1
|
Chen L, Hikichi Y, Rey JS, Akil C, Zhu Y, Veler H, Shen Y, Perilla JR, Freed EO, Zhang P. Structural maturation of the matrix lattice is not required for HIV-1 particle infectivity. SCIENCE ADVANCES 2025; 11:eadv4356. [PMID: 40344051 PMCID: PMC12063641 DOI: 10.1126/sciadv.adv4356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/03/2025] [Indexed: 05/11/2025]
Abstract
During HIV-1 maturation, the matrix (MA) lattice underlying the viral membrane undergoes a structural rearrangement, and the newly released capsid (CA) protein forms a mature CA. While it is well established that CA formation is essential for particle infectivity, the functional role of MA structural maturation remains unclear. Here, we examine maturation of an MA triple mutant, L20K/E73K/A82T, which, despite replicating similarly to wild-type (WT) in some cell lines, exhibits distinct biochemical behaviors that suggest altered MA-MA interactions. Cryo-electron tomography with subtomogram averaging reveals that, although the MA lattice in immature L20K/E73K/A82T virions closely resembles that of the WT, mature L20K/E73K/A82T virions lack a detectable MA lattice. All-atom molecular dynamics simulations suggest that this absence results from destabilized inter-trimer MA interactions in mature L20K/E73K/A82T mutant virions. These findings suggest that an ordered, membrane-associated mature MA lattice is not essential for HIV-1 infectivity, providing insights into the structural requirements for HIV-1 particle maturation and generation of infectious particles.
Collapse
Affiliation(s)
- Long Chen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Caner Akil
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Yanan Zhu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Institute for Advanced Study in Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Hana Veler
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Yao Shen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
2
|
Chen L, Hikichi Y, Rey JS, Akil C, Zhu Y, Veler H, Shen Y, Perilla JR, Freed EO, Zhang P. Structural maturation of the matrix lattice is not required for HIV-1 particle infectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.22.629981. [PMID: 39763880 PMCID: PMC11703145 DOI: 10.1101/2024.12.22.629981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
HIV-1 assembly is initiated by the binding of Gag polyproteins to the inner leaflet of the plasma membrane, mediated by the myristylated matrix (MA) domain of Gag. Subsequent to membrane binding, Gag oligomerizes and buds as an immature, non-infectious virus particle, which, upon cleavage of the Gag precursor by the viral protease, transforms into a mature, infectious virion. During maturation, the MA lattice underlying the viral membrane undergoes a structural rearrangement and the newly released capsid (CA) protein forms a mature capsid that encloses the viral genome. While it is well established that formation of the mature capsid is essential to particle infectivity, the functional role of MA structural maturation remains unclear. Here, we examine MA maturation of an MA triple mutant, L20K/E73K/A82T, which exhibits distinct biochemical behaviours. The L20K/E73K/A82T mutant is a revertant derived by propagating the L20K mutant, which exhibits reduced infectivity and increased association of the Gag polyprotein with membranes. L20K/E73K/A82T replicates similarly to wild type but retains the increased Gag membrane binding properties of L20K. L20K/E73K/A82T MA also sediments to high-density fractions in sucrose gradients after detergent treatment under conditions that fully solubilize WT MA, suggesting enhanced MA-MA interactions. Cryo-electron tomography with subtomogram averaging reveals that the immature MA lattice of L20K/E73K/A82T closely resembles the wild type. However, mature virions of the triple mutant lack a detectable MA lattice, in stark contrast to both the wild type and L20K mutant. All-atom molecular dynamics simulations suggest that this absence results from destabilized inter-trimer interactions in the mature L20K/E73K/A82T MA. Furthermore, introducing additional mutations designed to disrupt the mature MA lattice does not impair particle infectivity. These findings suggest that an ordered, membrane-associated mature MA lattice is not essential for HIV-1 infectivity, providing new insights into the structural plasticity of the matrix during maturation and its functional role in the viral lifecycle.
Collapse
|
3
|
Rombouts J, Elliott J, Erzberger A. Forceful patterning: theoretical principles of mechanochemical pattern formation. EMBO Rep 2023; 24:e57739. [PMID: 37916772 PMCID: PMC10792592 DOI: 10.15252/embr.202357739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Biological pattern formation is essential for generating and maintaining spatial structures from the scale of a single cell to tissues and even collections of organisms. Besides biochemical interactions, there is an important role for mechanical and geometrical features in the generation of patterns. We review the theoretical principles underlying different types of mechanochemical pattern formation across spatial scales and levels of biological organization.
Collapse
Affiliation(s)
- Jan Rombouts
- Cell Biology and Biophysics
UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Developmental Biology Unit, European Molecular Biology Laboratory
(EMBL)HeidelbergGermany
| | - Jenna Elliott
- Cell Biology and Biophysics
UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Department of Physics and
AstronomyHeidelberg UniversityHeidelbergGermany
| | - Anna Erzberger
- Cell Biology and Biophysics
UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Department of Physics and
AstronomyHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
4
|
Kishore V, Gaiwala Sharma SS, Raghunand TR. Septum site placement in Mycobacteria - identification and characterisation of mycobacterial homologues of Escherichia coli MinD. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001359. [PMID: 37526955 PMCID: PMC10482377 DOI: 10.1099/mic.0.001359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/22/2023] [Indexed: 08/02/2023]
Abstract
A major virulence trait of Mycobacterium tuberculosis (M. tb) is its ability to enter a dormant state within its human host. Since cell division is intimately linked to metabolic shut down, understanding the mechanism of septum formation and its integration with other events in the division pathway is likely to offer clues to the molecular basis of dormancy. The M. tb genome lacks obvious homologues of several conserved cell division proteins, and this study was aimed at identifying and functionally characterising mycobacterial homologues of the E. coli septum site specification protein MinD (Ec MinD). Sequence homology based analyses suggested that the genomes of both M. tb and the saprophyte Mycobacterium smegmatis (M. smegmatis) encode two putative Ec MinD homologues - Rv1708/MSMEG_3743 and Rv3660c/ MSMEG_6171. Of these, Rv1708/MSMEG_3743 were found to be the true homologues, through complementation of the E. coli ∆minDE mutant HL1, overexpression studies, and structural comparisons. Rv1708 and MSMEG_3743 fully complemented the mini-cell phenotype of HL1, and over-expression of MSMEG_3743 in M. smegmatis led to cell elongation and a drastic decrease in c.f.u. counts, indicating its essentiality in cell-division. MSMEG_3743 displayed ATPase activity, consistent with its containing a conserved Walker A motif. Interaction of Rv1708 with the chromosome associated proteins ScpA and ParB, implied a link between its septum formation role, and chromosome segregation. Comparative structural analyses showed Rv1708 to be closer in similarity to Ec MinD than Rv3660c. In summary we identify Rv1708 and MSMEG_3743 to be homologues of Ec MinD, adding a critical missing piece to the mycobacterial cell division puzzle.
Collapse
Affiliation(s)
- Vimal Kishore
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road Hyderabad - 500007, India
- Present address: National Centre for Cell Science (NCCS), NCCS Complex, University of Pune Campus, Pune University Rd, Ganeshkhind, Pune, 411007, India
| | - Sujata S. Gaiwala Sharma
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road Hyderabad - 500007, India
- Present address: Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Tirumalai R. Raghunand
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road Hyderabad - 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
5
|
Cai M, Tugarinov V, Chaitanya Chiliveri S, Huang Y, Schwieters CD, Mizuuchi K, Clore GM. Interaction of the bacterial division regulator MinE with lipid bicelles studied by NMR spectroscopy. J Biol Chem 2023; 299:103037. [PMID: 36806683 PMCID: PMC10031476 DOI: 10.1016/j.jbc.2023.103037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
The bacterial MinE and MinD division regulatory proteins form a standing wave enabling MinC, which binds MinD, to inhibit FtsZ polymerization everywhere except at the midcell, thereby assuring correct positioning of the cytokinetic septum and even distribution of contents to daughter cells. The MinE dimer undergoes major structural rearrangements between a resting six-stranded state present in the cytoplasm, a membrane-bound state, and a four-stranded active state bound to MinD on the membrane, but it is unclear which MinE motifs interact with the membrane in these different states. Using NMR, we probe the structure and global dynamics of MinE bound to disc-shaped lipid bicelles. In the bicelle-bound state, helix α1 no longer sits on top of the six-stranded β-sheet, losing any contact with the protein core, but interacts directly with the bicelle surface; the structure of the protein core remains unperturbed and also interacts with the bicelle surface via helix α2. Binding may involve a previously identified excited state of free MinE in which helix α1 is disordered, thereby allowing it to target the membrane surface. Helix α1 and the protein core undergo nanosecond rigid body motions of differing amplitudes in the plane of the bicelle surface. Global dynamics on the sub-millisecond time scale between a ground state and a sparsely populated excited state are also observed and may represent a very early intermediate on the transition path between the resting six-stranded and active four-stranded conformations. In summary, our results provide insights into MinE structural rearrangements important during bacterial cell division.
Collapse
Affiliation(s)
- Mengli Cai
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sai Chaitanya Chiliveri
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ying Huang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles D Schwieters
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kyoshi Mizuuchi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
6
|
Donaldson LW. Molecular Modeling the Proteins from the exo-xis Region of Lambda and Shigatoxigenic Bacteriophages. Antibiotics (Basel) 2021; 10:1282. [PMID: 34827220 PMCID: PMC8614690 DOI: 10.3390/antibiotics10111282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Despite decades of intensive research on bacteriophage lambda, a relatively uncharacterized region remains between the exo and xis genes. Collectively, exo-xis region genes are expressed during the earliest stages of the lytic developmental cycle and are capable of affecting the molecular events associated with the lysogenic-lytic developmental decision. In Shiga toxin-producing E. coli (STEC) and enterohemorragic E. coli (EHEC) that are responsible for food- and water-borne outbreaks throughout the world, there are distinct differences of exo-xis region genes from their counterparts in lambda phage. Together, these differences may help EHEC-specific phage and their bacterial hosts adapt to the complex environment within the human intestine. Only one exo-xis region protein, Ea8.5, has been solved to date. Here, I have used the AlphaFold and RoseTTAFold machine learning algorithms to predict the structures of six exo-xis region proteins from lambda and STEC/EHEC phages. Together, the models suggest possible roles for exo-xis region proteins in transcription and the regulation of RNA polymerase.
Collapse
|
7
|
Merino-Salomón A, Babl L, Schwille P. Self-organized protein patterns: The MinCDE and ParABS systems. Curr Opin Cell Biol 2021; 72:106-115. [PMID: 34399108 DOI: 10.1016/j.ceb.2021.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/04/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Self-organized protein patterns are of tremendous importance for biological decision-making processes. Protein patterns have been shown to identify the site of future cell division, establish cell polarity, and organize faithful DNA segregation. Intriguingly, several key concepts of pattern formation and regulation apply to a variety of different protein systems. Herein, we explore recent advances in the understanding of two prokaryotic pattern-forming systems: the MinCDE system, positioning the FtsZ ring precisely at the midcell, and the ParABS system, distributing newly synthesized DNA along with the cell. Despite differences in biological functionality, these two systems have remarkably similar molecular components, mechanisms, and strategies to achieve biological robustness.
Collapse
Affiliation(s)
- Adrián Merino-Salomón
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Leon Babl
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Petra Schwille
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany.
| |
Collapse
|
8
|
Fu M, Franquelim HG, Kretschmer S, Schwille P. Non‐Equilibrium Large‐Scale Membrane Transformations Driven by MinDE Biochemical Reaction Cycles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Meifang Fu
- Dept. Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - Henri G. Franquelim
- Dept. Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - Simon Kretschmer
- Dept. Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
- Department of Bioengineering and Therapeutic Science University of California San Francisco San Francisco CA USA
| | - Petra Schwille
- Dept. Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| |
Collapse
|
9
|
Fu M, Franquelim HG, Kretschmer S, Schwille P. Non-Equilibrium Large-Scale Membrane Transformations Driven by MinDE Biochemical Reaction Cycles. Angew Chem Int Ed Engl 2021; 60:6496-6502. [PMID: 33285025 PMCID: PMC7986748 DOI: 10.1002/anie.202015184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 12/11/2022]
Abstract
The MinDE proteins from E. coli have received great attention as a paradigmatic biological pattern-forming system. Recently, it has surfaced that these proteins do not only generate oscillating concentration gradients driven by ATP hydrolysis, but that they can reversibly deform giant vesicles. In order to explore the potential of Min proteins to actually perform mechanical work, we introduce a new model membrane system, flat vesicle stacks on top of a supported lipid bilayer. MinDE oscillations can repeatedly deform these flat vesicles into tubules and promote progressive membrane spreading through membrane adhesion. Dependent on membrane and buffer compositions, Min oscillations further induce robust bud formation. Altogether, we demonstrate that under specific conditions, MinDE self-organization can result in work performed on biomimetic systems and achieve a straightforward mechanochemical coupling between the MinDE biochemical reaction cycle and membrane transformation.
Collapse
Affiliation(s)
- Meifang Fu
- Dept. Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Henri G. Franquelim
- Dept. Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Simon Kretschmer
- Dept. Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
- Department of Bioengineering and Therapeutic ScienceUniversity of California San FranciscoSan FranciscoCAUSA
| | - Petra Schwille
- Dept. Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| |
Collapse
|
10
|
Mass-sensitive particle tracking to elucidate the membrane-associated MinDE reaction cycle. Nat Methods 2021; 18:1239-1246. [PMID: 34608318 PMCID: PMC8490154 DOI: 10.1038/s41592-021-01260-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
In spite of their great importance in biology, methods providing access to spontaneous molecular interactions with and on biological membranes have been sparse. The recent advent of mass photometry to quantify mass distributions of unlabeled biomolecules landing on surfaces raised hopes that this approach could be transferred to membranes. Here, by introducing a new interferometric scattering (iSCAT) image processing and analysis strategy adapted to diffusing particles, we enable mass-sensitive particle tracking (MSPT) of single unlabeled biomolecules on a supported lipid bilayer. We applied this approach to the highly nonlinear reaction cycles underlying MinDE protein self-organization. MSPT allowed us to determine the stoichiometry and turnover of individual membrane-bound MinD/MinDE protein complexes and to quantify their size-dependent diffusion. This study demonstrates the potential of MSPT to enhance our quantitative understanding of membrane-associated biological systems.
Collapse
|
11
|
Kohyama S, Fujiwara K, Yoshinaga N, Doi N. Conformational equilibrium of MinE regulates the allowable concentration ranges of a protein wave for cell division. NANOSCALE 2020; 12:11960-11970. [PMID: 32458918 DOI: 10.1039/d0nr00242a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Min system for determining the cell division position at the center in bacteria has a unique character that uses a protein wave (Min wave) that emerges from its components (MinD and MinE). The Min wave emerges under the coupling of chemical reactions and molecular diffusions of MinDE and appears when the concentrations of MinD and MinE are similar. However, the nanoscale mechanism to determine their concentration ranges has remained elusive. In this study, by using artificial cells as a mimic of cells, we showed that the dominant MinE conformations determined the allowable concentration ranges for the emergence of the Min wave. Furthermore, the deletion of the membrane-binding region of MinE indicated that the region was essential for limiting the concentration ranges to be narrower. These findings illustrate a parameter tuning mechanism underlying complex molecular systems at the nanoscale for spatiotemporal regulation in living cells and show a possibility that the regulation of the equilibrium among molecular conformations can work as a switch for cell division.
Collapse
Affiliation(s)
- Shunshi Kohyama
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Kei Fujiwara
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Natsuhiko Yoshinaga
- Mathematical Science Group, WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 9808577, Japan and MathAM-OIL, AIST, Sendai 980-8577, Japan
| | - Nobuhide Doi
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
12
|
Ramm B, Heermann T, Schwille P. The E. coli MinCDE system in the regulation of protein patterns and gradients. Cell Mol Life Sci 2019; 76:4245-4273. [PMID: 31317204 PMCID: PMC6803595 DOI: 10.1007/s00018-019-03218-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
Molecular self-organziation, also regarded as pattern formation, is crucial for the correct distribution of cellular content. The processes leading to spatiotemporal patterns often involve a multitude of molecules interacting in complex networks, so that only very few cellular pattern-forming systems can be regarded as well understood. Due to its compositional simplicity, the Escherichia coli MinCDE system has, thus, become a paradigm for protein pattern formation. This biological reaction diffusion system spatiotemporally positions the division machinery in E. coli and is closely related to ParA-type ATPases involved in most aspects of spatiotemporal organization in bacteria. The ATPase MinD and the ATPase-activating protein MinE self-organize on the membrane as a reaction matrix. In vivo, these two proteins typically oscillate from pole-to-pole, while in vitro they can form a variety of distinct patterns. MinC is a passenger protein supposedly operating as a downstream cue of the system, coupling it to the division machinery. The MinCDE system has helped to extract not only the principles underlying intracellular patterns, but also how they are shaped by cellular boundaries. Moreover, it serves as a model to investigate how patterns can confer information through specific and non-specific interactions with other molecules. Here, we review how the three Min proteins self-organize to form patterns, their response to geometric boundaries, and how these patterns can in turn induce patterns of other molecules, focusing primarily on experimental approaches and developments.
Collapse
Affiliation(s)
- Beatrice Ramm
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Tamara Heermann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
13
|
Glock P, Ramm B, Heermann T, Kretschmer S, Schweizer J, Mücksch J, Alagöz G, Schwille P. Stationary Patterns in a Two-Protein Reaction-Diffusion System. ACS Synth Biol 2019; 8:148-157. [PMID: 30571913 DOI: 10.1021/acssynbio.8b00415] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Patterns formed by reaction-diffusion mechanisms are crucial for the development or sustenance of most organisms in nature. Patterns include dynamic waves, but are more often found as static distributions, such as animal skin patterns. Yet, a simplistic biological model system to reproduce and quantitatively investigate static reaction-diffusion patterns has been missing so far. Here, we demonstrate that the Escherichia coli Min system, known for its oscillatory behavior between the cell poles, is under certain conditions capable of transitioning to quasi-stationary protein distributions on membranes closely resembling Turing patterns. We systematically titrated both proteins, MinD and MinE, and found that removing all purification tags and linkers from the N-terminus of MinE was critical for static patterns to occur. At small bulk heights, dynamic patterns dominate, such as in rod-shaped microcompartments. We see implications of this work for studying pattern formation in general, but also for creating artificial gradients as downstream cues in synthetic biology applications.
Collapse
Affiliation(s)
- Philipp Glock
- Cellular and Molecular Biophysics, Max-Planck-Institut für Biochemie, Martinsried 82152, Germany
| | - Beatrice Ramm
- Cellular and Molecular Biophysics, Max-Planck-Institut für Biochemie, Martinsried 82152, Germany
| | - Tamara Heermann
- Cellular and Molecular Biophysics, Max-Planck-Institut für Biochemie, Martinsried 82152, Germany
| | - Simon Kretschmer
- Cellular and Molecular Biophysics, Max-Planck-Institut für Biochemie, Martinsried 82152, Germany
| | - Jakob Schweizer
- Cellular and Molecular Biophysics, Max-Planck-Institut für Biochemie, Martinsried 82152, Germany
| | - Jonas Mücksch
- Cellular and Molecular Biophysics, Max-Planck-Institut für Biochemie, Martinsried 82152, Germany
| | - Gökberk Alagöz
- Cellular and Molecular Biophysics, Max-Planck-Institut für Biochemie, Martinsried 82152, Germany
| | - Petra Schwille
- Cellular and Molecular Biophysics, Max-Planck-Institut für Biochemie, Martinsried 82152, Germany
| |
Collapse
|
14
|
MinE conformational switching confers robustness on self-organized Min protein patterns. Proc Natl Acad Sci U S A 2018; 115:4553-4558. [PMID: 29666276 PMCID: PMC5939084 DOI: 10.1073/pnas.1719801115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Many fundamental cellular processes are spatially regulated by self-organized protein patterns, which are often based on nucleotide-binding proteins that switch their nucleotide state upon interaction with a second, activating protein. For reliable function, these protein patterns must be robust against parameter changes, although the basis for such robustness is generally elusive. Here we take a combined theoretical and experimental approach to the Escherichia coli Min system, a paradigmatic system for protein self-organization. By mathematical modeling and in vitro reconstitution of mutant proteins, we demonstrate that the robustness of pattern formation is dramatically enhanced by an interlinked functional switching of both proteins, rather than one. Such interlinked functional switching could be a generic means of obtaining robustness in biological pattern-forming systems. Protein patterning is vital for many fundamental cellular processes. This raises two intriguing questions: Can such intrinsically complex processes be reduced to certain core principles and, if so, what roles do the molecular details play in individual systems? A prototypical example for protein patterning is the bacterial Min system, in which self-organized pole-to-pole oscillations of MinCDE proteins guide the cell division machinery to midcell. These oscillations are based on cycling of the ATPase MinD and its activating protein MinE between the membrane and the cytoplasm. Recent biochemical evidence suggests that MinE undergoes a reversible, MinD-dependent conformational switch from a latent to a reactive state. However, the functional relevance of this switch for the Min network and pattern formation remains unclear. By combining mathematical modeling and in vitro reconstitution of mutant proteins, we dissect the two aspects of MinE’s switch, persistent membrane binding and a change in MinE’s affinity for MinD. Our study shows that the MinD-dependent change in MinE’s binding affinity for MinD is essential for patterns to emerge over a broad and physiological range of protein concentrations. Mechanistically, our results suggest that conformational switching of an ATPase-activating protein can lead to the spatial separation of its distinct functional states and thereby confer robustness on an intracellular protein network with vital roles in bacterial cell division.
Collapse
|
15
|
Mizuuchi K, Vecchiarelli AG. Mechanistic insights of the Min oscillator via cell-free reconstitution and imaging. Phys Biol 2018; 15:031001. [PMID: 29188788 DOI: 10.1088/1478-3975/aa9e5e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The MinD and MinE proteins of Escherichia coli self-organize into a standing-wave oscillator on the membrane to help align division at mid-cell. When unleashed from cellular confines, MinD and MinE form a spectrum of patterns on artificial bilayers-static amoebas, traveling waves, traveling mushrooms, and bursts with standing-wave dynamics. We recently focused our cell-free studies on bursts because their dynamics recapitulate many features of Min oscillation observed in vivo. The data unveiled a patterning mechanism largely governed by MinE regulation of MinD interaction with membrane. We proposed that the MinD to MinE ratio on the membrane acts as a toggle switch between MinE-stimulated recruitment and release of MinD from the membrane. In this review, we summarize cell-free data on the Min system and expand upon a molecular mechanism that provides a biochemical explanation as to how these two 'simple' proteins can form the remarkable spectrum of patterns.
Collapse
Affiliation(s)
- Kiyoshi Mizuuchi
- Laboratory of Molecular Biology, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States of America
| | | |
Collapse
|