Sharon Stack
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame IN 46556
- Harper Cancer Research Institute, University of Notre Dame, South Bend IN 46617
| | - Matthew M. Champion
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame IN 46556
| |
Collapse
|
3
|
Cytoplasmic Tail of MT1-MMP: A Hub of MT1-MMP Regulation and Function. Int J Mol Sci 2023; 24:ijms24065068. [PMID: 36982142 PMCID: PMC10049710 DOI: 10.3390/ijms24065068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
MT1-MMP (MMP-14) is a multifunctional protease that regulates ECM degradation, activation of other proteases, and a variety of cellular processes, including migration and viability in physiological and pathological contexts. Both the localization and signal transduction capabilities of MT1-MMP are dependent on its cytoplasmic domain that constitutes the final 20 C-terminal amino acids, while the rest of the protease is extracellular. In this review, we summarize the ways in which the cytoplasmic tail is involved in regulating and enacting the functions of MT1-MMP. We also provide an overview of known interactors of the MT1-MMP cytoplasmic tail and the functional significance of these interactions, as well as further insight into the mechanisms of cellular adhesion and invasion that are regulated by the cytoplasmic tail.
Collapse
|
4
|
Eichberger J, Weber F, Spanier G, Gerken M, Schreml S, Schulz D, Fiedler M, Ludwig N, Bauer RJ, Reichert TE, Ettl T. Loss of MMP-27 Predicts Mandibular Bone Invasion in Oral Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14164044. [PMID: 36011038 PMCID: PMC9406335 DOI: 10.3390/cancers14164044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The growth of oral squamous cell carcinoma into the mandible poses significant challenges to head and neck surgery. The resulting need for extensive procedures has a decisive influence on subsequent esthetics and function and therefore also on the patient’s quality of life. The molecular mechanism behind this remains obscure to date. Hence, we investigated the influence of MMP-27, Osteoprotegerin and RANKL, three proteins with importance in bone remodeling. The results showed that tumors exhibited less bone-invasive behavior in the presence of MMP-27. This may be an incentive for further studies to elucidate the molecular mechanisms of mandibular bone invasion in OSCC. Abstract Invasion of the mandibular bone is frequent in oral squamous cell carcinoma (OSCC), which often results in extensive ablative and reconstructive procedures for the patient. The purpose of this single-center, retrospective study was to identify and evaluate potential biomarkers and risk factors for bone invasion in OSCC. Initially, in silico gene expression analysis was performed for different HNSCC tumor T-stages to find factors associated with invasive (T4a) tumor growth. Afterwards, the protein expression of bone-metabolizing MMP-27, TNFRSF11B (Osteoprotegerin, OPG), and TNFSF11 (RANKL) was investigated via Tissue Microarrays (TMAs) for their impact on mandibular bone invasion. TMAs were assembled from the bone–tumor interface of primary OSCCs of the floor of the mouth and gingiva from 119 patients. Sixty-four carcinomas with patho-histological jaw invasion (pT4a) were compared to 55 carcinomas growing along the mandible without invasion (pT2, pT3). Tissue samples were additionally evaluated for patterns of invasion using the WPOI grading system. Statistical analysis of in silico data revealed decreased MMP-27 mRNA expression to be strongly associated with the pT4a-stage in OSCC, indicating invasive tumor growth with infiltration of adjacent anatomical structures. Our own clinico-pathological data on OSCCs presented a significant decrease of MMP-27 in tumors invading the nearby mandible (pT4a), compared to pT2 and pT3 tumors without bone invasion. Loss of MMP27 evolved as the strongest predictor of mandibular bone invasion in binary logistic regression analysis. To our knowledge, this is the first study investigating the role of MMP-27 expression in OSCC and demonstrating the importance of the loss of MMP-27 in mandibular bone invasion.
Collapse
Affiliation(s)
- Jonas Eichberger
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Florian Weber
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
| | - Gerrit Spanier
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Gerken
- Tumor Center Regensburg, Institute for Quality Assurance and Health Services Research, University of Regensburg, 93053 Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Mathias Fiedler
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Richard Josef Bauer
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Torsten Eugen Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
5
|
Vos MC, van der Wurff AAM, van Kuppevelt TH, Massuger LFAG. The role of MMP-14 in ovarian cancer: a systematic review. J Ovarian Res 2021; 14:101. [PMID: 34344453 PMCID: PMC8336022 DOI: 10.1186/s13048-021-00852-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
AIM In order to evaluate the role of MMP-14 in ovarian cancer, a systematic review was conducted. METHODS In March 2020, a search in Pubmed was performed with MMP-14 and ovarian cancer as search terms. After exclusion of the references not on MMP-14 or ovarian cancer or not in English, the studies found were classified into two categories: basic research and clinicopathological research. RESULTS In total, 94 references were found of which 33 were excluded. Two additional articles were found in the reference lists of the included studies. Based on the full texts, another 4 were excluded. Eventually, 59 studies were included in the review, 32 on basic research and 19 on clinicopathological research. 8 studies fell in both categories. The basic research studies show that MMP-14 plays an important role in ovarian cancer in the processes of proliferation, invasion, angiogenesis and metastasis. In clinocopathological research, MMP-14 expression is found in most tumours with characteristics of poor prognosis but this immunohistochemical MMP-14 determination does not seem to be an independent predictor of prognosis. CONCLUSIONS From this systematic review of the literature concerning MMP-14 in ovarian cancer it becomes clear that MMP-14 plays various important roles in the pathophysiology of ovarian cancer. The exact translation of these roles in the pathophysiology to the importance of MMP-14 in clinicopathological research in ovarian cancer and possible therapeutic role of anti-MMP-14 agents needs further elucidation.
Collapse
Affiliation(s)
- M. Caroline Vos
- Department of Obstetrics and Gynaecology, Elisabeth-Tweesteden Hospital, PO Box 90151, 5000 LC Tilburg, the Netherlands
| | | | - Toin H. van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Leon F. A. G. Massuger
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|
6
|
Moracho N, Learte AIR, Muñoz-Sáez E, Marchena MA, Cid MA, Arroyo AG, Sánchez-Camacho C. Emerging roles of MT-MMPs in embryonic development. Dev Dyn 2021; 251:240-275. [PMID: 34241926 DOI: 10.1002/dvdy.398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are cell membrane-tethered proteinases that belong to the family of the MMPs. Apart from their roles in degradation of the extracellular milieu, MT-MMPs are able to activate through proteolytic processing at the cell surface distinct molecules such as receptors, growth factors, cytokines, adhesion molecules, and other pericellular proteins. Although most of the information regarding these enzymes comes from cancer studies, our current knowledge about their contribution in distinct developmental processes occurring in the embryo is limited. In this review, we want to summarize the involvement of MT-MMPs in distinct processes during embryonic morphogenesis, including cell migration and proliferation, epithelial-mesenchymal transition, cell polarity and branching, axon growth and navigation, synapse formation, and angiogenesis. We also considered information about MT-MMP functions from studies assessed in pathological conditions and compared these data with those relevant for embryonic development.
Collapse
Affiliation(s)
- Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel A Marchena
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María A Cid
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia G Arroyo
- Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Cristina Sánchez-Camacho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain.,Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain
| |
Collapse
|
7
|
Carey P, Low E, Harper E, Stack MS. Metalloproteinases in Ovarian Cancer. Int J Mol Sci 2021; 22:3403. [PMID: 33810259 PMCID: PMC8036623 DOI: 10.3390/ijms22073403] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 01/25/2023] Open
Abstract
Proteases play a crucial role in the progression and metastasis of ovarian cancer. Pericellular protein degradation and fragmentation along with remodeling of the extracellular matrix (ECM) is accomplished by numerous proteases that are present in the ovarian tumor microenvironment. Several proteolytic processes have been linked to cancer progression, particularly those facilitated by the matrix metalloproteinase (MMP) family. These proteases have been linked to enhanced migratory ability, extracellular matrix breakdown, and development of support systems for tumors. Several studies have reported the direct involvement of MMPs with ovarian cancer, as well as their mechanisms of action in the tumor microenvironment. MMPs play a key role in upregulating transcription factors, as well as the breakdown of structural proteins like collagen. Proteolytic mechanisms have been shown to enhance the ability of ovarian cancer cells to migrate and adhere to secondary sites allowing for efficient metastasis. Furthermore, angiogenesis for tumor growth and development of metastatic implants is influenced by upregulation of certain proteases, including MMPs. While proteases are produced normally in vivo, they can be upregulated by cancer-associated mutations, tumor-microenvironment interaction, stress-induced catecholamine production, and age-related pathologies. This review outlines the important role of proteases throughout ovarian cancer progression and metastasis.
Collapse
Affiliation(s)
- Preston Carey
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Preprofessional Studies, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ethan Low
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elizabeth Harper
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - M. Sharon Stack
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
8
|
Masi I, Caprara V, Spadaro F, Chellini L, Sestito R, Zancla A, Rainer A, Bagnato A, Rosanò L. Endothelin-1 drives invadopodia and interaction with mesothelial cells through ILK. Cell Rep 2021; 34:108800. [PMID: 33657382 DOI: 10.1016/j.celrep.2021.108800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 01/02/2021] [Accepted: 02/05/2021] [Indexed: 01/09/2023] Open
Abstract
Cancer cells use actin-based membrane protrusions, invadopodia, to degrade stroma and invade. In serous ovarian cancer (SOC), the endothelin A receptor (ETAR) drives invadopodia by a not fully explored coordinated function of β-arrestin1 (β-arr1). Here, we report that β-arr1 links the integrin-linked kinase (ILK)/βPIX complex to activate Rac3 GTPase, acting as a central node in the adhesion-based extracellular matrix (ECM) sensing and degradation. Downstream, Rac3 phosphorylates PAK1 and cofilin and promotes invadopodium-dependent ECM proteolysis and invasion. Furthermore, ETAR/ILK/Rac3 signaling supports the communication between cancer and mesothelial cells, favoring SOC cell adhesion and transmigration. In vivo, ambrisentan, an ETAR antagonist, inhibits the adhesion and spreading of tumor cells to intraperitoneal organs, and invadopodium marker expression. As prognostic factors, high EDNRA/ILK expression correlates with poor SOC clinical outcome. These findings provide a framework for the ET-1R/β-arr1 pathway as an integrator of ILK/Rac3-dependent adhesive and proteolytic signaling to invadopodia, favoring cancer/stroma interactions and metastatic behavior.
Collapse
Affiliation(s)
- Ilenia Masi
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome 00128, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome 00128, Italy
| | - Francesca Spadaro
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Lidia Chellini
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome 00128, Italy
| | - Rosanna Sestito
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome 00128, Italy
| | - Andrea Zancla
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome 00128, Italy; Department of Engineering, Università degli Studi Roma Tre, via Vito Volterra 62, Rome 00146, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome 00128, Italy; Institute of Nanotechnology (NANOTEC), National Research Council (CNR), c/o Campus Ecotekne, via Monteroni, Lecce 73100, Italy
| | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome 00128, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome 00128, Italy; Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome 00185, Italy.
| |
Collapse
|
9
|
Marusak C, Thakur V, Li Y, Freitas JT, Zmina PM, Thakur VS, Chang M, Gao M, Tan J, Xiao M, Lu Y, Mills GB, Flaherty K, Frederick DT, Miao B, Sullivan RJ, Moll T, Boland GM, Herlyn M, Zhang G, Bedogni B. Targeting Extracellular Matrix Remodeling Restores BRAF Inhibitor Sensitivity in BRAFi-resistant Melanoma. Clin Cancer Res 2020; 26:6039-6050. [PMID: 32820016 PMCID: PMC7669662 DOI: 10.1158/1078-0432.ccr-19-2773] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 07/07/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE The extracellular matrix (ECM) is an intriguing, yet understudied component of therapy resistance. Here, we investigated the role of ECM remodeling by the collagenase, MT1-MMP, in conferring resistance of v-Raf murine sarcoma viral oncogene homolog B1 (BRAF)-mutant melanoma to BRAF inhibitor (BRAFi) therapy. EXPERIMENTAL DESIGN Publicly available RNA-sequencing data and reverse phase protein array were used to determine the relevance of MT1-MMP upregulation in BRAFi-resistant melanoma in patients, patient-derived xenografts, and cell line-derived tumors. Short hairpin RNA (shRNA)-mediated knockdown of MT1-MMP, inhibition via the selective MT1-MMP/MMP2 inhibitor, ND322, or overexpression of MT1-MMP was used to assess the role of MT1-MMP in mediating resistance to BRAFi. RESULTS MT1-MMP was consistently upregulated in posttreatment tumor samples derived from patients upon disease progression and in melanoma xenografts and cell lines that acquired resistance to BRAFi. shRNA- or ND322-mediated inhibition of MT1-MMP synergized with BRAFi leading to resensitization of resistant cells and tumors to BRAFi. The resistant phenotype depends on the ability of cells to cleave the ECM. Resistant cells seeded in MT1-MMP uncleavable matrixes were resensitized to BRAFi similarly to MT1-MMP inhibition. This is due to the inability of cells to activate integrinβ1 (ITGB1)/FAK signaling, as restoration of ITGB1 activity is sufficient to maintain resistance to BRAFi in the context of MT1-MMP inhibition. Finally, the increase in MT1-MMP in BRAFi-resistant cells is TGFβ dependent, as inhibition of TGFβ receptors I/II dampens MT1-MMP overexpression and restores sensitivity to BRAF inhibition. CONCLUSIONS BRAF inhibition results in a selective pressure toward higher expression of MT1-MMP. MT1-MMP is pivotal to an ECM-based signaling pathway that confers resistance to BRAFi therapy.
Collapse
Affiliation(s)
- Charles Marusak
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, Florida
| | - Varsha Thakur
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, Florida
| | - Yuan Li
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, Florida
| | - Juliano T Freitas
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, Florida
| | - Patrick M Zmina
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, Florida
| | - Vijay S Thakur
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
| | - Ming Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
| | - Jiufeng Tan
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Min Xiao
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Yiling Lu
- Department of Genomic Medicine, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- The Knight Cancer Institute, Oregon Health Sciences University, Portland, Oregon
| | - Keith Flaherty
- Department of Medicine, Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | | | - Benchun Miao
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Tabea Moll
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Gao Zhang
- Department of Neurosurgery, Duke University, Durham, North Carolina
| | - Barbara Bedogni
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
10
|
Lysophosphatidic acid modulates ovarian cancer multicellular aggregate assembly and metastatic dissemination. Sci Rep 2020; 10:10877. [PMID: 32616784 PMCID: PMC7331713 DOI: 10.1038/s41598-020-67565-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) metastasis occurs by exfoliation of cells and multicellular aggregates (MCAs) from the tumor into the peritoneal cavity, adhesion to and retraction of peritoneal mesothelial cells and subsequent anchoring. Elevated levels of lysophosphatidic acid (LPA) have been linked to aberrant cell proliferation, oncogenesis, and metastasis. LPA disrupts junctional integrity and epithelial cohesion in vitro however, the fate of free-floating cells/MCAs and the response of host peritoneal tissues to LPA remain unclear. EOC MCAs displayed significant LPA-induced changes in surface ultrastructure with the loss of cell surface protrusions and poor aggregation, resulting in increased dissemination of small clusters compared to untreated control MCAs. LPA also diminished the adhesive capacity of EOC single cells and MCAs to murine peritoneal explants and impaired MCA survival and mesothelial clearance competence. Peritoneal tissues from healthy mice injected with LPA exhibited enhanced mesothelial surface microvilli. Ultrastructural alterations were associated with restricted peritoneal susceptibility to metastatic colonization by single cells as well as epithelial-type MCAs. The functional consequence is an LPA-induced dissemination of small mesenchymal-type clusters, promoting a miliary mode of peritoneal seeding that complicates surgical removal and is associated with worse prognosis.
Collapse
|
11
|
Post-Translational Modification-Dependent Activity of Matrix Metalloproteinases. Int J Mol Sci 2019; 20:ijms20123077. [PMID: 31238509 PMCID: PMC6627178 DOI: 10.3390/ijms20123077] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
Due to their capacity to process different proteins of the extracellular matrix (ECM), matrix metalloproteinases (MMPs) were initially described as a family of secreted proteases, functioning as main ECM regulators. However, through proteolytic processing of various biomolecules, MMPs also modulate intra- and extracellular pathways and networks. Thereby, they are functionally implicated in the regulation of multiple physiological and pathological processes. Consequently, MMP activity is tightly regulated through a combination of epigenetic, transcriptional, and post-transcriptional control of gene expression, proteolytic activation, post-translational modifications (PTMs), and extracellular inhibition. In addition, MMPs, their substrates and ECM binding partners are frequently modified by PTMs, which suggests an important role of PTMs in modulating the pleiotropic activities of these proteases. This review summarizes the recent progress towards understanding the role of PTMs (glycosylation, phosphorylation, glycosaminoglycans) on the activity of several members of the MMP family.
Collapse
|
12
|
The Expanding Role of MT1-MMP in Cancer Progression. Pharmaceuticals (Basel) 2019; 12:ph12020077. [PMID: 31137480 PMCID: PMC6630478 DOI: 10.3390/ph12020077] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
For over 20 years, membrane type 1 matrix metalloproteinase (MT1-MMP) has been recognized as a key component in cancer progression. Initially, the primary roles assigned to MT1-MMP were the activation of proMMP-2 and degradation of fibrillar collagen. Proteomics has revealed a great array of MT1-MMP substrates, and MT1-MMP selective inhibitors have allowed for a more complete mapping of MT1-MMP biological functions. MT1-MMP has extensive sheddase activities, is both a positive and negative regulator of angiogenesis, can act intracellularly and as a transcription factor, and modulates immune responses. We presently examine the multi-faceted role of MT1-MMP in cancer, with a consideration of how the diversity of MT1-MMP behaviors impacts the application of MT1-MMP inhibitors.
Collapse
|
13
|
Effects of Modulating Actin Dynamics on HER2 Cancer Cell Motility and Metastasis. Sci Rep 2018; 8:17243. [PMID: 30467396 PMCID: PMC6250728 DOI: 10.1038/s41598-018-35284-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022] Open
Abstract
Amplification of HER2 leads to development of HER2-positive (HER2+) cancers with high rates of metastasis compared to other cancer subtypes. The goal of this study was to probe the vulnerability of HER2+ cancer cells to a filamentous actin (F-actin) severing and capping toxin. The growth and viability of human HER2+ breast cancer (HCC1954) and ovarian cancer (SKOV3) cell lines were significantly impaired upon treatment with the marine macrolide mycalolide B (Myc B) at doses above 100 nanomolar. Further testing of Myc B in combination with the antibody-drug conjugate Trastuzumab-emtansine (T-DM1) led to improved killing of SKOV3 cells compared to either treatment alone. At sub-lethal doses, treatment of HER2+ cancer cells with Myc B resulted in rapid loss of leading edge protrusions and formation of aggresomes containing F-actin and the actin regulatory protein Cortactin. This correlated with robust inhibition of HER2+ cancer cell motility and invasion with Myc B treatment. In SKOV3 tumor xenograft assays, intratumoral injections of Myc B impaired HER2+ tumor growth and metastasis, with maximal effects observed in combination with systemic delivery of Trastuzumab. Metastasis of SKOV3 cells to the lungs following tail vein injection was also reduced by Myc B. Together, these findings provide rationale for targeting F-actin in combination with existing therapies for HER2+ cancers to reduce metastasis.
Collapse
|
14
|
Amara N, Tholen M, Bogyo M. Chemical Tools for Selective Activity Profiling of Endogenously Expressed MMP-14 in Multicellular Models. ACS Chem Biol 2018; 13:2645-2654. [PMID: 30160940 DOI: 10.1021/acschembio.8b00562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Matrix metalloproteases (MMPs) are a large family of zinc-dependent endopeptidases involved in a diverse set of physiological and pathological processes, most notably in cancer. Current methods for imaging and quantifying MMP activity lack sufficient selectivity and spatiotemporal resolution to allow studies of specific MMP function in vivo. Previously, we reported a strategy for selective targeting of MMPs by engineering a functionally silent cysteine mutation that enables highly specific covalent modification by a designed activity-based probe. Here, we describe the translation of that technology into a mouse model of breast cancer and subsequent demonstration of the utility of the approach for studies of MMP-14 activation in the tumor microenvironment. Using this approach, we find that MMP-14 is active in late stage tumors and is predominantly associated with stromal cell populations that have been activated by specific signaling molecules (e.g., TGFβ) produced by tumor cells. Our data demonstrate the applicability of this approach for studies of MMP function in whole organisms and identify important regulatory mechanisms for MMP-14 activity in the tumor microenvironment.
Collapse
|
15
|
Escalona RM, Chan E, Kannourakis G, Findlay JK, Ahmed N. The Many Facets of Metzincins and Their Endogenous Inhibitors: Perspectives on Ovarian Cancer Progression. Int J Mol Sci 2018; 19:E450. [PMID: 29393911 PMCID: PMC5855672 DOI: 10.3390/ijms19020450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 02/07/2023] Open
Abstract
Approximately sixty per cent of ovarian cancer patients die within the first five years of diagnosis due to recurrence associated with chemoresistance. The metzincin family of metalloproteinases is enzymes involved in matrix remodeling in response to normal physiological changes and diseased states. Recently, there has been a mounting awareness of these proteinases and their endogenous inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), as superb modulators of cellular communication and signaling regulating key biological processes in cancer progression. This review investigates the role of metzincins and their inhibitors in ovarian cancer. We propose that understanding the metzincins and TIMP biology in ovarian cancer may provide valuable insights in combating ovarian cancer progression and chemoresistance-mediated recurrence in patients.
Collapse
Affiliation(s)
- Ruth M Escalona
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
- The Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia.
| | - Emily Chan
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia.
- Federation University Australia, Ballarat, VIC 3010, Australia.
| | - Jock K Findlay
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
- The Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
| | - Nuzhat Ahmed
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
- The Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia.
- Federation University Australia, Ballarat, VIC 3010, Australia.
| |
Collapse
|